
User Guide - CLASS v3.0

Core Library for Advanced Scenario Simulation

B. MOUGINOT1 & B. LENIAU2

1 Baptiste.Mouginot@subatech.in2p3.fr
2 Baptiste.Leniau@subatech.in2p3.fr

CNRS:IN2P3:Subatech:Erdre

Baptiste.Mouginot@subatech.in2p3.fr
Baptiste.Leniau@subatech.in2p3.fr

Abstract

i

Table of Contents

Abstract i

Table of Contents ii

List of figures v

I Introduction 1

II First Steps 3

1 Package Contents 4

2 Install procedure 5
2.1 Requirement . 5
2.2 Installation . 6

3 CLASS Execution 8

4 News, forum, troubleshooting, doxygen ... 9

III CLASS : General overview 10

5 Generalities 11
5.1 Basic unit . 11
5.2 CLASS working process principle . 11

6 Facilities descriptions 12
6.1 CLASSFacility . 12

ii

6.2 Reactor . 12
6.2.1 Generalities . 12
6.2.2 Use . 12

6.2.2.1 Fixed Fuel . 13
6.2.2.2 Reprocessed Fuel . 14

6.2.3 CLASSFuelPlan . 15
6.3 CLASSBackEnd . 16

6.3.1 Storage . 16
6.3.2 Pool . 16
6.3.3 SeparationPlant . 17

6.4 Fabrication Plant . 18
6.5 Pathway between Facilities . 19

6.5.1 Reactor with fixed fuel and a Storage . 19
6.5.2 Reactor with fixed fuel, a Pool and a Storage 20
6.5.3 Reactor with fixed fuel, two SeprationPlant, a Pool and four Storage 20
6.5.4 Reactor, a FabricationPlant, a Pool and a Storage 22

7 Other objects 23
7.1 ZAI . 23
7.2 IsotopicVector . 23

7.2.1 Generality . 23
7.2.2 Print method . 24
7.2.3 GetTotalMass . 24
7.2.4 Multiplication between IsotopicVector . 24

7.3 EvolutionData . 25
7.3.1 EvolutionData ASCII format . 25
7.3.2 DecayDataBank . 26

7.4 Log management : CLASSLogger . 27

8 Scenario/Park 28
8.1 Fill the scenario . 28
8.2 OutPut . 29

8.2.1 General Output . 29
8.2.2 Output names . 29
8.2.3 Output Frequency . 29

IV Physics Models 30

9 Description and implementation 31

10 Equivalence Model 33
10.1 Available Equivalence Models . 33

10.1.1 PWR-MOX models : . 33
10.1.1.1 Linear BU model : EQM_LIN_MOX 33
10.1.1.2 Quadratic Model : EQM_QUAD_MOX 34
10.1.1.3 Neural network model : EQM_MLP_MOX 35

10.1.2 PWR-UOX model : . 38
10.1.2.1 Linear Model: EQM_LIN_UOX 38

10.2 How to build an Equivalence Model . 38
10.2.1 Compile your equivalence model with your CLASS executable : 41
10.2.2 Your equivalence model in the CLASS library : 41

11 XS Model 42
11.1 Available XS Models . 42

11.1.1 Pre-calculated XS : XSM_CLOSEST . 42
11.1.2 XS predictor : XSM_MLP . 44

11.2 How to build an XS Model . 47
11.2.1 Compile your cross section model with your CLASS executable : 50
11.2.2 Your cross section model in the CLASS library : 50

12 Irradiation Model 51
12.1 Available Irradiation Model . 51

12.1.1 How to build an Irradiation Model . 52
12.1.2 Compile your Irradiation model with your CLASS executable : 54
12.1.3 Your Irradiation model in the CLASS library : 54

V CLASSGui : The results viewer 55

VI Input examples 57

VII In development 58

List of Figures

6.1 Storage . 16
6.2 Shematic Pathway . 20
6.3 Shematic Pathway . 20
6.4 Shematic Pathway . 21
6.5 Shematic Pathway . 22

12.1 Shematic Pathway . 56

v

Part I

Introduction

1

A nuclear scenario code simulates the whole reactor fleet and its associ- ated fuel cycle plants
and storages. It models the transition from an initial state to a final one (e.g replacement of PWR
by FBR-Na, U/Pu to Th/U cycle, phase out,...). The results are mainly isotopic inventories (or
related values such as decay heat) and inventories flows (annual heavy metal to re- processed ...)
in each element of the fuel cycle (reactor, fabrication plant, storage ...) over time.

Part II

First Steps

3

Chapter 1

Package Contents

Ya quoi dans ce que je viens de downloader

4

Chapter 2

Install procedure

2.1 Requirement
• User skills : Good knowledge of C++. Abilities in using Root (cern). Experience in depletion

codes and neutron transport codes.

• OS : CLASS is known to work under Linux (64 bits) and MacOSX (64 bits). It has never
been tested on any Windows distribution.

• Root (CERN) : CLASS uses Root to store output data. The graphical user interface CLASS-
Gui is based on Root. Some algorithms uses the TMVA module of Root.

• C++ compiler : we recommend to use a gnu compiler like gcc4.8. If your platform is
DARWIN (Mackintosh OSX) we strongly recommend not to use the clang compiler
You should install macport. then types this following command in terminal :

sudo port install gcc48
sudo port select --set gcc mp-gcc48

IMPORTANT NOTE :

The actual root package (version 5.34/20) and earlier (and maybe latter) has a memory leak
issue when using TMVA leading to a freeze of your computer. To avoid this dramatical error to
happen do the following :
If the thread RootTalk 1 or RootSupport 2 indicates status solved then download and install the
more recent ROOT version.
If the status is still unresolved proceed as follow :
Open with your favourite text editor the file $ROOTSYS/tmva/src/Reader.cxx ($ROOTSYS is the

1http://root.cern.ch/phpBB3/viewtopic.php?f=3&t=18360&p=78586&hilit=TMVA#p78586
2https://sft.its.cern.ch/jira/browse/ROOT-6551

5

http://root.cern.ch/phpBB3/viewtopic.php?f=3&t=18360&p=78586&hilit=TMVA#p78586
https://sft.its.cern.ch/jira/browse/ROOT-6551

path to your ROOT installation folder) and replace the following :

TMVA : : Reader : : ~ Reader (void)
{

/ / d e s t r u c t o r

delete fDataSetManager ; / / DSMTEST

delete fLogger ;
}

by :

TMVA : : Reader : : ~ Reader (void)
{

/ / d e s t r u c t o r
std : : map<TString , IMethod∗ > : : iterator itr ;
for (itr = fMethodMap . begin () ; itr != fMethodMap . end () ; itr++) {

delete itr−>second ;
}
fMethodMap . clear () ;

delete fDataSetManager ; / / DSMTEST

delete fLogger ;
}

then type in your terminal :

cd $ROOTSYS
sudo make -j

2.2 Installation

Decompress the CLASS.tar.gz in your wanted location. Then, you have to add some envi-
ronment variables. If your using tcsh edit the file $HOME/.tcshrc, and copy past the following
changing YourPathToCLASS by the path of your CLASS installation folder:

setenv CLASS_PATH YourPathToCLASS
setenv CLASS_lib ${CLASS_PATH } / lib
setenv CLASS_include ${CLASS_PATH } / source / include
setenv PATH ${PATH } : ${CLASS_PATH } / bin / gui

Then type in terminal:

source $HOME /. tcshrc
cd $CLASS_PATH/
mkdir lib
cd source/src
make -j
make install

Then to install the Graphical User Interface :

cd $CLASS_PATH/gui
make -j

Chapter 3

CLASS Execution

CLASS is a set of C++ libraries, there is no CLASS binary file. A CLASS executable has to
be build by user using objects and methods defined in the CLASS package.
The compilation line for generating your executable from a .cxx file is the following :

g++ -o CLASS_exec YourScenario.cxx -I $CLASS_include -L $CLASS_lib -lCLASSpkg ‘root -config
--cflags ‘ ‘root -config --libs ‘ -fopenmp -lgomp -Wunused -result

8

Chapter 4

News, forum, troubleshooting, doxygen ...

CLASS has a forge1 hosted by the IN2P3 where you can find :

• A forum2 where you are invited to post your trouble about CLASS installation and usage.
You may find the answer to your trouble on a already posted thread.

• A doxygen3 where all the CLASS objects and methods are defined and explained.

• News4 : All the news related to CLASS

A Mailing List5 also exist in order to be warned of all the change inside CLASS and to allow user
to exchange directly on the code. One can join the mailing list through the following link6.

1https://forge.in2p3.fr/projects/classforge
2https://forge.in2p3.fr/projects/classforge/boards
3https://forge.in2p3.fr/projects/classforge/embedded/annotated.html
4https://forge.in2p3.fr/projects/classforge/news
5classuser-l@ccpntc02.in2p3.fr
6http://listserv.in2p3.fr/cgi-bin/wa?SUBED1=classuser-l&A=1

9

https://forge.in2p3.fr/projects/classforge
https://forge.in2p3.fr/projects/classforge/boards
https://forge.in2p3.fr/projects/classforge/embedded/annotated.html
https://forge.in2p3.fr/projects/classforge/news
classuser-l@ccpntc02.in2p3.fr
http://listserv.in2p3.fr/cgi-bin/wa?SUBED1=classuser-l&A=1

Part III

CLASS : General overview

10

Chapter 5

Generalities

5.1 Basic unit

All time in CLASS should be written in second. It corresponds to the cSecond, a CLASS c++
type, which are a long long int going, in 32 bits and 64 bits, up to (263−1) s ∼ 2.9 ·1011 years,
enough for any electro-nuclear scenarios one can consider....

5.2 CLASS working process principle

image : shéma de principe de class

11

Chapter 6

Facilities descriptions

All the facilities in CLASS project are regrouped inside a large group called CLASSFacility
(and inherit of all the properties of the CLASSFacility in a C++ way). Inside the CLASSFacility,
3 different types has been defined, the reactor, the FabricationPlant (or more generally, all the fuel
cycle front-end facilities) and the backend facilities.

6.1 CLASSFacility

The CLASSFacility should never be used directly in the main CLASS program (the one made
to perform the simulation). The aim of this object is to regroup all the common properties of the
nuclear facilities, such as common variables, methods, and builder.

6.2 Reactor

6.2.1 Generalities

The aim of this class is to deal with the evolution of the fuel inside a reactor.
The evolution of the fuel is always contain in the EvolutionData fEvolutionDB.
There are 2 way to provide the EvolutionData to the reactor. In the case of fixed fuel1 the user need
to provide it, using the appropriated constructor, the set function, or a CLASSFuelPlan. In the case
of recycled fuel or unfixed fuel, the user need to provide a PhysicsModels, using the appropriated
constructor, the set function, and/or a CLASSFuelPlan.

6.2.2 Use

There are 2 main ways to define a reactor, depending on the type of fuel loaded.

1Always the same input/output isotopic composition.

12

6.2.2.1 Fixed Fuel

Reactor using fixed fuel, which load always the same fresh fuel, and unload it with always the
same burnup (same spent fuel...), to declare a reactor proceed as follow:

Reactor ∗MyReactor = new reactor (aCLASSLogger , / / CLASSLogger
myFuel_EvolutionData , / / E v o l u t i o n D a t a
aBackEnd , / / BackEnd
myRe_StartingTime , / / S t a r t i n g Time
myRe_LifeTime , / / Time of L i f e
myRe_Power , / / Power
myRe_HeavyMetalMass , / / HM mass
myRe_BurnUp , / / BurnUp
myRe_LoadFactor) ; / / L o a d F a c t o r

or

Reactor ∗MyReactor = new reactor (aCLASSLogger , / / CLASSLogger
myFuel_EvolutionData , / / E v o l u t i o n D a t a
aBackEnd , / / BackEnd
myRe_StartingTime , / / S t a r t i n g Time
myRe_LifeTime , / / Time of L i f e
myRe_CycleTime , / / Time of Cycle
myRe_HeavyMetalMass , / / HM mass
myRe_BurnUp) ; / / BurnUp

The meaning of each arguments of the two constructor previously defined are summed up in the
following table

Table 6.1: Arguments of Reactor constructors

Argument type meaning unit
aCLASSLogger CLASSLogger Output messages N.A.

myFuel_EvolutionData EvolutionData Fuel evolution description N.A.
aBackEnd CLASSBackEnd Facility getting the spent fuel N.A.

myRe_StartingTime cSecond Creation time second
myRe_LifeTime cSecond Operation time second

myRe_Power double Thermal power Watt
myRe_HeavyMetalMass double Heavy metal mass tons

myRe_BurnUp double Burn up at EOC GWd/tHM
myRe_LoadFactor double Fraction of nominal power .
myRe_CycleTime cSecond the cycle time second

6.2.2.2 Reprocessed Fuel

In this case, the fuel is provided by an external facility, so called, the FabricationPlant. The
way to build the reprocessed fresh fuel and to handle the fuel depletion calculation is done by the
PhysicsModels. The main ways to defined a Reactor (with reprocessed fuel) is shown in the next
two examples :

Reactor ∗MyReactor = new Reactor (aCLASSLogger , / / CLASSLogger
myFuel_PhysicsModels , / / Phys i c sMode l s
aFabricationPlant , / / F a b r i c a t i o n P l a n t
aBackEnd , / / BackEnd
myRe_StartingTime , / / S t a r t i n g Time
myRe_LifeTime , / / Time of L i f e
myRe_Power , / / Power
myRe_HeavyMetalMass , / / HM mass
myRe_BurnUp , / / BurnUp
myRe_LoadFactor) ; / / L o a d F a c t o r

or

Reactor ∗MyReactor = new Reactor (aCLASSLogger , / / CLASSLogger
myFuel_PhysicsModels , / / Phys i c sMode l s
aFabricationPlant , / / F a b r i c a t i o n P l a n t
aBackEnd , / / BackEnd
myRe_StartingTime , / / S t a r t i n g Time
myRe_LifeTime , / / Time of L i f e
myRe_CycleTime , / / Time of Cycle
myRe_HeavyMetalMass , / / HM mass
myRe_BurnUp) ; / / BurnUp

The meaning of each arguments of the two constructor previously defined are summed up in the
following table

Table 6.2: Arguments of Reactor constructors

Argument type meaning unit
aCLASSLogger CLASSLogger Output messages N.A.

myFuel_PhysicsModels PhysicsModels Fuel construction/evolution N.A.
aFabricationPlant FabricationPlant Facility building the fuel N.A.

aBackEnd CLASSBackEnd Facility getting the spent fuel N.A.
myRe_StartingTime cSecond Creation time second

myRe_LifeTime cSecond Operation time second
myRe_Power double Thermal power Watt

myRe_HeavyMetalMass double Heavy metal mass tons
myRe_BurnUp double Burn up at EOC GWd/tHM

myRe_LoadFactor double Fraction of nominal power .
myRe_CycleTime cSecond the cycle time second

6.2.3 CLASSFuelPlan

A reactor may changes of fuel type during its lifetime. To handle this, the user can destroy the
reactor and build a new one with an other kind of fuel. In order to make the process more flexible,
the CLASSFuelPlan has been added to the CLASS package. The following example explains how
to make a reactor to change its fuel type and burn-up, ...

Reactor∗ MyReactor = new Reactor (gCLASS−>GetLog () , / / Log
EvolutionData0 , / / DB
Stock , / / BackEnd
StartingTime , / / S t a r t i n g t ime
LifeTime , / / Time of l i f e
Power_CP0 , / / Power
HMMass , / / HM mass
BU0 , / / BurnUp
0 . 8) ; / / Load f a c t o r

MyReactor−>GetFuelPlan ()−>AddFuel (ChangingFuelTime0 , EvolutionData1 , BU1) ;
MyReactor−>GetFuelPlan ()−>AddFuel (ChangingFuelTime1 , PhyMod , BU2) ;

At ChangingFuelTime0 the reactor changes its fuel from EvolutionData0 to EvolutionData1 and
its Burn-up from BU0 to BU1. At ChangingFuelTime1, the reactor uses reprocessed fuel using the
PhysicsModels PhyMod.

6.3 CLASSBackEnd

The CLASSBackEnd class is a master class which aims to regroup all common properties of
the fuel back-end facilities. All other back-end facilities in CLASS inherit of the CLASSBackEnd.
In CLASS, a CLASSBackEnd does not control its upstream. Its incoming material flux is pushed
by its upstream facility (a Reactor, or an other CLASSBackEnd). It only controls its downstream
flux.
This object is not supposed to be used explicitly in a CLASS input.

6.3.1 Storage

Storage is a CLASSBack end without associated downstream factory. All the incoming ma-
terial are stored individually in different IsotopicVector (see figure 6.1). During the storage, the
depletion by decay is taken into account. The storage has to be defined as follow :

Storage ∗Stock = new Storage (aCLASSLogger) ;

Figure 6.1: Storage

6.3.2 Pool

Pool is a CLASSBackEnd with an associated downstream factory. All incoming material will
be pushed in the downstream factory after a set time, so called CoolingTime. All the incoming
material are stored individually in different IsotopicVector (the same way as the Storage) . During
the cooling process, the depletion by decay is taken into account. The Pool has to be defined as
follow :

Pool ∗MyPool = new Pool (aCLASSLogger , aCLASSBackEnd , 5∗3 6 5 . 2 5∗2 4 .∗3 6 0 0) ;

In the previous example, a 5 years cooling time has been used. If no downstream facility is set, all
the material will be sent, after the cooling time, to the WASTE of the Scenario. To do so :

Pool ∗MyPool = new Pool (aCLASSLogger , 5∗3 6 5 . 2 5∗2 4 .∗3 6 0 0) ;

6.3.3 SeparationPlant

The role of the SeparationPlant is to separate an incoming IsotopicVector from a facility into
an arbitrary number of outgoing CLASSBackEnd.
To define a SeparationPlant proceed as follow :

SeparationPlant∗ MySeparationPlant = new SeparationPlant (aCLASSLogger) ;

The separation process is instantaneous and it uses isotopic separation efficiencies. Efficien-
cies must be given as an IsotopicVector containing the separation efficiency for each nucleus. Note
that it is possible to separate the incoming IsotopicVector in many, the users must provide as many
isotopic separation efficiency as outgoing CLASSBackEnd.
In addition of an outgoing CLASSBackEnd and an associated isotopic separation efficiency, the
user must provide a date for the separation to be effective. To do so :

IsotopicVector IV_MA ; / / De f i ne Minor A c t i n i d e s (MA) s e p a r a t i o n e f f i c i e n c i e s
IV_MA . Add (9 3 , 237 , 0 , 1 .) ;
IV_MA . Add (9 5 , 242 , 1 , 1 .) ;
IV_MA . Add (9 6 , 245 , 0 , 1 .) ;
/ / . . .
MySeparationPlant−>SetBackEndDestination (aCLASSBackEnd1 / / d e s t i n a t i o n o f MA

IV_MA , / / E f f i c i e n c i e s
2 0 0 0∗3 6 5 . 2 5∗2 4 . 3 6 0 0) ; / / Time when t h e s e p a r a t i o n b e g i n

IsotopicVector IV_Pu ; / / De f ined P lu ton ium s e p a r a t i o n e f f i c i e n c i e s
IV_Pu . Add (9 4 , 238 , 0 , 0 . 8) ;
IV_Pu . Add (9 4 , 239 , 0 , 0 . 8) ;
/ / . . .
MySeparationPlant−>SetBackEndDestination (aCLASSBackEnd2 ,

IV_Pu ,
2 0 0 5∗3 6 5 . 2 5∗2 4 . 3 6 0 0) ;

IsotopicVector IV_U ;
IV_U += 0 . 5∗ ZAI (9 2 , 235 , 0) ;
IV_U += 0 . 5∗ ZAI (9 2 , 238 , 0) ;
/ / . . .
MySeparationPlant−>SetBackEndDestination (aCLASSBackEnd3 ,

IV_U ,
2 0 1 5∗3 6 5 . 2 5∗2 4 . 3 6 0 0) ;

In the present example defined above, the separation of Minor Actinides start in 2000, this sepa-
rated material is sent to the CLASSBackEnd aCLASSBackEnd1 (the rest goes to the WASTE). The
separation of the plutonium start in 2005 (the separated Pu is sent to aCLASSBackEnd2) and the

separation of uranium take place in 2010.
Note that between 2005 and 2010, both MA and Pu are separated and sent respectively to aCLASS-
BackEnd1 and aCLASSBackEnd2, all the remaining isotopes are sent to the WASTE. After 2010,
MA, Pu and U are separated and sent to their respective CLASSBackEnd facilities, the rest is still
sent to WASTE.
Furthermore, the separation of Actinides Minor has an efficiency of 100%, Pu of 80% and U of
50%. Please refer to $CLASS_PATH/example/Separation.cxx for a simple CLASS input using the
SeparationPlant.

6.4 Fabrication Plant

The FabricationPlant is the facility which takes care of the fuel Fabrication. The "action" in
FabricationPlant appends before the beginning of cycle of a reactor: One fabrication time (Fabri-
cation duration) before the BOC, it start the building process of the fuel.
First the FabricationPlant sorts the different IsotopicVectors in the different inputs Storage accord-
ing to the user priorities. Then it asks to the EquivalenceModel in PhysicsModels of the reactor
how to build a fuel with the correct properties using the available IsotopicVectors contained in
the Storage. The EquivalenceModel provide a list of fraction to take in each IsotopicVectors in the
Storage . According to this fraction list, the FabricationPlant takes the fraction in each IsotopicVec-
tor and build the reprocessed fuel. Once the reprocessed fuel is made, it asks to the PhyscisModel
to calculate its depletion and store the result in an EvolutionData The reactor takes this Evolution-
Data at its begining of cycle.
Between the fuel fabrication and the loading of the fuel in the reactor, the depletion of the fresh
fuel by decay is taken into account.
Note that, the FabricationPlant provide to the EquivalenceModel a list of stock which has virtually
decay during the fabrication time in order to build a proper fuel.

To setup a FabricationPlant do as follow :

FabricationPlant ∗MyFabricationPlant = new FabricationPlant (gCLASS−>GetLog () ,
1∗year) ;

MyFabricationPlant−>SetFiFo () ;

In the previous example, the SetFifo() method set the first in first out priority for the stock
usage. It means that the older IsotopicVector of the Storage is taken in priority by the Fabri-
cationPlant. If the younger IsotopicVector is wanted to be taken in priority : one should use
SetFiFo(false).

The Storage used to extract the fissile part of the fuel is set using :

MyFabricationPlant−>AddFissileStorage (Stock) ;

And if necessary it is possible to define a Storage where fertile isotopes will be extracted, using :

MyFabricationPlant−>AddFertileStorage (Stock) ;

If no Fertile Storage are defined, the fertile part is taken from outside of the Scenario. By default
the unused part of the stock is sent to WASTE. But it is possible to set a storage where the unused
part of the stock will be stored, using :

MyFabricationPlant−>SetReUsableStorage (Stock) ;

Please refer to $CLASS_PATH/example/CloseCycle.cxx for a simple CLASS input using the
FabricationPlant .

6.5 Pathway between Facilities

As explain previously, there are 3 different facility family, the FabricationPlant, the reactor,
and the CLASSBackEnd. All the facilities of type CLASSBackEnd can’t get material from other
facilities by itself. It is always an other facility which sends material in the CLASSBackEnd. An
another hand some CLASSBackEnd facilities can send material inside other facilities: the Separa-
tionPlant and the Pool. The Storage can only store materials.
The reactor takes its fuel from a FabricationPlant and sends the irradiated fuel in a CLASSBack-
End.
The FabricationPlant takes its materials from a storage and stored the reprocessed fuel until the
begining of cycle of the Reactor. In the following, 4 examples of pathways between facilities
are listed. These examples are here to illustrate the possible pathways. These examples are not
exhaustive. Furthermore, almost any composition between these examples could be made.

6.5.1 Reactor with fixed fuel and a Storage

Please refer to the CLASS input $CLASS_PATH/example/SimpleReactor.cxx

Figure 6.2: Shematic Pathway

CLASSLogger ∗Logger = new CLASSLogger ("CLASS_OUTPUT.log" , 1 , 2) ;
EvolutionData∗ myFuel_EvolutionData = new EvolutionData (Logger , "/PATH/

EvolData.dat") ;

Storage∗ MyStorage = new Storage (Logger) ;

Reactor ∗MyReactor = new Reactor (Logger , myFuel_EvolutionData , MyStorage , 0 ,
4 0∗3 6 5 . 2 5∗2 4 . 3 6 0 0 , 900E6 , 100 , 45 , 1) ;

6.5.2 Reactor with fixed fuel, a Pool and a Storage

Please refer to the CLASS input $CLASS_PATH/example/SimpleReactor2.cxx

Figure 6.3: Shematic Pathway

CLASSLogger ∗Logger = new CLASSLogger ("CLASS_OUTPUT.log" , 1 , 2) ;
EvolutionData∗ myFuel_EvolutionData = new EvolutionData (Logger , "/PATH/

EvolData.dat") ;

Storage∗ MyStorage = new Storage (Logger) ;
Pool∗ MyPool = new Pool (Logger , MyStorage , 5∗365 .25∗24∗3600) ;

Reactor ∗MyReactor = new Reactor (Logger , myFuel_EvolutionData , MyPool , 0 ,
4 0∗3 6 5 . 2 5∗2 4 . 3 6 0 0 , 900E6 , 100 , 45 , 1) ;

6.5.3 Reactor with fixed fuel, two SeprationPlant, a Pool and four Storage

Please refer to the CLASS input $CLASS_PATH/example/Separation.cxx

Figure 6.4: Shematic Pathway

CLASSLogger ∗Logger = new CLASSLogger ("CLASS_OUTPUT.log" , 1 , 2) ;
EvolutionData∗ myFuel_EvolutionData = new EvolutionData (Logger , "/PATH/

EvolData.dat") ;

Storage∗ MyStorage1 = new Storage (Logger) ;
Storage∗ MyStorage2 = new Storage (Logger) ;
Storage∗ MyStorage3 = new Storage (Logger) ;
Storage∗ MyStorage4 = new Storage (Logger) ;

Pool∗ MyPool1 = new Pool (Logger , MyStorage1 , 5∗365 .25∗24∗3600) ;

/ / S e p a r a t i o n P l a n t s e p a r a t e U5 from U8 which goes i n S t o r a g e 3 and 4 .
SeparationPlan∗ MySeparation1 = new SeparationPlant (Logger) ;
IsotopicVector IV_U8 ;
IV_U8 . Add (9 2 , 238 , 0 , 1) ;
MySeparationPlant1−>SetBackEndDestination (MyStorage3 , IV_U8 , 0) ;

IsotopicVector IV_U5 ;
IV_U5 += 1∗ZAI (9 2 , 235 , 0) ;
MySeparationPlant1−>SetBackEndDestination (MyStorage4 , IV_U5 , 0) ;

/ / S e p a r a t i o n P l a n t s e p a r a t e Am Pu and U which goes r e s p e c t i v e l y i n myPool1 ,
myStorage2 and m y S e p a r a t i o n P l a n 1 .

SeparationPlan∗ MySeparation2 = new SeparationPlant (Logger) ;
IsotopicVector IV_MA ;
IV_MA . Add (9 5 , 242 , 1 , 1 .) ;
MySeparationPlant2−>SetBackEndDestination (MyPool1 , IV_MA , 0) ;

IsotopicVector IV_Pu ;
IV_Pu . Add (9 4 , 239 , 0 , 0 . 8) ;
MySeparationPlant2−>SetBackEndDestination (MyStorage2 , IV_Pu , 0) ;

IsotopicVector IV_U ;
IV_U . Add (9 2 , 238 , 0 , 0 . 5) ;
IV_U . Add (9 2 , 235 , 0 , 0 . 5) ;
MySeparationPlant2−>SetBackEndDestination (MySeparationPlant1 , IV_U , 0) ;

Reactor ∗MyReactor = new Reactor (Logger , myFuel_EvolutionData , MySeparation2 ,
0 , 4 0∗3 6 5 . 2 5∗2 4 . 3 6 0 0 , 900E6 , 100 , 45 , 1) ;

6.5.4 Reactor, a FabricationPlant, a Pool and a Storage

Please refer to the CLASS input $CLASS_PATH/example/CloseCycle.cxx

CLASSLogger ∗Logger = new CLASSLogger ("CLASS_OU TPUT.log" , 1 , 2) ;

IM_RK4 ∗IMRK4 = new IM_RK4 (Logger) ;
EQM_LIN_PWR_MOX∗ EQMLINPWRMOX = new EQM_LIN_PWR_MOX (Logger , "/PATH/EQ_Lin.dat"

) ;
EQM_QUAD_PWR_MOX∗ EQMQUADPWRMOX = new EQM_QUAD_PWR_MOX (Logger , "/PATH/DBParam.

dat") ;
PhysicsModels∗ myFuel_PhysicsModel = new PhysicsModels (XSMOX , EQMQUADPWRMOX ,

IMRK4) ;

Storage∗ MyStorage = new Storage (Logger) ;
Pool∗ MyPool = new Pool (Logger , MyStorage , 5∗365 .25∗24∗3600) ;

FabricationPlant∗ myFabrication = new FabricationPlant (Logger , MyStorage ,
2∗365 .25∗24∗3600) ;

Reactor ∗MyReactor = new Reactor (Logger , myFuel_PhysicsModel , myFabrication ,
MyPool , 0 , 4 0∗3 6 5 . 2 5∗2 4 . 3 6 0 0 , 900E6 , 100 , 45 , 1) ;

Figure 6.5: Shematic Pathway

Chapter 7

Other objects

7.1 ZAI

The ZAi object represents a nucleus, from its charge number, mass number and isomeric state.
The object save the charge number Z, the mass number A and the isomeric state I of a nucleus :
I=0 for ground state , I=1 for the first isomeric state ...
To declare a ZAI object proceed as follow :

ZAI U238 = ZAI (9 2 , 238 , 0) ;

This class includes the mains logical comparators (e.g ==, >, !=). Fill free to read the doxygen for
more details on the methods associated to this class. (e.g A(), Z(), I(), N()...) [?].

7.2 IsotopicVector

7.2.1 Generality

The IsotopicVector object is a collection of ZAI. For each ZAI a quantity of nuclei is associated
(IsotopicVector is a c++ map of ZAI and double, which corresponds to a sorted array of ZAI and
its quantity).
Two main operations have been defined in the IsotopicVector class. The following illustrates the
possible operation allowed for IsotopicVectors :

Definiton & Addition of nuclei

IsotopicVector IV_1 ;
IsotopicVector IV_2 ;

IV_1 += 23 ∗ ZAI (9 2 , 238 , 0) ; / / Add 23 n u c l e u s o f uranium 238 t o ZAI_1
IV_1 += 52 ∗ ZAI (9 2 , 235 , 0) ; / / Add 52 n u c l e u s o f uranium 235 t o ZAI_1

23

Multiplication

IV_1 ∗= 100 ; / / M u l t i p l y a l l t h e n u c l e i q u a n t i t i e s by 100 −> r e s u l t i n g : 2300
uranium 238 and 5200 uranium 235

IV_2 = IV_1 ∗ 1 0 ; / / IV_2 w i l l be e q u a l t o 10 IV_1

Sum

IsotopicVector IV_sum = IV_1 + IV2 ; / / IV_sum w i l l be e q u a l t o 11 IV_1

Some additional operations have been also implemented, such as subtraction. It works as the
sum, but if the result of the subtraction is negative for some nuclei, those nuclei are set to zero and
the difference is added to the, so called, fIsotopicQuantityNeeded. If so, an ERROR will be written
on the terminal and CLASS stops (see section 7.4).

7.2.2 Print method

You can use the Print() method to write the composition of an IsotopicVector. This method
print all the quantities of all the ZAI present in the IsotopicVector (unit: quantity of nuclei).

7.2.3 GetTotalMass

Return the mass of the IsotopicVector in tons using :

double TotalMass = IV . GetTotalMass () ;

7.2.4 Multiplication between IsotopicVector

The result of this operation is an IsotopicVector, where each nucleus quantity is the product of
the corresponding nucleus quantity of the two IsotopicVector.
In other words :
If a nucleus A is present in both IsotopicVector, with respective quantity α and β , the resulting
IsotopicVector will contain α×β nucleus A. If the nucleus A is not present in both IsotopicVector,
the resulting IsotopicVector will not contain the nucleus A.

By exemple, this method can be used to apply separation efficiency: one IsotopicVector con-
taining real material and the other one containing separation efficiency of each nucleus.

7.3 EvolutionData

An EvolutionData aims to describe the evolution of an IsotopicVector through a physical pro-
cess (decay or irradiation). The decay case is fully described in section 7.3.2.

In case of irradiation, it may also contains the evolution of the one group cross section. The
evolution of the neutron flux and of the keff can be supplied but its not mandatory. The Evolu-
tionData MUST contain the power and the he heavy metal mass and it can contain the fuel type,
reactor type and the cycle time.
These EvolutionData can be loaded into CLASS from a formatted ASCII file see section 7.3.1 as
follow :

CLASSLogger ∗Logger = new CLASSLogger ("CLASS_OUTPUT.log" , 1 , 2) ;

EvolutionData∗ MyEvolutionData = new EvolutionData (Logger , "/PATH/Data.dat") ;

7.3.1 EvolutionData ASCII format

The formatted ASCII file describing the EvolutionData is formatted as follow:

Listing 7.1: Evolution Data format

time "0 t2 t3 ..." / / i n s e c o n d s
keff "k1 k2 k3 ..." / / n o t mandatory e n t r y
flux "phi1 phi2 phi3 ..." / / (n e u t r o n / (second . cm2)) n o t mandatory e n t r y
Inv "Z A I inv1 inv2 inv 3 ..." / / i n atoms
. . .
XSFis "Z A I xsfis1 xsfis2 xsfis3 ..." / / i n b a r n s
. . .
XSCap "Z A I xscap1 xscap2 xscap3 ..."
. . .
XSn2n "Z A I xsn2n1 xsnsn2 xsn2n3 ..."
. . .

The meaning of each keyword is listed in table 7.1.

Table 7.1: .dat Key words meaning

Key words Meaning
Inv Inventory

XSFis fission cross section
XSCap (n,γ) cross section
XSn2n (n,2n) cross section

Value meaning
Z Charge number
A Mass number
I State (fundamental=0, 1st excited =1, ...)

Each EvolutionName.dat files comes with a EvolutionName.info file, which describes the re-
actor, it is formatted like this :

Reactor "ReactorName" / / What e v e r s t r i n g w i t h o u t s p a c e
Fueltype "FuelName" / / What e v e r s t r i n g w i t h o u t s p a c e
CycleTime "t" / / The f i n a l t ime s i m u l a t e d (y e a r s)
ConstantPower "P" / / S i m u l a t e d power (i n W)

7.3.2 DecayDataBank

The radioactive decay is handled by a DecayDataBank. The DecayDataBank contains an Evo-
lutionData for each nucleus of the nuclei chart. Each EvolutionData describes the evolution of the
nucleus and all its daughters as a function of the time. The depletion of an isotopic vector corre-
sponds to the sum of all its nucleus depletion contribution.

In other words, in CLASS, for each nucleus of the chart, a depletion calculation has been per-
formed and compiled in a DecayDataBank.
The determination of an IsotopicVector depletion is performed as follow :
First, one determines the depletion of each nucleus of the IsotopicVector following the DecayData-
Bank, then sums all those contributions.

DecayDataBank can be defined as follow :

CLASSLogger ∗Logger = new CLASSLogger ("CLASS_OUTPUT.log" , 1 , 2) ;

DecayDataBank∗ DecayDB = new DecayDataBank (Logger , "/PATH/Decay.idx") ;

In the previous example a DecayDataBank has been defined using the file Decay.idx file. This file
lists all the path to EvolutionDatas (each one corresponding to the depletion of one nucleus). The
format of the .idx file is the following :

Z1 A1 I1 PATH / ZAI1 . dat
. . .
Zn An In PATH / ZAIn . dat

A DecayDataBank can be find in $CLASS_PATH/DATA_BASES/DECAY/ALL/

7.4 Log management : CLASSLogger

In CLASS, all messages are handled by the CLASSLogger object. There are 4 verbose levels,
see table 7.2.

Table 7.2: Verbose levels

level # meaning informations
0 ERROR This is the default. It makes the code to stop
1 WARNING LVL 0 + something may go wrong but the code continue running
2 INFO LVL 1 + simple informations about ongoing process
3 DEBUG LVL 2 + each method begin and end

There are two outputs for these messages : the standard output (terminal) and a logfile. For
each output a verbose level can be assigned as follow :

CLASSLogger ∗Logger = new CLASSLogger ("CLASS_OUTPUT.log" , 1 , 2) ;

In the preceding example, verbose level 1 (WARNING) has been set for the terminal output and
level 2 (INFO) for the second output which is the logfile named CLASS_OUTPUT.log.

Chapter 8

Scenario/Park

The Scenario object aims to describe the full scenario, regrouping all facilities inside a full
park or fleet.

8.1 Fill the scenario

In order to evolve during a dynamic fuel cycle calculation, each facility need to be added in
the scenario. To do so, five "adding methods" have been implemented :

CLASSLogger ∗Logger = new CLASSLogger ("CLASS_OUTPUT.log" , 1 , 2) ;
Scenario ∗gCLASS=new Scenario (Logger , 1977∗year) ;
/ / 1977∗ y e a r = s t a r t i n g t ime of t h e s c e n a r i o
gCLASS−>AddPool (myPool) ;
gCLASS−>AddReactor (myReactor) ;
gCLASS−>AddStorage (myStorage) ;
gCLASS−>AddFabricationPlant (myFabricationplant) ;
gCLASS−>AddSeparationPlant (mySeparationplant) ;
/ / o r
gCLASS−>Add (myPool) ;
gCLASS−>Add (myReactor) ;
gCLASS−>Add (myStorage) ;
gCLASS−>Add (myFabricationplant) ;
gCLASS−>Add (mySeparationplant) ;

Furthermore, one need to add a DecayDataBase to the Scenario, using :

DecayDataBank∗ DecayDB = new DecayDataBank (Logger , "/PATH/Decay.idx") ;

gCLASS−>SetDecayDataBase (DecayDB) ;

28

8.2 OutPut

8.2.1 General Output

In addition to all facilities added to the Scenario, the output contain also other general infor-
mation, see table 8.1.

Table 8.1: General Information in CLASS Output

Output Name Unit description
AbsoluteTime Number [Second] Time at the step

ParcPower Number [Watt]
Effective thermal power of the Scenario
only working reactor are taked into account

WASTE IsotopicVector Waste produced by the scenario
STOCK IsotopicVector All the material in all the Storage

OUTINCOME IsotopicVector All material taken from outside the Scenario
COOLING IsotopicVector All the material present in all the Pool

FUELFABRICATION IsotopicVector All the material present in all the FabricationPlant
REACTOR IsotopicVector All the material present in all the Reactor

INCYLE IsotopicVector
All the material in the cycle
Reactor + Pool + Fabrication + Storage

TOTAL IsotopicVector
All the material in the Scenario
Reactor + Pool + Fabrication + Storage + Waste

8.2.2 Output names

The CLASS output is saved in a ROOT format, each element of the Scenario is added to a
ROOT TTree, filled at each time step. By default the output file name is "CLASS_Default.root"
and the ROOT TTree name is "Data". It is possible to change those names using :

gCLASS−>SetOutputFileName ("MyFileName.root") ;
gCLASS−>SetOutputTreeName ("MyTTreeName") ;

8.2.3 Output Frequency

By default, a snapshot of the scenario is done every years. To change this frequency use :

gCLASS−>SetTimeStep (3 6 5 . 2 5∗2 4∗3 6 0 0 / 1 2) ; / / monthly o u t p u t

Part IV

Physics Models

30

Chapter 9

Description and implementation

A PhysicsModels is related to one or several reactors, it is a container of three models :

• Equivalence Model : Tells to the Fabrication Plant how to build the fuel.

• XS Model : "Calculates" the mean cross sections of this fuel and sends it to the Bateman
Solver.

• Irradiation Model : It is the Bateman Solver. User can choose between different numerical
methods.

A PhysicsModels is called in the CLASS input like the following example :

Implementation in a .cxx :

Listing 9.1: PhysicsModels

. . .
#include "XS/XSM_MLP.hxx"
#include "Irradiation/IM_RK4.hxx"
#include "Equivalence/EQM_MLP_PWR_MOX.hxx"
int main ()
{

. . . .

EQM_MLP_MOX∗ Equivalence = new EQM_MLP_MOX ("PathToTMVAWeightFile/
TMVAWeightFile.xml") ;

XSM_MLP∗ XS = new XSM_MLP (gCLASS−>GetLog () ,"PathToTMVAWeighstFolder" ,
OneMLPPerTimeStep) ;

IM_RK4∗ Solver = new IM_RK4 (gCLASS−>GetLog ()) ;
PhysicsModels∗ PHYMOD = new PhysicsModels (XS , Equivalence , Solver) ;

. . .
Reactor ∗PWR_MOX = new Reactor (log , PHYMOD , fabricationplant , Pool ,

creationtime , lifetime , cycletime , HMMass , BurnUp) ;
. . .

}

31

In this latter example a PhysicsModels called "PHYMOD" is defined, it contains the bateman
solver "Solver" which is the Runge Kutta (4th order) method. The mean cross sections predictor,
"XS", used is based on a Multi Layer Perceptron. The Equivalence Model "Equivalence" is the
one used for PWR MOX fuels. The arguments of the 3 objects constructor are explained in its
corresponding sections.

All the existing models are defined in the following sections, furthermore, the way to build a
new model is presented.

Chapter 10

Equivalence Model

The aim of an equivalence model is to predict the content of fissile element needed in a fuel to
reach a given burn-up or to satisfied criticality conditions.

10.1 Available Equivalence Models

The CLASS package contains, at the moment, 4 different equivalence models where three are
related to the building of fuels for a PWR-MOX and one to the building of PWR-UOX fuels :

10.1.1 PWR-MOX models :

The following models returns the molar fraction %Pu of plutonium needed to reach a given
burn-up according to the plutonium isotopic composition available in stocks.

10.1.1.1 Linear BU model : EQM_LIN_MOX

It was initially applied for MOX fuel, but because of the lack of precision, this model could
be deprecated (at least in the PWR MOX case). It remain in the CLASS packages only because it
was present historically.
Nevertheless it could be use as an example for similar model for other fuel. This model suppose
it is possible to describe the maximal burn-up accessible for a set fuel using its initial composition
using a simple linear modelisation (equation 10.1):

BUmax = α0 +
N

∑
i

αi ·ni, (10.1)

where BUmax represent the maximal accessible burn-up for the fuel, ni the isotopic fraction of the
isotope i, N the number of isotope present in the fuel, and the αi the parameter of the model. The
main difficulty concerning this model, is the determination of the αi: to be correct the αi should
be fitted on a set of evolution data which are not constrain to reach an unique burn-up, but a large
burn-up region. One can see the problem guessing it is possible to build a set a fuel evolution
reaching exactly a unique burn-up (45 GWd/t by example), the χ2 minimization of the αi will

33

end up with α0 = 45 and all the other at zero. That why, when using a linear burn-up description
model, one should test the validity of the model, on many random compositions by example...

10.1.1.2 Quadratic Model : EQM_QUAD_MOX

The %Pu is calculated according a quadratic model. See equation 10.2.

%Pu = α0 +
N

∑
i∈Pu

(
αi ·ni +∑

j≤i
αi j ·ni ·n j

)
, (10.2)

where ni is the molar proportion (in %mol.) of isotope i 1 in the fresh plutonium vector. αi j, αi and
α0 are the weights resulting from a minimization procedure and are related to one targeted burn-up
and one fuel management. Furthermore, 241Am from 241Pu decay is not one of the considered
component of the model (ni), instead the model considers a fixed time since plutonium separation.
For instance the α given in file $CLASS_PATH/DATA_BASES/PWR/MOX/EQModel/@@BAM
are representative of a PWR-MOX with a maximal burn-up of 45GWd/tHM, a fuel management
of 3 batches, and a time between separation and irradiation of 2 years.

The file containing the weights is formatted as follow :

PARAM "238Pu 238Pu*238Pu 238Pu*239Pu 238Pu*240Pu 238Pu*241Pu 238Pu*242Pu 239Pu
239Pu*239Pu 239Pu*240Pu 239Pu*241Pu 239Pu*242Pu 240Pu 240Pu*240Pu 240Pu

*241Pu 240Pu*242Pu 241Pu 241Pu*241Pu 241Pu*242Pu 242Pu 242Pu*242Pu 1"

Where 238Pu stands for α238Pu and it is the first order weight related to the molar proportion of
238Pu and 1 is α0. The weights are in units of %mol. ·%mol.−1 for αi in units of %mol. ·%mol.−2

for αi j and in units of %mol. for α0. The Keyword "PARAM" has to be present in the file before
the α values. For more informations about this model and the generation of the coefficients please
refer to reference [@@PAPIER BAM].

1from 238Pu to 242Pu

Implementation in a .cxx

Listing 10.1: Equivalence Model EQM_QUAD_MOX

. . .
#include "Equivalence/EQM_QUAD_PWR_MOX.hxx"
. . .
int main ()
{
. . .
EQM_QUAD_PWR_MOX∗ Equivalence = new EQM_QUAD_PWR_MOX (LogObject , AlphasFile) ;
/ / o r
/ / EQM_QUAD_PWR_MOX∗ E q u i v a l e n c e = new EQM_QUAD_PWR_MOX(A l p h a s F i l e) ;
. . .
}

With LogObject a CLASSLogger object (see section 7.4) and AlphasFile a string which is the
complete path to the file containing the weights (the α parameters)

Available weight file (.dat) :

• @@@ BAM

• @@@ BAM

• ...

10.1.1.3 Neural network model : EQM_MLP_MOX

This equivalence model is based on a Multi Layer Perceptron (MLP) and predict the amount
of plutonium needed to reach any burn-up. The MLP inputs are the isotopic compositions of the
plutonium (including 241Am), the enrichment of depleted uranium, and the targeted burn-up. The
output is the plutonium content needed to reach the burn-up. This method uses the neural networks
of the root module TMVA (@@@ Ref TMVA). To executes this model, TMVA is run in CLASS
and need a .xml file. This file contains the neural network architecture and the weights resulting
from the training procedure.

Implementation in a .cxx :

Listing 10.2: Equivalence Model EQM_MLP_PWR_MOX

. . .
#include "Equivalence/EQM_MLP_PWR_MOX.hxx"
. . .
int main ()
{
. . .
EQM_MLP_PWR_MOX∗ Equivalence = new EQM_MLP_PWR_MOX (LogObject , TMVAWeightPath

) ;
/ / o r
/ / EQM_MLP_PWR_MOX. ∗ E q u i v a l e n c e = new EQM_MLP_PWR_MOX(TMVAWeightPath) ;
. . .

With LogObject a CLASSLogger object (see section 7.4) and TMVAWeightPath a string con-
taining the path to the .xml file.

In order to make his own .xml file one need to have a training data containing the fresh fuel
composition and the achievable burn-up of many examples. The fuel composition is characterized
by the mean of :

• The plutonium composition (i.e : %mol. of 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, and 241Am)

• The plutonium content (i.e : Pu
Pu+U)

• The 235U content in the depleted uranium.

The file $CLASS_PATH/DATA_BASES/PWR/MOX/EQModel/EQM_MLP_PWR_MOX_3batch.xml
has been generated from the file $CLASS_PATH/Utils/Equivalence/PWR_MOX_MLP/Train_MLP.cxx
To train a new MLP from your own training sample proceed as follow :

cd $CLASS_PATH/Utils/Equivalence/PWR_MOX_MLP
g++ -o Train_MLP ‘root -config --cflags ‘ Train_MLP.cxx ‘root -config --glibs ‘ -lTMVA -

I$ROOTSYS/tmva/test/
Train_MLP YourTrainingData.root

Where YourTrainingData.root is a root file containing a TTree filled with fuel compositions
and corresponding burn-ups. The .xml file will be generated in a folder named weight. The results
of the testing procedure of the MLP are in a file named TMVA_MOX_Equivalence.root but will
be presented to you graphically as soon as the training and the testing procedure are finished.

To make your YourTrainingData.root file you have to fill a TTree with your data. To do so,
create a .cxx file and copy past this :

TFile∗ fOutFile = new TFile ("YourTrainingData.root" ,"RECREATE") ; / / c r e a t e
t h e . r o o t f i l e

TTree∗ fOutT = new TTree ("Data" , "Data") ; / / c r e a t e t h e TTree
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ INITIALISATIONNN∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
/ / WARNING : keep t h e same v a r i a b l e names :

double U5_enrichment = 0 ;
double Pu8 = 0 ;
double Pu9 = 0 ;
double Pu10 = 0 ;
double Pu11 = 0 ;
double Pu12 = 0 ;
double Am1 = 0 ;
double BU = 0 ; / / BU means Burn−Up
double teneur = 0 ; / / F rench f o r c o n t e n t (h e r e Pu c o n t e n t)

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗BRANCHING∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
fOutT−>Branch ("U5_enrichment" ,&U5_enrichment ,"U5_enrichment/D") ;
fOutT−>Branch ("Pu8" ,&Pu8 ,"Pu8/D") ;
fOutT−>Branch ("Pu9" ,&Pu9 ,"Pu9/D") ;
fOutT−>Branch ("Pu10" ,&Pu10 ,"Pu10/D") ;
fOutT−>Branch ("Pu11" ,&Pu11 ,"Pu11/D") ;
fOutT−>Branch ("Pu12" ,&Pu12 ,"Pu12/D") ;
fOutT−>Branch ("Am1" ,&Am1 ,"Am1/D") ;
fOutT−>Branch ("BU" ,&BU ,"BU/D") ;
fOutT−>Branch ("teneur" ,&teneur ,"teneur/D") ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗FILLING∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
/ / i n t Nex= NumberOfDif fe ren tExample ;
for (int ex=0;ex<Nex ; ex++)
{ /∗ ∗∗∗∗∗∗ F r e s h Fue l Compos i t ion ∗∗∗∗∗∗∗∗∗∗ ∗ /

U5_enrichment = fU5_enrichment [ex] ;
Pu8 = fPu8 [ex] ;
Pu9 = fPu9 [ex] ;
Pu10 = fPu10 [ex] ;
Pu11 = fPu11 [ex] ;
Pu12 = fPu12 [ex] ;
Am1 = fAm1 [ex] ;
teneur = fteneur [ex] ;
/∗ ∗∗∗∗ C o r r e s p o n d i n g maximal Burn−up ∗∗∗∗∗∗ ∗ /
BU = BurnUps [ex] ;
/∗ ∗∗∗ F i l l t h e t r e e wi th t h i s f u e l c o m p o s i t i o n and t h i s burnup ∗∗∗ ∗ /
fOutT−>Fill () ;

}
fOutFile−>Write () ;
delete fOutT ;
fOutFile−> Close () ;
delete fOutFile ;

}

Then, build the arrays fU5_enrichment, fPu8 ... with your data, compile and execute. For
more informations about this model please refer to [@@Papier BaL].
Available weight file (.xml) :

• $CLASS_PATH/DATA_BASES/PWR/MOX/EQModel/EQM_MLP_PWR_MOX_3batch.xml
: Generated with 5000 MURE evolutions with different fuel composition, using a full mir-
rored assembly calculation with JEFF3.1.1 cross section and fission yield data bases. Valid
for mono-recycling of plutonium and a fuel management of 3 batches. More details about
the generation of this .xml file can be found in reference[@@@BaL paper].

10.1.2 PWR-UOX model :

10.1.2.1 Linear Model: EQM_LIN_UOX

@@@BAM

10.2 How to build an Equivalence Model

The strength of CLASS is to allow the user to build his own Physics models, this section
explains how to build a new equivalence model and to incorporate it into CLASS.

First you have to create the file EQM_NAME.cxx and EQM_NAME.hxx, where NAME is a
name you choose. Then open with a text editor the .hxx and copy past the following replacing
NAME by the name you want.

Listing 10.3: EQM_NAME.hxx

#ifndef _EQM_NAME_HXX
#define _EQM_NAME_HXX
#include "EquivalenceModel.hxx"
using namespace std ;
/ /−−−//
/∗ !

D e f in e a EQM_NAME
E x p l a i n b r i e f l y what i s i t .
@author YourName
@vers ion 3 . 0
∗ /

/ / __
class EQM_NAME : public EquivalenceModel
{

public :
/∗ C o n s t r u c t o r ∗ /
EQM_NAME (/∗ p a r a m e t e r s ∗ /) ; / / ! < E x p l a i n what i s t h e p a r a m e t e r s (i f any)

/∗ ∗Thi s f u n c t i o n IS t h e e q u i v a l e n c e model ∗ ∗ /
double GetFissileMolarFraction (IsotopicVector Fissil , IsotopicVector Fertil ,

double BurnUp) ; / / ! < Re tu rn t h e molar f r a c t i o n o f f i s s i l e e l e m e n t

private :
/∗Your p r i v a t e v a r i a b l e s ∗ /

} ;
#endif

Open the .cxx file and copy past the following in it (replacing NAME by the same name you
used in the .hxx).

Listing 10.4: EQM_NAME.cxx

#include "EquivalenceModel.hxx"
#include "EQM_NAME.hxx"
#include "CLASSLogger.hxx"
/∗Whatever i n c l u d e you need ∗ /
/ / __
/ / EQM_NAME
/ /
/ / B r i e f d e s c r i p t i o n
/ / __
/ / C o n s t r u c t o r (s)
EQM_NAME : : EQM_NAME (/∗ p a r a m e t e r s ∗ /)
{
/ / Do w h a t e v e r you want wi th your p a r a m e t e r s
/∗

F i l l t h e two i s o t o p i c v e c t o r s f F i s s i l e L i s t and f F e r t i l e L i s t
s e e e x p l a n a t i o n i n t h e manual

∗ /
/ / F e r t i l e
ZAI U8 (9 2 , 2 3 8 , 0) ;
ZAI U5 (9 2 , 2 3 5 , 0) ;
double U5_enrich= 0 . 0 0 2 5 ;
fFertileList = U5∗U5_enrich + U8∗(1−U5_enrich) ;

/ / F i s s i l e
ZAI Pu8 (9 4 , 2 3 8 , 0) ;
ZAI Pu9 (9 4 , 2 3 9 , 0) ;
/ / . . .
fFissileList = Pu8∗1+Pu9∗1+ /∗ . . . ∗ / ;

}
/ / ___
double EQM_NAME : : GetFissileMolarFraction (IsotopicVector Fissil , IsotopicVector

Fertil , double BurnUp)
{
/ / Code your E q u i v a l e n c e Model : Th i s f u n c t i o n has t o r e t u r n t h e molar f r a c t i o n

o f f i s s i l e i n t h e f u e l needed t o r e a c h t h e BurnUp (GWd/ tHM) a c c o r d i n g t o
t h e c o m p o s i t i o n o f t h e F i s s i l and F e r t i l v e c t o r s

}

In the constructor (EQM_NAME::EQM_NAME) you have to fill two isotopic vectors named
fFissileList and fFertileList. Don’t declare these isotopic vector in the .hxx, there are already
declared in the file src/EquivalenceModel.hxx. fFissileList is used by the FabricationPlant to do
the chemical separation of the fissile element from the other present in stock. For instance, for
the plutonium, add the ZAI 238Pu, 239Pu, 240Pu, 241Pu and 242Pu. fFertile List is used by the

FabricationPlant the same way fFissileList is used but you have to define a default IsotopicVector
to be used if you didn’t provide a fertile stock to your FabricationPlant. In the example given above
the fertile is depleted uranium and the proportion of each isotope is given (234U is unheeded). Now
you have to build the function GetFissileMolarFraction(IsotopicVector Fissil, IsotopicVector
Fertil, double BurnUp). Its parameters are provided by the FabricationPlant and are :

• IsotopicVector Fissile : it is the proportion of each nucleus you give in the fFissileList plus
the proportion of the nuclei that appears during the fabrication time (time given in the Fab-
ricationPlant constructor, is default is 2 years)

• IsotopicVector Fertile : it is the proportion of each nucleus you give in the fFertileList plus
the proportion of the nuclei that appears during the fabrication time. If you didn’t provide any
fertile stock to your FabricationPlant then it’s the default vector given in the EQM_NAME
constructor.

• double BurnUp : The maximal average burn-up for your fuel to reach (in GWd/tHM).

Fill free to have a look at the models present in $CLASS_PATH/source/Model/Equivalence to get
inspiration.

Now that your equivalence model is ready two choices are offered to you. You can compile the
two files of your model with your CLASS input or you can add this model to the CLASS package.
The second option will modify the CLASS software and we will be no longer able to troubleshoot
your scenario. So use the second option only if you are a completely independent user !

10.2.1 Compile your equivalence model with your CLASS executable :

@@BAM

10.2.2 Your equivalence model in the CLASS library :

Move your EQM_NAME.hxx and EQM_NAME.cxx in $CLASS_PATH/source/Model/Equivalence/.
Then open with your favourite text editor the file $CLASS_PATH/source/src/Makefile, find "OB-
JMODEL" and add $(EQM)/EQM_NAME.o within the others $(EQM) objects. Then re-compile
CLASS, fix the compilation errors ;) and voilà your equivalence model is now available in the
CLASS library.

Chapter 11

XS Model

The aim of a mean cross section model (XSModel) is to predict the mean cross sections of a
fuel built by an EquivalenceModel (EQM) (see section 10). The mean cross sections are required
to compute fuel depletion in a reactor.

11.1 Available XS Models

There is, for the moment, 2 XSModel in CLASS :

11.1.1 Pre-calculated XS : XSM_CLOSEST

This method looks, in a data base, for a fresh fuel with a composition close to the brandy
new fuel built by the EquivalenceModel. Here, close means that the fresh fuel in the data base
minimizes the distance d (see equation 11.1).

d =
√

∑
i

wi · (nDB
i −nnew

i)2, (11.1)

where nDB
i is the number of nuclei i in one element of the data base and nnew

i the number of nuclei
i in the new fuel built by the EQM. wi is a weight associated to each isotopes, its value is 1 by de-
fault. When the closest evolution in the database is found, the corresponding mean cross sections
are extracted and used for the calculation of the depletion of the new fuel.

42

Implementation in a .cxx :

Listing 11.1: Cross section Model XSM_CLOSEST

. . .
#include "XS/XSM_CLOSEST.hxx"
. . .
int main ()
{

XSM_CLOSEST∗ XSMOX = new XSM_CLOSEST (gCLASS−>GetLog () , PathToIdxFile) ;
/ / o r
/ / XSM_CLOSEST∗ XSMOX = new XSM_CLOSEST(P a t h T o I d x F i l e) ;

}

With LogObject a CLASSLogger object (see section 7.4) and PathToIdxFile a string contain-
ing the path to the .idx file. The .idx file lists all the EvolutionData (see section 7.3) of the data
base. This file is formatted as follow :

TYPE "NameOfTheFuel(withoutspace)"
"PATH_TO_DATA_BASE/EvolutionName.dat"
"PATH_TO_DATA_BASE/OtherEvolutionName.dat"
. . . .

Each EvolutionName.dat file contains a formatted fuel depletion calculation. the format of a
EvolutionData ASCII file is detailed in section 7.3.1. The number of .dat files has an influence on
the model accuracy. Furthermore, the initial composition of the different fuel depletion calculations
has to be representative of the fresh fuel compositions encounter in a scenario. For more details on
this method please refer to [ref @@@ BAM physor].

Available .idx file :

• @@@ BAM

• @@@ BAM

• ...

For MURE user only : The program $CLASS_PATH/Utils/XS/CLOSEST/WriteDataBase
converts a list of MURE evolutions to a list of .dat and .info files and creates the .idx file, type in
terminal the following command for more details.

\$CLASS_PATH/Utils/XS/CLOSEST/WriteDataBase -h
@@BAM

Users of others fuel depletion code (e.g VESTA, ORIGEN, MONTEBURNS, SERPENT)
have to create their own program to generate these files.

11.1.2 XS predictor : XSM_MLP

This method calculates the mean cross sections by the mean of a set of neural networks (MLP
from TMVA module) . There is two configurations available :

• One MLP per nuclear reaction and per time step (this one is deprecated and not describe in
this manual) .

• One MLP per nuclear reaction. the irradiation time is one of the MLP inputs.

Implementation in a .cxx :

Listing 11.2: Cross section Model XSM_MLP

. . .
#include "XS/XSM_MLP.hxx"
. . .
int main ()
{ . . .

XSM_MLP∗ XSMOX = new XSM_MLP (ClassLog , PathToWeightFolder , InfoFileName ,
OneMLPPerTime) ;

/ / o r
/ / XSM_MLP∗ XSMOX = new XSM_MLP(Pa thToWeigh tFo lde r , In foFi leName , OneMLPPerTime

) ;
. . .
}

PathToWeightFolder (string) is the path to the folder containing the weight files (.xml files).
OneMLPPerTime is a boolean setted to true if there is one MLP per reaction and per time step.
InfoFileName (string) is the name of the file located in PathToWeightFolder which is informing
on the reactor and on the inputs of the XS_MLP model. Format of InfoFileName is :

Listing 11.3: Information file format

ReactorType : "ReactorName" / / w i t h o u t s p a c e
FuelType : "FuelName" / / w i t h o u t s p a c e
Heavy Metal (t) : "m"
Thermal Power (W) : "P" / / power c o r r e s p o n d i n g t o t h e heavy m e t a l mass
Time (s) : "0 t2 t3 t4 ..." / / Time when t h e c r o s s s e c t i o n a r e u p d a t e d
Z A I Name (input MLP) : / / s e e e x p l a n a t i o n s below
"z a i InputName"
"z2 a2 i2 InputName2"
"..."

The input of MLPs are the atomic proportion of each nuclei present in the fresh fuel (plus time
if OneMLPPerTime=false). The InfoFile has to indicates the variable names (nuclei name) you
used for the training of your MLPs. For instance if the fresh fuel contains 238Pu you will write
in the InfoFile :

. . .
Z A I Name (input MLP) :
94 238 0 Pu8 / / (i f Pu8 i s t h e v a r i a b l e name used f o r 238Pu p r o p o r t i o n i n f r e s h

f u e l i n your t r a i n i n g sample)
. . .

Available XSM_MLP :

• $CLASS_PATH/DATA_BASES/PWR/MOX/XSModel/30Wg_FullMOX : The weight files
and .nfo file contained in this folder are representative of a PWR MOX. With the MOX
coming from PWR UO2 spent fuels. The specific power is 30W/g oxide. To perform this
data base, MURE depletion calculations have been performed using a full MOX assembly
with mirror boundaries.

Training MLPs for cross sections prediction :

Preparation of the training sample :

Like for the equivalence model, first of all you have to create a training sample. This is one of
the most important thing since the way of filling the hyperspace of the MLP inputs will influence
the accuracy of your model. We suggest to used the Latin Hyper Cube method [@@@REFF] to
generate many fresh fuel compositions, then, calculates with your favourite neutron transport code
(MCNP, MORET, SERPENT ...) the mean cross sections of each fresh fuel for different irradiation
time. Please refer to [REFFFBAL MLPXS] for more informations about the space filling and the
validation of this cross sections predictor. Once all your calculations are complete you have to
convert them into the .dat format (see code frame 7.1). Then type :

cd $CLASS_PATH/Utils/XS/MLP/BuildInput

Open the file Gene.cxx, looks for @@Change and make the appropriate changes. Then type :

g++ -o Gene Gene.cxx ‘root -config --cflags ‘ ‘root -config --libs ‘
Gene PATH_To_dat_Folder/

Where PATH_To_dat_Folder/ is the path to the folder containing the .dat files. This program
should have built two files :

• TrainingInput.root : This root file contains the fresh fuel inventories and the cross sections
values of all the read .dat files. You can plot the data with the root command line tool if you
wish. This file is the Training and testing sample that will be used for the TMVA training
and testing procedure.

• TrainingInput.cxx : This file contains, in a vector, the names of all the MLP outputs. The
number of lines in this file is the number of MLP that will be train.

Training and testing procedure :

Once the two TrainingInput (.cxx and .root) are generated type :

cd $CLASS_PATH/Utils/XS/MLP/Train

Look for @@Change in the file Train_XS.cxx , and make the appropriate changes. Then type
:

g++ -o Train_XS ‘root -config --cflags ‘ Train_XS.cxx ‘root -config --glibs ‘ -lTMVA

According the number of "events" in your .root file and the number of cross sections, the
training time can be very very very long. You might want to decrease the number of events (this
will probably deteriorate the model accuracy) : look for nTrain_Regression in Train_XS.cxx and
change its value to your wanted number of events. And/Or you may want to use more than one
processor or perhaps a supercomputer : This is completely doable since the program Train_XS
trains only one MLP (one cross section). Indeed the execution line is the following :

Train_XS i

where i is the index of the cross section in the vector created in TrainingInput.cxx. So feel free
to create a script to run the training on a wanted number of processors. For instance let’s say you
have 40 cross sections and 4 processors, creates 4 files (make them executable) and in the first one
type :

Train_XS 0
Train_XS 1
. . .
TrainXS 9

continue in the second file, and so on. Then execute all of them. The architecture and weights
of each MLP (.xml files) are stored in the folder weights. Rename this folder by the name of the
reactor and fuel, then create in this folder the information file (see code frame 11.3). And voilà
your new XSM_MLP is ready to be used.

After each training (using by default the half of the events) a testing procedure (using the
other half) is performed. This latter consists on executing the trained MLP with input data from
a known sample and compare the MLP result to the true value. These data and other infor-
mations about the training are stored in file Training_output_i.root, with i the index of the
cross section. In order to see either the MLPs predictions are accurate or not, the root macro
$CLASS_PATH/Utils/XS/MLP/Train/deviations.C plot the distribution of relative differences be-
tween model executions and the true values and a Gaussian fit of it. Then, the mean and the
standard deviation of the Gaussian fit are stored in file XS_accuracy.dat (format : XSName mean
std.dev.). Type the following to get, in file XS_accuracy.dat, the mean and the standard deviation
of all the MLPs (with N the number of cross sections (number of MLPs)) :

cd $CLASS_PATH/Utils/XS/MLP/Train/
root
.L deviations.C
for(int i=0;i<N;i++) {stringstream ss;ss <<"Training_output_"<<i<<".root";deviations(ss.str()

.c_str() ,0,kTRUE ,kFALSE ,kFALSE); }

The closest to 0 the mean is and the smaller standard deviation, the better.

11.2 How to build an XS Model

The strength of CLASS is to allow the user to build his own Physics models, this section
explains how to build a new cross section model and to incorporate it into CLASS. First you have
to create the file XSM_NAME.cxx and XSM_NAME.hxx, where NAME is a name you choose.
Then open with a text editor the .hxx and copy past the following replacing NAME by the name
you want.

Listing 11.4: XSM_NAME.hxx

#ifndef _XSM_NAME_HXX
#define _XSM_NAME_HXX
#include "XSModel.hxx"
/ / add i n c l u d e i f needed
using namespace std ;
/ /−−//
/∗ !

D e f in e a XSM_NAME
d e s c r i b e your model

@authors YourName
@version 1 . 0
∗ /

/ / __
class XSM_NAME : public XSModel
{

public :

XSM_NAME (/∗ p a r a m e t e r s (i f any) ∗ /) ;

~XSM_NAME () ;

EvolutionData GetCrossSections (IsotopicVector IV , double t=0) ;

private :
/ / your p r i v a t e v a r i a b l e s and methods

} ;
#endif

Open the .cxx file and copy past the following in it (replacing NAME by the same name you
used in the .hxx).

Listing 11.5: XSM_NAME.cxx

#include "XSModel.hxx"
#include "XSM_NAME.hxx"
#include "CLASSLogger.hxx"
#include "StringLine.hxx"

#include <TGraph . h>
/ / __
/ /
/ / XSM_NAME
/ / __
XSM_NAME : : XSM_NAME (/∗ p a r a m e t e r s (i f any) ∗ /)
{
/ / do what you want : f o r i n s t a n c e save p a t h o f e v e n t u a l f i l e s
}
/ / __
XSM_NAME : : ~ XSM_NAME ()
{

/ / d e l e t e p o i n t e r i f any ; c l e a r map i f any ; empty v e c t o r i f any
}
/ / __
EvolutionData XSM_NAME : : GetCrossSections (IsotopicVector IV , double t)
{

EvolutionData EvolutionDataFromXSM_NAME = EvolutionData () ;
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗DATA BASE INFO∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
EvolutionDataFromXSM_NAME . SetReactorType (fDataBaseRType) ; / / Give t h e r e a c t o r

name
EvolutionDataFromXSM_NAME . SetFuelType (fDataBaseFType) ; / / Give t h e f u e l name
EvolutionDataFromXSM_NAME . SetPower (fDataBasePower) ; / / S e t t h e power W
EvolutionDataFromXSM_NAME . SetHeavyMetalMass (fDataBaseHMMass) ; / / c o r r e s p o n d i n g

t o t h i s mass (t)

map<ZAI , TGraph∗> ExtrapolatedXS [3] ;
/ / . . . F i l l t h e 3 maps E x t r a p o l a t e d X S a c c o r d i n g t o your model and t h e
/ / f r e s h f u e l c o m p o s i t i o n g i v e n by argument I s o t o p i c V e c t o r IV
/ / a rgument do ub l e t may be n o t used .

/∗ ∗∗∗∗THE CROSS SECTIONS∗∗ ∗ /
EvolutionDataFromXSM_NAME . SetFissionXS (ExtrapolatedXS [0]) ;
EvolutionDataFromXSM_NAME . SetCaptureXS (ExtrapolatedXS [1]) ;
EvolutionDataFromXSM_NAME . Setn2nXS (ExtrapolatedXS [2]) ;

return EvolutionDataFromXSM_NAME ;
}

Then, edit these two files to make the function XSM_NAME::GetCrossSections to return the
cross sections in a EvolutionData object. (In this case, the EvolutionData only contains the 1 group
cross section without the inventory evolution, the power and the corresponding mass.)
To do so you have to fill three maps (ExtrapolatedXS in .cxx), one for fission, one for (n,γ), and
one for (n,2n) . Each map associates a nucleus (a ZAI) to a TGraph. A TGraph is a root object,
here, it contains the cross section (barns) evolution over time (seconds). If your are not comfortable
with TGraph refer to the root website 1

Now that your cross section model is ready, two choices are offered to you. You can compile
the two files of your model with your CLASS input or you can add this model to the CLASS
package. The second option will modify the CLASS software and we will be no longer able to
troubleshoot your scenario. So use the second option only if you are a completely independent
user !

11.2.1 Compile your cross section model with your CLASS executable :

@@BAM

11.2.2 Your cross section model in the CLASS library :

Move your XSM_NAME.hxx and XSM_NAME.cxx in $CLASS_PATH/source/Model/XS/.
Then open with your favourite text editor the file
$CLASS_PATH/source/src/Makefile, find "OBJMODEL" and add $(XSM)/XSM_NAME.o within
the others $(XSM) objects. Then re-compile CLASS, fix the compilation errors ;) and voilà your
cross section model is now available in the CLASS library.

1http://root.cern.ch/root/html/TGraph.html

http://root.cern.ch/root/html/TGraph.html

Chapter 12

Irradiation Model

The irradiation model is the Bateman equations solver. It is used for the calculation of fuel
depletion in reactor. The decay depletion (without neutron flux) is not managed by an irradiation
model but with a decay data bases (see section 7.3.2).

12.1 Available Irradiation Model

At the moment, there is two Irradiation Model available. The two solvers differs according
to the numerical integration method used. The Irradiation Model IM_RK4 uses the fourth order
Runge-Kutta method. And IM_Matrix uses the development in a power series of the exponential
of the Bateman matrix.

Implementation in a .cxx :

Listing 12.1: Irradiation Model

#include "CLASSHeaders.hxx"
#include "Irradiation/IM_RK4.hxx"
/ / # i n c l u d e " I r r a d i a t i o n / IM_Matrix . hxx "
. .
using namespace std ;
int main ()
{
/ / . . .

IM_RK4∗ Solver = new IM_RK4 (LogObject) ; / / o r new IM_RK4 () ; / / u s e s a
d e f a u l t l o g f i l e

/ / IM_Matrix∗ S o l v e r = new IM_Matrix (LogObjec t) ; / / o r new IM_Matrix () ; / /
u s e s d e f a u l t l o g f i l e

PhysicsModels∗ PHYMOD = new PhysicsModels (XSMOX , EQMLINPWRMOX , Solver) ;
/ / . . .
}

LogObject is a CLASSLogger object (see section 7.4).

51

12.1.1 How to build an Irradiation Model

The strength of CLASS is to allow the user to build his own Physics models, this section
explains how to build a new Bateman solver (Irradiation Model) and to incorporate it into CLASS.
First you have to create the file IRM_NAME.cxx and IRM_NAME.hxx, where NAME is a name
you choose. Then open with a text editor the .hxx and copy past the following replacing NAME
by the name you want.

Listing 12.2: lRM_NAME.hxx

#ifndef _IRM_NAME_HXX
#define _IRM_NAME_HXX

#include "IrradiationModel.hxx"
using namespace std ;
class CLASSLogger ;
class EvolutionData ;
/ /−−//
/∗ !

D e f in e a IM_NAME
D e s c r i p t i o n

@author YourName
@version 3 . 0
∗ /

/ / __
class IM_NAME : public IrradiationModel
{

public :
IM_NAME () ; / / c o n s t r u c t o r

/∗ !
v i r t u a l method c a l l e d t o pe r fo rm t h e i r r a d i a t i o n c a l c u l a t i o n u s i n g a s e t o f

c r o s s s e c t i o n s .
\ param I s o t o p i c V e c t o r IV i s o t o p i c v e c t o r t o i r r a d i a t e
\ param E v o l u t i o n D a t a XSSet s e t o f c o r s s s e c t i o n t o use t o pe r fo rm t h e

e v o l u t i o n c a l c u l a t i o n
∗ /

EvolutionData GenerateEvolutionData (IsotopicVector IV , EvolutionData XSSet ,
double Power , double cycletime) ;

/ / }
private :
/ / d e c l a r e your p r i v a t e v a r i a b l e s h e r e

} ;
#endif

Open the .cxx file and copy past the following in it (replacing NAME by the same name you
used in the .hxx).

Listing 12.3: lRM_NAME.cxx

#include "IRM_NAME.hxx"
#include "CLASSLogger.hxx"
#include <TGraph . h>
/ / Add w h a t e v e r i n c l u d e s
using namespace std ;
/ / __
IRM_NAME : : IRM_NAME () : IrradiationModel (new CLASSLogger ("IRM_NAME.log"))
{

/ / do what you want
}
/ / __
EvolutionData IRM_NAME : : GenerateEvolutionData (IsotopicVector FreshFuelIV ,

EvolutionData XSSet , double Power , double cycletime)
{

EvolutionData GeneratedDB = EvolutionData (GetLog ()) ;
GeneratedDB . SetPower (Power) ;
GeneratedDB . SetReactorType (ReactorType) ;

/ / Your S o l v e r a l g o r i t h m has t o f i l l GeneratedDB wi th t h e c a l c u l a t e d
i n v e n t o r i e s

/ / u s i n g :
GeneratedDB . NucleiInsert (pair<ZAI , TGraph∗> (ZAI (Z , A , I) , new TGraph (

SizeOfpTime , pTime , pZAIQuantity))) ;

return GeneratedDB ;
}

The function GenerateEvolutionData returns a EvolutionData (see section 7.3) containing the
inventories evolution over time. This has to be done according to the fresh fuel composition
(FreshFuelIV), to the mean cross sections (XSSet), to the (Power : thermal power (W)) and to
the irradiation time (cycletime (seconds)). To fill this EvolutionData you have to call the method
NucleiInsert which associates a nucleus (a ZAI) to a root object TGraph 1. This TGraph is the
evolution (pZAIQuantity in atoms) of this associated nucleus (ZAI(Z,A,I)) over time (pTime in
seconds). This TGraph has SizeOfpTime points.

After making the appropriate changes in this two files to make the function GenerateEvolu-
tionData to return the fuel evolution (fill free to look at
$CLASS_PATH/source/Model/Irradiation/*xx to get inspiration), two choices are offered to you.

1http://root.cern.ch/root/html/TGraph.html

http://root.cern.ch/root/html/TGraph.html

You can compile the two files of your model with your CLASS input or you can add this model
to the CLASS package. The second option will modify the CLASS software and we will be no
longer able to troubleshoot your scenario. So use the second option only if you are a completely
independent user !

12.1.2 Compile your Irradiation model with your CLASS executable :

@@BAM

12.1.3 Your Irradiation model in the CLASS library :

Move your IRM_NAME.hxx and IRM_NAME.cxx in $CLASS_PATH/source/Model/Irradiation/.
Then open with your favourite text editor the file
$CLASS_PATH/source/src/Makefile, find "OBJMODEL" and add $(IM)/IRM_NAME.o within
the others $(IM) objects. Then re-compile CLASS, fix the compilation errors ;) and voilà your
irradiation model is now available in the CLASS library.

Part V

CLASSGui : The results viewer

55

To use the CLASSGui :

CLASSGui MyCLASSOutput . root

Figure 12.1: Shematic Pathway

Part VI

Input examples

57

Part VII

In development

58

	Abstract
	Table of Contents
	List of figures
	I Introduction
	II First Steps
	Package Contents
	Install procedure
	Requirement
	Installation

	CLASS Execution
	News, forum, troubleshooting, doxygen ...

	III CLASS : General overview
	Generalities
	Basic unit
	CLASS working process principle

	Facilities descriptions
	CLASSFacility
	Reactor
	Generalities
	Use
	Fixed Fuel
	Reprocessed Fuel

	CLASSFuelPlan

	CLASSBackEnd
	Storage
	Pool
	SeparationPlant

	Fabrication Plant
	Pathway between Facilities
	Reactor with fixed fuel and a Storage
	Reactor with fixed fuel, a Pool and a Storage
	Reactor with fixed fuel, two SeprationPlant, a Pool and four Storage
	Reactor, a FabricationPlant, a Pool and a Storage

	Other objects
	ZAI
	IsotopicVector
	Generality
	Print method
	GetTotalMass
	Multiplication between IsotopicVector

	EvolutionData
	EvolutionData ASCII format
	DecayDataBank

	Log management : CLASSLogger

	Scenario/Park
	Fill the scenario
	OutPut
	General Output
	Output names
	Output Frequency

	IV Physics Models
	Description and implementation
	Equivalence Model
	Available Equivalence Models
	PWR-MOX models :
	Linear BU model : EQM_LIN_MOX
	Quadratic Model : EQM_QUAD_MOX
	Neural network model : EQM_MLP_MOX

	PWR-UOX model :
	Linear Model: EQM_LIN_UOX

	How to build an Equivalence Model
	Compile your equivalence model with your CLASS executable :
	Your equivalence model in the CLASS library :

	XS Model
	Available XS Models
	Pre-calculated XS : XSM_CLOSEST
	XS predictor : XSM_MLP

	How to build an XS Model
	Compile your cross section model with your CLASS executable :
	Your cross section model in the CLASS library :

	Irradiation Model
	Available Irradiation Model
	How to build an Irradiation Model
	Compile your Irradiation model with your CLASS executable :
	Your Irradiation model in the CLASS library :

	V CLASSGui : The results viewer
	VI Input examples
	VII In development

