
User Guide - CLASS v3.0

Core Library for Advanced Scenario Simulation

B. MOUGINOT1 & B. LENIAU2

1 Baptiste.Mouginot@subatech.in2p3.fr
2 Baptiste.Leniau@subatech.in2p3.fr

CNRS:IN2P3:Subatech:Erdre

Baptiste.Mouginot@subatech.in2p3.fr
Baptiste.Leniau@subatech.in2p3.fr

Abstract

i

Table of Contents

Abstract i

Table of Contents ii

List of figures v

I Introduction 1

II First Steps 3

1 Package Contents 4

2 Install procedure 5
2.1 Requirement . 5
2.2 Installation . 6

3 CLASS Execution 8

4 News, forum, troubleshooting, doxygen ... 9

III CLASS : General overview 10

5 Generalities 11
5.1 Basic unit . 11
5.2 CLASS working process principle . 11

6 Facilities descriptions 12
6.1 CLASSFacility . 12

ii

6.2 Reactor . 14
6.2.1 Generalities . 14
6.2.2 Constructor . 14

6.2.2.1 Normal constructor . 14
6.2.2.2 Fixed fuel constructor . 15
6.2.2.3 Reprocessed fuel constructor 15

6.3 CLASSBackEnd . 16
6.3.1 Storage . 16
6.3.2 Pool . 16

6.4 Fabrication Plant . 16

7 Other objects 17
7.1 ZAI . 17
7.2 IsotopicVector . 17
7.3 Log management : CLASSLogger . 17
7.4 EvolutionData . 17

8 Decay data bases 18

IV Physics Models 19

9 Description and implementation 20

10 Equivalence Model 22
10.1 Available Equivalence Models . 22

10.1.1 PWR-MOX models : . 22
10.1.1.1 Linear BU model : EQM_LIN_MOX 22
10.1.1.2 Quadratic Model : EQM_QUAD_MOX 23
10.1.1.3 Neural network model : EQM_MLP_MOX 24

10.1.2 PWR-UOX model : . 27
10.1.2.1 Linear Model: EQM_LIN_UOX 27

10.2 How to build an Equivalence Model . 27
10.2.1 Compile your equivalence model with your CLASS executable : 30
10.2.2 Your equivalence model in the CLASS library : 30

11 XS Model 31
11.1 Available XS Models . 31

11.1.1 Pre-calculated XS : XSM_CLOSEST . 31
11.1.2 XS predictor : XSM_MLP . 34

11.2 How to build an XS Model . 37

11.2.1 Compile your cross section model with your CLASS executable : 40
11.2.2 Your cross section model in the CLASS library : 40

12 Irradiation Model 41
12.1 Available Irradiation Model . 41

V CLASSGui : The results viewer 42
12.1.1 How to build an Irradiation Model . 43

VI CLASSGui : The results viewer 44

VII Input examples 45

VIII In development 46

List of Figures

v

Part I

Introduction

1

code de scenar tatati c’est gnial ça sert à ça ça et ça ... donner le forge in2p3

Part II

First Steps

3

Chapter 1

Package Contents

Ya quoi dans ce que je viens de downloader

4

Chapter 2

Install procedure

2.1 Requirement
• User skills : Good knowledge of C++. Abilities in using Root (cern). Experience in depletion

codes and neutron transport codes.

• OS : CLASS is known to work under Linux (64 bits) and MacOSX (64 bits). It has never
been tested on any Windows distribution.

• Root (CERN) : CLASS uses Root to store output data. The graphical user interface CLASS-
Gui is based on Root. Some algorithms uses the TMVA module of Root.

• C++ compiler : we recommend to use a gnu compiler like gcc4.8. If your platform is
DARWIN (Mackintosh OSX) we strongly recommend not to use the clang compiler
You should install macport. then types this following command in terminal :

sudo port install gcc48
sudo port select --set gcc mp-gcc48

IMPORTANT NOTE :

The actual root package (version 5.34/20) and earlier (and maybe latter) has a memory leak
issue when using TMVA leading to a freeze of your computer. To avoid this dramatical error to
happen do the following :
If the thread RootTalk 1 or RootSupport 2 indicates status solved then download and install the
more recent ROOT version.
If the status is still unresolved proceed as follow :
Open with your favourite text editor the file $ROOTSYS/tmva/src/Reader.cxx ($ROOTSYS is the

1http://root.cern.ch/phpBB3/viewtopic.php?f=3&t=18360&p=78586&hilit=TMVA#p78586
2https://sft.its.cern.ch/jira/browse/ROOT-6551

5

http://root.cern.ch/phpBB3/viewtopic.php?f=3&t=18360&p=78586&hilit=TMVA#p78586
https://sft.its.cern.ch/jira/browse/ROOT-6551

path to your ROOT installation folder) and replace the following :

TMVA : : Reader : : ~ Reader (void)
{

/ / d e s t r u c t o r

delete fDataSetManager ; / / DSMTEST

delete fLogger ;
}

by :

TMVA : : Reader : : ~ Reader (void)
{

/ / d e s t r u c t o r
std : : map<TString , IMethod∗ > : : iterator itr ;
for (itr = fMethodMap . begin () ; itr != fMethodMap . end () ; itr++) {

delete itr−>second ;
}
fMethodMap . clear () ;

delete fDataSetManager ; / / DSMTEST

delete fLogger ;
}

then type in your terminal :

cd $ROOTSYS
sudo make -j

2.2 Installation

Decompress the CLASS.tar.gz in your wanted location 3. Then type in terminal:

3 $CLASS_PATH is the path of your CLASS installation folder

cd $CLASS_PATH/
mkdir lib
cd source/src
make -j
make install

Then to install the Graphical User Interface :

cd $CLASS_PATH/gui
mkdir bin
make -j

Finally add the following environment variables (in your .tcsh or .csh):

setenv CLASS_PATH YourPathToCLASS
setenv CLASS_lib ${CLASS_PATH } / lib
setenv CLASS_include ${CLASS_PATH } / source / include
setenv PATH ${PATH } : ${CLASS_PATH } / bin / gui

Chapter 3

CLASS Execution

CLASS is a set of C++ libraries, there is no CLASS binary file. A CLASS executable has to
be build by user using objects and methods defined in the CLASS package.
The compilation line for generating your executable from a .cxx file is the following :

g++ -o CLASS_exec YourScenario.cxx -I $CLASS_include -L $CLASS_lib -lCLASSpkg ‘root -config
--cflags ‘ ‘root -config --libs ‘ -fopenmp -lgomp -Wunused -result

8

Chapter 4

News, forum, troubleshooting, doxygen ...

CLASS has a forge1 hosted by the IN2P3 where you can find :

• A forum2 where you are invited to post your trouble about CLASS installation and usage.
You may find the answer to your trouble on a already posted thread.

• A doxygen3 where all the CLASS objects and methods are defined and explained.

• News4 : All the news related to CLASS

A Mailing List5 also exist in order to be warned of all the change inside CLASS and to allow user
to exchange directly on the code. One can join the mailing list through the following link6.

1https://forge.in2p3.fr/projects/classforge
2https://forge.in2p3.fr/projects/classforge/boards
3https://forge.in2p3.fr/projects/classforge/embedded/annotated.html
4https://forge.in2p3.fr/projects/classforge/news
5classuser-l@ccpntc02.in2p3.fr
6http://listserv.in2p3.fr/cgi-bin/wa?SUBED1=classuser-l&A=1

9

https://forge.in2p3.fr/projects/classforge
https://forge.in2p3.fr/projects/classforge/boards
https://forge.in2p3.fr/projects/classforge/embedded/annotated.html
https://forge.in2p3.fr/projects/classforge/news
classuser-l@ccpntc02.in2p3.fr
http://listserv.in2p3.fr/cgi-bin/wa?SUBED1=classuser-l&A=1

Part III

CLASS : General overview

10

Chapter 5

Generalities

5.1 Basic unit

All time in CLASS should be written in second. It corresponds to the cSecond, a CLASS c++
type, which are a long long int going, in 32 bits and 64 bits, up to (263−1) s ∼ 2.9 ·1011 years,
enough for any electro-nuclear scenarios one can consider....

5.2 CLASS working process principle

image : shéma de principe de class

11

Chapter 6

Facilities descriptions

All the facility in CLASS project are regroup inside a large group called CLASSFacility (and
inherit of all the properties of the CLASSFacility in a C++ way). Inside the CLASSFacility, 3
different types has be defined, the reactor, the FabricationPlant (or more generally, all the fuel
cycle front-end facilities) and the backend facilities.

6.1 CLASSFacility

The CLASSFacility should never be used directly in the main CLASS program (the one made
to perform the simulation). The aim of these object is to regroup all the common properties of the
nuclear facilities, such as common variables, methods, and builder. Its includes 3 variables needed
by CLASS environment:

private :
int fId ; / / ! < I d e n t i t y o f t h e F a c i l i t y i n s i d e t h e Pa rc
int fFacilityType ; / / / < Type of f a c i l i t y :

/ / / \ l i 4 r e a c t o r ,
/ / / \ l i 8 Pool ,
/ / / \ l i 16 F a b r i c a t i o n P l a n t .

Scenario∗ fParc ; / / ! < P o i n t e r t o t h e main Pa rc

The fId variable correspond to the unique identity number allowing to differentiate all the facility
of a certain type. The fFacilityType variable correspond to an identity number allowing to separate
the different type of facilities. Those to variable are "private", which mean it is not possible to
access to them directly, one must to use there Get-xxx() and the Set-xxx() function (even inside
the daughter class such as reactor...). fParc is a pointer to the main park, which allow to access to
the rest of the park. Be careful the fParc pointer main not be assigned if the facility is not included
in a park...

12

The CLASSFacility also includes all the generic variable and method for time and simple fuel
management:

protected :
bool fIsStarted ; / / / < True i f Running , F a l s e O t h e r w i s e
bool fIsShutDown ; / / / < True i f t h e f a c i l i t y i s s toped , F a l s e O t h e r w i s e
bool fIsShutDown ; / / / < True i f Reach ing t h e End of a F a c i l i t y Cycle

cSecond fInternalTime ; / / / < I n t e r n a l Clock
cSecond fInCycleTime ; / / / < Time spend s i n c e t h e b e g i n n i n g of t h e l a s t

Cycle
cSecond fCycleTime ; / / / < Cycle d u r a t i o n Time

IsotopicVector fInsideIV ; / / / < A l l IV i n t h e F a c i l i t y (f u e l f o r r e a c t o r ,
t o t a l f o r a l l o t h e r s . . .)

IsotopicVector fCumulativeIVIn ; / / / < A l l IV i n t h e F a c i l i t y (f u e l f o r
r e a c t o r , t o t a l f o r a l l o t h e r s . . .)

IsotopicVector fCumulativeIVOut ; / / / < A l l IV i n t h e F a c i l i t y (f u e l f o r
r e a c t o r , t o t a l f o r a l l o t h e r s . . .)

/ / ∗∗∗∗∗∗∗∗∗ I n t e r n a l P a r a m e t e r ∗∗∗∗∗∗∗∗∗ / /
private :

[. . .]
cSecond fCreationTime ; / / / < CLASS U n i v e r s a l Time of C r e a t i o n
cSecond fLifeTime ; / / / < Time of l i f e Of t h e R e a c t o r (O p e r a t i n g ’ s

D u r a t i o n)

fIsStarted, fIsShutDown, fIsShutDown allows to the Dump() method to determine the state of the
facility and do what is necessary.
fInternalTime, fInCycleTime, fCycleTime variable allows the time the time management inside the
facility. fInternalTime correspond to the last time until the evolution of the facility as been calcu-
lated. fCycleTime the time length of a cycle in this facility (note that it could be irradiation cycle
in a Reactor, fabrication time in a FabricationPlant, or cooling time in a Pool). And fInCycleTime
correspond to the time already past in the current cycle.
fCreationTime, fLifeTime are private and used to define the creation time of the facility, and its
operation time length.

Besides all the time management of the facility, it also contain the basic tool for fuel manage-
ment the three IsotopicVector : fInsideIV, fCumulativeIVIn, fCumulativeIVOut, which correspond
respectively to the isotopic vector present in the facility, to the cumulative income inside the facil-
ity, and the cumulative outcome outside the facility.

By default af the Get-xxx() and Set-xxx() method associated to those variable are define, and
some can be overloaded.

The CLASSFacility also comes with 2 virtual method (which means one must overloading it
when defining a new facility) : Evolution(cSecond t) and Dump(). They are both used to perform
the evolution of the facility. Where the first one (Evolution) is used to specify the change inside
the facility (mainly fuel evolution), the second one (Dump) is used to deal the exchange between
facility, such as refilling a reactor or send a fuel to the stock at the end of cooling.

6.2 Reactor

6.2.1 Generalities

The aim of this class is to deal the evolution of the fuel inside a reactor. The fuel state of
the reactor is describe in the IsotopicVector fInsideIV (which are inherit from the CLASSFacility
class). Its evolution is always contain in the EvolutionData fEvolutionDB.
There are 2 way to provide the EvolutionData to the reactor. In the case of fixed fuel the user need
to provide it, using the appropriated constructor, the set function, or a CLASSFuelPlan. In the case
of recycled fuel or unfixed fuel, the user need to provide a PhysicsModels, using the appropriated
constructor, the set function, and/or a CLASSFuelPlan.

6.2.2 Constructor

There are many ways to define a reactor.

6.2.2.1 Normal constructor

Reactor () ; / / / < Normal C o n s t r u c t o r .

Just define a simple reactor without fuel, starting time, mass of fuel, time of life or anything.

Reactor (CLASSLogger∗ log) ;

Just define a simple reactor without fuel, starting time, mass of fuel, time of life or anything, but
set a CLASSLogger log to send the CLASS message.

6.2.2.2 Fixed fuel constructor

Constructor defining the a reactor using fixed fuel.

Reactor (CLASSLogger∗ log , EvolutionData evolutivedb , CLASSBackEnd∗ CBE ,
cSecond creationtime , cSecond lifetime ,
double power , double HMMass , double BurnUp , double ChargeFactor = 1) ;

Reactor (CLASSLogger∗ log , EvolutionData evolutivedb , CLASSBackEnd∗ Pool ,
cSecond creationtime , cSecond lifetime ,
cSecond cycletime , double HMMass , double BurnUp) ;

The evolution of the fuel is given by the EvolutionData evolutivedb the mass of heavy metal in the
reactor core by HMMass, the power by Power and its charge factor by ChargeFactor.
To avoid mixing between constructor, only 2 constructor exist to set the triplet (power, burnup,
cycle time). (if more 2 constructor would have the same number of input variables.)
After irradiation the fuel goes in the CLASSBackEnd CBE, which as seen section can be any
CLASSBackEndFacility (SeparationPlant, Pool or storage).

6.2.2.3 Reprocessed fuel constructor

As well as in the fixed fuel constructor, the mass of heavy metal in the reactor core by HM-
Mass, the power by Power and its charge factor by ChargeFactor. Only 2 constructor exist to set
the triplet (power, burnup, cycle time).
The PhysicsModels is fuelDB, and the FabricationPlant is FabricationPlant.

Reactor (CLASSLogger∗ log , PhysicsModels fueltypeDB ,
FabricationPlant∗ fabricationplant , CLASSBackEnd∗ Pool ,
cSecond creationtime , cSecond lifetime , cSecond cycletime ,
double HMMass , double BurnUp) ;

Reactor (CLASSLogger∗ log , PhysicsModels fueltypeDB ,
FabricationPlant∗ fabricationplant , CLASSBackEnd∗ Pool ,
cSecond creationtime , cSecond lifetime ,
double Power , double HMMass , double BurnUp , double ChargeFactor) ;

6.3 CLASSBackEnd

6.3.1 Storage

6.3.2 Pool

6.4 Fabrication Plant

Chapter 7

Other objects

7.1 ZAI

7.2 IsotopicVector

7.3 Log management : CLASSLogger

7.4 EvolutionData

17

Chapter 8

Decay data bases

18

Part IV

Physics Models

19

Chapter 9

Description and implementation

A Physic Models is related to one or several reactors , it is a container of three models :

• Equivalence Model : Tells to the Fabrication Plant how to build the fuel.

• XS Model : "Calculates" the mean cross sections of this fuel and sends it to the Bateman
Solver.

• Irradiation Model : It is the Bateman Solver. User can choose between different numerical
method.

A physic model is called in the CLASS input like the following example :

. . .
#include "XS/XSM_MLP.hxx"
#include "Irradiation/IM_RK4.hxx"
#include "Equivalence/EQM_MLP_PWR_MOX.hxx"
int main ()
{

. . . .

EQM_MLP_MOX∗ Equivalence = new EQM_MLP_MOX ("PathToTMVAWeightFile/
TMVAWeightFile.xml") ;

XSM_MLP∗ XS = new XSM_MLP (gCLASS−>GetLog () ,"PathToTMVAWeighstFolder" ,
OneMLPPerTimeStep) ;

IM_RK4∗ Solver = new IM_RK4 (gCLASS−>GetLog ()) ;
PhysicsModels∗ PHYMOD = new PhysicsModels (XS , Equivalence , Solver) ;

. . .
Reactor ∗PWR_MOX = new Reactor (log , PHYMOD , fabricationplant , Pool ,

creationtime , lifetime , cycletime , HMMass , BurnUp) ;
. . .

}

In this latter example a physics model called "PHYMOD" is defined, it contains the bateman
solver "Solver" which is the Runge Kutta (4th order) method. The mean cross sections predictor,

20

"XS", used is based on a Multi Layer Perceptron. The Equivalence Model "Equivalence" is the
one used for PWR MOX fuels. The arguments of the 3 objects constructor are explained in its
corresponding sections.

All the existing models are define in the following sections, furthermore, the way to build its
own Model is presented.

Chapter 10

Equivalence Model

The aim of an equivalence model is to predict the content of fissile element needed in a fuel to
reach a given burn-up or to satisfied criticality conditions.

10.1 Available Equivalence Models

The CLASS package contains, for the moment, 4 different equivalence models where three
are related to the building of fuels for a PWR-MOX and one to the building of PWR-UOX fuels :

10.1.1 PWR-MOX models :

The following models returns the molar fraction %Pu of plutonium needed to reach a given
burn-up according to the plutonium isotopic composition available in stocks.

10.1.1.1 Linear BU model : EQM_LIN_MOX

It was initially applied for MOX fuel, but because of the lack of precision, this model could
be deprecated (at least in the PWR MOX case). It remain in the CLASS packages only because it
was present historically.
Nevertheless it could be use as an example for similar model for other fuel. This model suppose
it is possible to describe the maximal burn-up accessible for a set fuel using its initial composition
using a simple linear modelisation (equation 10.1):

BUmax = α0 +
N

∑
i

αi ·ni, (10.1)

where BUmax represent the maximal accessible burn-up for the fuel, ni the isotopic fraction of the
isotope i, N the number of isotope present in the fuel, and the αi the parameter of the model. The
main difficulty concerning this model, is the determination of the αi: to be correct the αi should
be fitted on a set of evolution data which are not constrain to reach an unique burn-up, but a large
burn-up region. One can see the problem guessing it is possible to build a set a fuel evolution
reaching exactly a unique burn-up (45 GWd/t by example), the χ2 minimization of the αi will

22

end up with α0 = 45 and all the other at zero. That why, when using a linear burn-up description
model, one should test the validity of the model, on many random compositions by example...

10.1.1.2 Quadratic Model : EQM_QUAD_MOX

The %Pu is calculated according a quadratic model. See equation 10.2.

%Pu = α0 +
N

∑
i∈Pu

(
αi ·ni +∑

j≤i
αi j ·ni ·n j

)
, (10.2)

where ni is the molar proportion (in %mol.) of isotope i 1 in the fresh plutonium vector. αi j, αi and
α0 are the weights resulting from a minimization procedure and are related to one targeted burn-up
and one fuel management. Furthermore, 241Am from 241Pu decay is not one of the considered com-
ponent of the model (ni), instead the model considers a fixed time since plutonium separation. For
instance the α given in file $CLASS_PATH/DataBase/Equivalence/PWR_MOX_45GW_3Batch_2y.dat
are representative of a PWR-MOX with a maximal burn-up of 45GWd/tHM, a fuel management
of 3 batches, and a time between separation and irradiation of 2 years.

The file containing the weights is formatted as follow :

PARAM "238Pu 238Pu*238Pu 238Pu*239Pu 238Pu*240Pu 238Pu*241Pu 238Pu*242Pu 239Pu
239Pu*239Pu 239Pu*240Pu 239Pu*241Pu 239Pu*242Pu 240Pu 240Pu*240Pu 240Pu

*241Pu 240Pu*242Pu 241Pu 241Pu*241Pu 241Pu*242Pu 242Pu 242Pu*242Pu 1"

Where 238Pu stands for α238Pu and it is the first order weight related to the molar proportion of
238Pu and 1 is α0. The weights are in units of %mol. ·%mol.−1 for αi in units of %mol. ·%mol.−2

for αi j and in units of %mol. for α0. The Keyword "PARAM" has to be present in the file before
the α values. For more informations about this model and the generation of the coefficients please
refer to reference [@@PAPIER BAM].

Implementation in a .cxx :

1from 238Pu to 242Pu

. . .
#include "Equivalence/EQM_QUAD_PWR_MOX.hxx"
. . .
int main ()
{
. . .
EQM_QUAD_PWR_MOX∗ Equivalence = new EQM_QUAD_PWR_MOX (LogObject , AlphasFile) ;
/ / o r
/ / EQM_QUAD_PWR_MOX∗ E q u i v a l e n c e = new EQM_QUAD_PWR_MOX(A l p h a s F i l e) ;
. . .
}

With LogObject a CLASSLogger object (see section 7.3) and AlphasFile a string which is the
complete path to the file containing the weights (the α parameters)

Available weight file (.dat) :

• @@@ BAM

• @@@ BAM

• ...

10.1.1.3 Neural network model : EQM_MLP_MOX

This equivalence model is based on a Multi Layer Perceptron (MLP) and predict the amount
of plutonium needed to reach any burn-up. The MLP inputs are the isotopic compositions of the
plutonium (including 241Am), the enrichment of depleted uranium, and the targeted burn-up. The
output is the plutonium content needed to reach the burn-up. This method uses the neural networks
of the root module TMVA (@@@ Ref TMVA). To executes this model, TMVA is run in CLASS
and need a .xml file. This file contains the neural network architecture and the weights resulting
from the training procedure.

Implementation in a .cxx :

. . .
#include "Equivalence/EQM_MLP_PWR_MOX.hxx"
. . .
int main ()
{
. . .
EQM_MLP_PWR_MOX∗ Equivalence = new EQM_MLP_PWR_MOX (LogObject , TMVAWeightPath

) ;
/ / o r
/ / EQM_MLP_PWR_MOX. ∗ E q u i v a l e n c e = new EQM_MLP_PWR_MOX(TMVAWeightPath) ;
. . .

With LogObject a CLASSLogger object (see section 7.3) and TMVAWeightPath a string con-
taining the path to the .xml file.

In order to make his own .xml file one need to have a training data containing the fresh fuel
composition and the achievable burn-up of many examples. The fuel composition is characterized
by the mean of :

• The plutonium composition (i.e : %mol. of 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, and 241Am)

• The plutonium content (i.e : Pu
Pu+U)

• The 235U content in the depleted uranium.

The file $CLASS_PATH/DataBases/Equivalence/EQM_MLP_PWR_MOX_3batch.xml has been
generated from the file $CLASS_PATH/Utils/Equivalence/PWR_MOX_MLP/Train_MLP.cxx To
train a new MLP from your own training sample proceed as follow :

cd $CLASS_PATH/Utils/Equivalence/PWR_MOX_MLP
g++ -o Train_MLP ‘root -config --cflags ‘ Train_MLP.cxx ‘root -config --glibs ‘ -lTMVA -

I$ROOTSYS/tmva/test/
Train_MLP YourTrainingData.root

Where YourTrainingData.root is a root file containing a TTree filled with fuel compositions
and corresponding burn-ups. The .xml file will be generated in a folder named weight. The results
of the testing procedure of the MLP are in a file named TMVA_MOX_Equivalence.root but will
be presented to you graphically as soon as the training and the testing procedure are finished.

To make your YourTrainingData.root file you have to fill a TTree with your data. To do so,
create a .cxx file and copy past this :

TFile∗ fOutFile = new TFile ("YourTrainingData.root" ,"RECREATE") ; / / c r e a t e
t h e . r o o t f i l e

TTree∗ fOutT = new TTree ("Data" , "Data") ; / / c r e a t e t h e TTree
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ INITIALISATIONNN∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
/ / WARNING : keep t h e same v a r i a b l e names :

double U5_enrichment = 0 ;
double Pu8 = 0 ;
double Pu9 = 0 ;
double Pu10 = 0 ;
double Pu11 = 0 ;
double Pu12 = 0 ;
double Am1 = 0 ;
double BU = 0 ; / / BU means Burn−Up
double teneur = 0 ; / / F rench f o r c o n t e n t (h e r e Pu c o n t e n t)

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗BRANCHING∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
fOutT−>Branch ("U5_enrichment" ,&U5_enrichment ,"U5_enrichment/D") ;
fOutT−>Branch ("Pu8" ,&Pu8 ,"Pu8/D") ;
fOutT−>Branch ("Pu9" ,&Pu9 ,"Pu9/D") ;
fOutT−>Branch ("Pu10" ,&Pu10 ,"Pu10/D") ;
fOutT−>Branch ("Pu11" ,&Pu11 ,"Pu11/D") ;
fOutT−>Branch ("Pu12" ,&Pu12 ,"Pu12/D") ;
fOutT−>Branch ("Am1" ,&Am1 ,"Am1/D") ;
fOutT−>Branch ("BU" ,&BU ,"BU/D") ;
fOutT−>Branch ("teneur" ,&teneur ,"teneur/D") ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗FILLING∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
/ / i n t Nex= NumberOfDif fe ren tExample ;
for (int ex=0;ex<Nex ; ex++)
{ /∗ ∗∗∗∗∗∗ F r e s h Fue l Compos i t ion ∗∗∗∗∗∗∗∗∗∗ ∗ /

U5_enrichment = fU5_enrichment [ex] ;
Pu8 = fPu8 [ex] ;
Pu9 = fPu9 [ex] ;
Pu10 = fPu10 [ex] ;
Pu11 = fPu11 [ex] ;
Pu12 = fPu12 [ex] ;
Am1 = fAm1 [ex] ;
teneur = fteneur [ex] ;
/∗ ∗∗∗∗ C o r r e s p o n d i n g maximal Burn−up ∗∗∗∗∗∗ ∗ /
BU = BurnUps [ex] ;
/∗ ∗∗∗ F i l l t h e t r e e wi th t h i s f u e l c o m p o s i t i o n and t h i s burnup ∗∗∗ ∗ /
fOutT−>Fill () ;

}
fOutFile−>Write () ;
delete fOutT ;
fOutFile−> Close () ;
delete fOutFile ;

}

Then, build the arrays fU5_enrichment, fPu8 ... with your data, compile and execute. For
more informations about this model please refer to [@@Papier BaL].

Available weight file (.xml) :

• $CLASS_PATH/DataBases/Equivalence/EQM_MLP_PWR_MOX_3batch.xml : Gen-
erated with 5000 MURE evolutions with different fuel composition, using a full mirrored
assembly calculation with JEFF3.1.1 cross section and fission yield data bases. Valid for
mono-recycling of plutonium and a fuel management of 3 batches. More details about the
generation of this .xml file can be found in reference[@@@BaL paper].

10.1.2 PWR-UOX model :

10.1.2.1 Linear Model: EQM_LIN_UOX

@@@BAM

10.2 How to build an Equivalence Model

The strength of CLASS is to allow the user to build his own physic models, this section
explains how to build a new equivalence model and to incorporate it into CLASS.

First you have to create the file EQM_NAME.cxx and EQM_NAME.hxx, where NAME is a
name you choose. Then open with a text editor the .hxx and copy past the following replacing
NAME by the name you want.

#ifndef _EQM_NAME_HXX
#define _EQM_NAME_HXX
#include "EquivalenceModel.hxx"
using namespace std ;
/ /−−−//
/∗ !

D e f in e a EQM_NAME
E x p l a i n b r i e f l y what i s i t .
@author YourName
@vers ion 3 . 0
∗ /

/ / __
class EQM_NAME : public EquivalenceModel
{

public :
/∗ C o n s t r u c t o r ∗ /
EQM_NAME (/∗ p a r a m e t e r s ∗ /) ; / / ! < E x p l a i n what i s t h e p a r a m e t e r s (i f any)

/∗ ∗Thi s f u n c t i o n IS t h e e q u i v a l e n c e model ∗ ∗ /
double GetFissileMolarFraction (IsotopicVector Fissil , IsotopicVector Fertil ,

double BurnUp) ; / / ! < Re tu rn t h e molar f r a c t i o n o f f i s s i l e e l e m e n t

private :
/∗Your p r i v a t e v a r i a b l e s ∗ /

} ;
#endif

Open the .cxx file and copy past the following in it (replacing NAME by the same name you
used in the .hxx).

#include "EquivalenceModel.hxx"
#include "EQM_NAME.hxx"
#include "CLASSLogger.hxx"
/∗Whatever i n c l u d e you need ∗ /
/ / __
/ / EQM_NAME
/ /
/ / B r i e f d e s c r i p t i o n
/ / __
/ / C o n s t r u c t o r (s)
EQM_NAME : : EQM_NAME (/∗ p a r a m e t e r s ∗ /)
{
/ / Do w h a t e v e r you want wi th your p a r a m e t e r s
/∗

F i l l t h e two i s o t o p i c v e c t o r s f F i s s i l e L i s t and f F e r t i l e L i s t
s e e e x p l a n a t i o n i n t h e manual

∗ /
/ / F e r t i l e
ZAI U8 (9 2 , 2 3 8 , 0) ;
ZAI U5 (9 2 , 2 3 5 , 0) ;
double U5_enrich= 0 . 0 0 2 5 ;
fFertileList = U5∗U5_enrich + U8∗(1−U5_enrich) ;

/ / F i s s i l e
ZAI Pu8 (9 4 , 2 3 8 , 0) ;
ZAI Pu9 (9 4 , 2 3 9 , 0) ;
/ / . . .
fFissileList = Pu8∗1+Pu9∗1+ /∗ . . . ∗ / ;

}
/ / ___
double EQM_NAME : : GetFissileMolarFraction (IsotopicVector Fissil , IsotopicVector

Fertil , double BurnUp)
{
/ / Code your E q u i v a l e n c e Model : Th i s f u n c t i o n has t o r e t u r n t h e molar f r a c t i o n

o f f i s s i l e i n t h e f u e l needed t o r e a c h t h e BurnUp (GWd/ tHM) a c c o r d i n g t o
t h e c o m p o s i t i o n o f t h e F i s s i l and F e r t i l v e c t o r s

}

In the constructor (EQM_NAME::EQM_NAME) you have to fill two isotopic vectors named
fFissileList and fFertileList. Don’t declare these isotopic vector in the .hxx, there are already
declared in the file src/EquivalenceModel.hxx. fFissileList is used by the FabricationPlant to do
the chemical separation of the fissile element from the other present in stock. For instance, for
the plutonium, add the ZAI 238Pu, 239Pu, 240Pu, 241Pu and 242Pu. fFertile List is used by the
FabricationPlant the same way fFissileList is used but you have to define a default IsotopicVector

to be used if you didn’t provide a fertile stock to your FabricationPlant. In the example given above
the fertile is depleted uranium and the proportion of each isotope is given (234U is unheeded). Now
you have to build the function GetFissileMolarFraction(IsotopicVector Fissil, IsotopicVector
Fertil, double BurnUp). Its parameters are provided by the FabricationPlant and are :

• IsotopicVector Fissil : it is the proportion of each nucleus you give in the fFissileList plus
the proportion of the nuclei that appears during the fabrication time (time given in the Fab-
ricationPlant constructor, is default is 2 years)

• IsotopicVector Fertil : it is the proportion of each nucleus you give in the fFertileList plus the
proportion of the nuclei that appears during the fabrication time. If you didn’t provide any
fertile stock to your FabricationPlant then it’s the default vector given in the EQM_NAME
constructor.

• double BurnUp : The maximal average burn-up for your fuel to reach (in GWd/tHM).

Fill free to have a look at the models present in $CLASS_PATH/source/Model/Equivalence to get
inspiration.

Now that your equivalence model is ready two choices are offered to you. You can compile the
two files of your model with your CLASS input or you can add this model to the CLASS package.
The second option will modify the CLASS software and we will be no longer able to troubleshoot
your scenario. So use the second option only if you are a completely independent user !

10.2.1 Compile your equivalence model with your CLASS executable :

@@BAM

10.2.2 Your equivalence model in the CLASS library :

Move your EQM_NAME.hxx and EQM_NAME.cxx in $CLASS_PATH/source/Model/Equivalence/.
Then open with your favourite text editor the file $CLASS_PATH/source/src/Makefile, find "OB-
JMODEL" and add $(EQM)/EQM_NAME.o within the others $(EQM) objects. Then re-compile
CLASS, fix the compilation errors ;) and voilà your equivalence model is now available in the
CLASS library.

Chapter 11

XS Model

The aim of a mean cross section model (XSModel) is to predict the mean cross sections of a
fuel built by an EquivalenceModel (EQM) (see section 10. The mean cross sections are required
to compute fuel depletion in a reactor.

11.1 Available XS Models

There is, for the moment, 2 XSModel in CLASS :

11.1.1 Pre-calculated XS : XSM_CLOSEST

This method looks, in a data base, for a fresh fuel with a composition close to the brandy
new fuel built by the EquivalenceModel. Here, close means that the fresh fuel in the data base
minimizes the distance d (see equation 11.1).

d =
√

∑
i

wi · (nDB
i −nnew

i)2, (11.1)

where nDB
i is the number of nuclei i in one element of the data base and nnew

i the number of nuclei
i in the new fuel built by the EQM. wi is a weight associated to each isotopes, its value is 1 by de-
fault. When the closest evolution in the database is found, the corresponding mean cross sections
are extracted and used for the calculation of the depletion of the new fuel.

Implementation in a .cxx :

31

. . .
#include "XS/XSM_CLOSEST.hxx"
. . .
int main ()
{

XSM_CLOSEST∗ XSMOX = new XSM_CLOSEST (gCLASS−>GetLog () , PathToIdxFile) ;
/ / o r
/ / XSM_CLOSEST∗ XSMOX = new XSM_CLOSEST(P a t h T o I d x F i l e) ;

}

With LogObject a CLASSLogger object (see section 7.3) and PathToIdxFile a string contain-
ing the path to the .idx file. The .idx file lists all the EvolutionData (see section 7.4) of the data
base. This file is formatted as follow :

TYPE "NameOfTheFuel(withoutspace)"
"PATH_TO_DATA_BASE/EvolutionName.dat"
"PATH_TO_DATA_BASE/OtherEvolutionName.dat"
. . . .

Each EvolutionName.dat file contains a fuel depletion calculation formatted as follow :

Listing 11.1: Evolution Data format

time "0 t2 t3 ..." / / i n s e c o n d s
keff "k1 k2 k3 ..." / / n o t mandatory e n t r y
flux "phi1 phi2 phi3 ..." / / (n e u t r o n / (second . cm2)) n o t mandatory e n t r y
Inv "Z A I inv1 inv2 inv 3 ..." / / i n atoms
. . .
XSFis "Z A I xsfis1 xsfis2 xsfis3 ..." / / i n b a r n s
. . .
XSCap "Z A I xscap1 xscap2 xscap3 ..."
. . .
XSn2n "Z A I xsn2n1 xsnsn2 xsn2n3 ..."
. . .

The meaning of each keyword is listed in table 11.1. The number of .dat files has an influence
on the model accuracy. Furthermore, the initial composition of the different fuel depletion calcu-
lations has to be representative of the fresh fuel compositions encounter in a scenario. For more
details on this method please refer to [ref @@@ BAM physor].

Table 11.1: .dat Key words meaning

Key words Meaning
Inv Inventory

XSFis mean fission cross section
XSCap mean (n,γ) cross section
XSn2n mean (n,2n) cross section

Value meaning
Z Charge number
A Mass number
I State (fundamental=0, 1st excited =1, ...)

Each EvolutionName.dat files comes with a EvolutionName.info file, which describes the re-
actor, it is formatted like this :

Reactor "ReactorName" / / What e v e r s t r i n g w i t h o u t s p a c e
Fueltype "FuelName" / / What e v e r s t r i n g w i t h o u t s p a c e
CycleTime "t" / / The f i n a l t ime s i m u l a t e d (@@BaM)
ConstantPower "P" / / S i m u l a t e d power (i n W)

Available .idx file :

• @@@ BAM

• @@@ BAM

• ...

For MURE user only : The program $CLASS_PATH/Utils/XS/CLOSEST/WriteDataBase
converts a list of MURE evolutions to a list of .dat and .info files and creates the .idx file, type in
terminal the following command for more details.

\$CLASS_PATH/Utils/XS/CLOSEST/WriteDataBase -h
@@BAM

Users of others fuel depletion code (e.g VESTA, ORIGEN, MONTEBURNS, SERPENT)
have to create their own program to generate these files.

11.1.2 XS predictor : XSM_MLP

This method calculates the mean cross sections by the mean of a set of neural networks (MLP
from TMVA module) . There is two configurations available :

• One MLP per nuclear reaction and per time step (this one is deprecated and not describe in
this manual) .

• One MLP per nuclear reaction. the irradiation time is one of the MLP inputs.

Implementation in a .cxx :

. . .
#include "XS/XSM_MLP.hxx"
. . .
int main ()
{ . . .

XSM_MLP∗ XSMOX = new XSM_MLP (ClassLog , PathToWeightFolder , InfoFileName ,
OneMLPPerTime) ;

/ / o r
/ / XSM_MLP∗ XSMOX = new XSM_MLP(Pa thToWeigh tFo lde r , In foFi leName , OneMLPPerTime

) ;
. . .
}

PathToWeightFolder (string) is the path to the folder containing the weight files (.xml files).
OneMLPPerTime is a boolean setted to true if there is one MLP per reaction and per time step.
InfoFileName (string) is the name of the file located in PathToWeightFolder which is informing
on the reactor and on the inputs of the XS_MLP model. Format of InfoFileName is :

Listing 11.2: Information file format

ReactorType : "ReactorName" / / w i t h o u t s p a c e
FuelType : "FuelName" / / w i t h o u t s p a c e
Heavy Metal (t) : "m"
Thermal Power (W) : "P" / / power c o r r e s p o n d i n g t o t h e heavy m e t a l mass
Time (s) : "0 t2 t3 t4 ..." / / Time when t h e c r o s s s e c t i o n a r e u p d a t e d
Z A I Name (input MLP) : / / s e e e x p l a n a t i o n s below
"z a i InputName"
"z2 a2 i2 InputName2"
"..."

The input of MLPs are the atomic proportion of each nuclei present in the fresh fuel (plus time
if OneMLPPerTime=false). The InfoFile has to indicates the variable names (nuclei name) you
used for the training of your MLPs. For instance if the fresh fuel contains 238Pu you will write
in the InfoFile :

. . .
Z A I Name (input MLP) :
94 238 0 Pu8 / / (i f Pu8 i s t h e v a r i a b l e name used f o r 238Pu p r o p o r t i o n i n f r e s h

f u e l i n your t r a i n i n g sample)
. . .

Training MLPs for cross sections prediction :

Preparation of the training sample :

Like for the equivalence model, first of all you have to create a training sample. This is one of
the most important thing since the way of filling the hyperspace of the MLP inputs will influence
the accuracy of your model. We suggest to used the Latin Hyper Cube method [@@@REFF] to
generate many fresh fuel compositions, then, calculates with your favourite neutron transport code
(MCNP, MORET, SERPENT ...) the mean cross sections of each fresh fuel for different irradiation
time. Please refer to [REFFFBAL MLPXS] for more informations about the space filling and the
validation of this cross sections predictor . Once all your calculations are complete you have to
convert them into the .dat format (see code frame 11.1). Then type :

cd $CLASS_PATH/Utils/XS/MLP/BuildInput

Open the file Gene.cxx, looks for @@Change and make the appropriate changes. Then type :

g++ -o Gene Gene.cxx ‘root -config --cflags ‘ ‘root -config --libs ‘
Gene PATH_To_dat_Folder/

Where PATH_To_dat_Folder/ is the path to the folder containing the .dat files. This program
should have built two files :

• TrainingInput.root : This root file contains the fresh fuel inventories and the cross sections
values of all the read .dat files. You can plot the data with the root command line tool if you
wish. This file is the Training and testing sample that will be used for the TMVA training
and testing procedure.

• TrainingInput.cxx : This file contains, in a vector, the names of all the MLP outputs. The
number of lines in this file is the number of MLP that will be train.

Training and testing procedure :

Once the two TrainingInput (.cxx and .root) are generated type :

cd $CLASS_PATH/Utils/XS/MLP/Train

Look for @@Change in the file Train_XS.cxx , and make the appropriate changes. Then type
:

g++ -o Train_XS ‘root -config --cflags ‘ Train_XS.cxx ‘root -config --glibs ‘ -lTMVA

According the number of "events" in your .root file and the number of cross sections, the
training time can be very very very long. You might want to decrease the number of events (this
will probably deteriorate the model accuracy) : look for nTrain_Regression in Train_XS.cxx and
change its value to your wanted number of events. And/Or you may want to use more than one
processor or perhaps a supercomputer : This is completely doable since the program Train_XS
trains only one MLP (one cross section). Indeed the execution line is the following :

Train_XS i

where i is the index of the cross section in the vector created in TrainingInput.cxx. So feel free
to create a script to run the training on a wanted number of processors. For instance let’s say you
have 40 cross sections and 4 processors, creates 4 files (make them executable) and in the first one
type :

Train_XS 0
Train_XS 1
. . .
TrainXS 9

continue in the second file, and so on. Then execute all of them. The architecture and weights
of each MLP (.xml files) are stored in the folder weights. Rename this folder by the name of the
reactor and fuel, then create in this folder the information file (see code frame 11.2). And voilà

your new XSM_MLP is ready to be used.

After each training (using by default the half of the events) a testing procedure (using the
other half) is performed. This latter consists on executing the trained MLP with input data from
a known sample and compare the MLP result to the true value. These data and other infor-
mations about the training are stored in file Training_output_i.root, with i the index of the
cross section. In order to see either the MLPs predictions are accurate or not, the root macro
$CLASS_PATH/Utils/XS/MLP/Train/deviations.C plot the distribution of relative differences be-
tween model executions and the true values and a Gaussian fit of it. Then, the mean and the
standard deviation of the Gaussian fit are stored in file XS_accuracy.dat (format : XSName mean
std.dev.). Type the following to get, in file XS_accuracy.dat, the mean and the standard deviation
of all the MLPs (with N the number of cross sections (number of MLPs)) :

cd $CLASS_PATH/Utils/XS/MLP/Train/
root
.L deviations.C
for(int i=0;i<N;i++) {stringstream ss;ss <<"Training_output_"<<i<<".root";deviations(ss.str()

.c_str() ,0,kTRUE ,kFALSE ,kFALSE); }

The closest to 0 the mean is and the smaller standard deviation, the better.

11.2 How to build an XS Model

The strength of CLASS is to allow the user to build his own physic models, this section
explains how to build a new cross section model and to incorporate it into CLASS. First you have
to create the file XSM_NAME.cxx and XSM_NAME.hxx, where NAME is a name you choose.
Then open with a text editor the .hxx and copy past the following replacing NAME by the name
you want.

#ifndef _XSM_NAME_HXX
#define _XSM_NAME_HXX
#include "XSModel.hxx"
/ / add i n c l u d e i f needed
using namespace std ;
/ /−−//
/∗ !

D e f in e a XSM_NAME
d e s c r i b e your model

@authors YourName
@version 1 . 0
∗ /

/ / __
class XSM_NAME : public XSModel
{

public :

XSM_NAME (/∗ p a r a m e t e r s (i f any) ∗ /) ;

~XSM_NAME () ;

EvolutionData GetCrossSections (IsotopicVector IV , double t=0) ;

private :
/ / your p r i v a t e v a r i a b l e s and methods

} ;
#endif

Open the .cxx file and copy past the following in it (replacing NAME by the same name you
used in the .hxx).

#include "XSModel.hxx"
#include "XSM_NAME.hxx"
#include "CLASSLogger.hxx"
#include "StringLine.hxx"

#include <TGraph . h>
/ / __
/ /
/ / XSM_NAME
/ / __
XSM_NAME : : XSM_NAME (/∗ p a r a m e t e r s (i f any) ∗ /)
{
/ / do what you want : f o r i n s t a n c e save p a t h o f e v e n t u a l f i l e s
}
/ / __
XSM_NAME : : ~ XSM_NAME ()
{

/ / d e l e t e p o i n t e r i f any ; c l e a r map i f any ; empty v e c t o r i f any
}
/ / __
EvolutionData XSM_NAME : : GetCrossSections (IsotopicVector IV , double t)
{

EvolutionData EvolutionDataFromXSM_NAME = EvolutionData () ;
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗DATA BASE INFO∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
EvolutionDataFromXSM_NAME . SetReactorType (fDataBaseRType) ; / / Give t h e r e a c t o r

name
EvolutionDataFromXSM_NAME . SetFuelType (fDataBaseFType) ; / / Give t h e f u e l name
EvolutionDataFromXSM_NAME . SetPower (fDataBasePower) ; / / S e t t h e power W
EvolutionDataFromXSM_NAME . SetHeavyMetalMass (fDataBaseHMMass) ; / / c o r r e s p o n d i n g

t o t h i s mass (t)

map<ZAI , TGraph∗> ExtrapolatedXS [3] ;
/ / . . . F i l l t h e 3 maps E x t r a p o l a t e d X S a c c o r d i n g t o your model and t h e
/ / f r e s h f u e l c o m p o s i t i o n g i v e n by argument I s o t o p i c V e c t o r IV
/ / a rgument do ub l e t may be n o t used .

/∗ ∗∗∗∗THE CROSS SECTIONS∗∗ ∗ /
EvolutionDataFromXSM_NAME . SetFissionXS (ExtrapolatedXS [0]) ;
EvolutionDataFromXSM_NAME . SetCaptureXS (ExtrapolatedXS [1]) ;
EvolutionDataFromXSM_NAME . Setn2nXS (ExtrapolatedXS [2]) ;

return EvolutionDataFromXSM_NAME ;
}

Then, edit these two files to make the function XSM_NAME::GetCrossSections to return the
cross sections in a EvolutionData object. To do so you have to fill three maps (ExtrapolatedXS in

.cxx), one for fission, one for (n,γ), and one for (n,2n) . Each map associates a nucleus (a ZAI)
to a TGraph. A TGraph is a root object, here, it contains the cross section (barns) evolution over
time (seconds). If your are not comfortable with TGraph refer to the root website 1

Now that your cross section model is ready, two choices are offered to you. You can compile
the two files of your model with your CLASS input or you can add this model to the CLASS
package. The second option will modify the CLASS software and we will be no longer able to
troubleshoot your scenario. So use the second option only if you are a completely independent
user !

11.2.1 Compile your cross section model with your CLASS executable :

@@BAM

11.2.2 Your cross section model in the CLASS library :

Move your XSM_NAME.hxx and XSM_NAME.cxx in $CLASS_PATH/source/Model/XS/.
Then open with your favourite text editor the file
$CLASS_PATH/source/src/Makefile, find "OBJMODEL" and add $(XSM)/XSM_NAME.o within
the others $(XSM) objects. Then re-compile CLASS, fix the compilation errors ;) and voilà your
cross section model is now available in the CLASS library.

1http://root.cern.ch/root/html/TGraph.html

http://root.cern.ch/root/html/TGraph.html

Chapter 12

Irradiation Model

The irradiation model is the Bateman equations solver. It is used for the calculation of fuel
depletion in reactor. The decay depletion (without neutron flux) is not managed by an irradiation
model but with a decay data bases (see section 8).

12.1 Available Irradiation Model

At the moment, there is two Irradiation Model available. The two solvers differs according
to the numerical integration method used. The Irradiation Model IM_RK4 uses the fourth order
Runge-Kutta method. And IM_Matrix uses the development in a power series of the exponential
of the Bateman matrix.

Implementation in a .cxx :

#include "CLASSHeaders.hxx"
#include "Irradiation/IM_RK4.hxx"
/ / # i n c l u d e " I r r a d i a t i o n / IM_Matrix . hxx "
. .
using namespace std ;
int main ()
{
/ / . . .

IM_RK4∗ Solver = new IM_RK4 (LogObject) ; / / o r new IM_RK4 () ; / / u s e s a
d e f a u l t l o g f i l e

/ / IM_Matrix∗ S o l v e r = new IM_Matrix (LogObjec t) ; / / o r new IM_Matrix () ; / /
u s e s d e f a u l t l o g f i l e

PhysicsModels∗ PHYMOD = new PhysicsModels (XSMOX , EQMLINPWRMOX , Solver) ;
/ / . . .
}

LogObject is a CLASSLogger object (see section 7.3).

41

Part V

CLASSGui : The results viewer

42

12.1.1 How to build an Irradiation Model

The strength of CLASS is to allow the user to build his own physic models, this section
explains how to build a new Bateman solver (Irradiation Model) and to incorporate it into CLASS.

Part VI

CLASSGui : The results viewer

44

Part VII

Input examples

45

Part VIII

In development

46

	Abstract
	Table of Contents
	List of figures
	I Introduction
	II First Steps
	Package Contents
	Install procedure
	Requirement
	Installation

	CLASS Execution
	News, forum, troubleshooting, doxygen ...

	III CLASS : General overview
	Generalities
	Basic unit
	CLASS working process principle

	Facilities descriptions
	CLASSFacility
	Reactor
	Generalities
	Constructor
	Normal constructor
	Fixed fuel constructor
	Reprocessed fuel constructor

	CLASSBackEnd
	Storage
	Pool

	Fabrication Plant

	Other objects
	ZAI
	IsotopicVector
	Log management : CLASSLogger
	EvolutionData

	Decay data bases

	IV Physics Models
	Description and implementation
	Equivalence Model
	Available Equivalence Models
	PWR-MOX models :
	Linear BU model : EQM_LIN_MOX
	Quadratic Model : EQM_QUAD_MOX
	Neural network model : EQM_MLP_MOX

	PWR-UOX model :
	Linear Model: EQM_LIN_UOX

	How to build an Equivalence Model
	Compile your equivalence model with your CLASS executable :
	Your equivalence model in the CLASS library :

	XS Model
	Available XS Models
	Pre-calculated XS : XSM_CLOSEST
	XS predictor : XSM_MLP

	How to build an XS Model
	Compile your cross section model with your CLASS executable :
	Your cross section model in the CLASS library :

	Irradiation Model
	Available Irradiation Model

	V CLASSGui : The results viewer
	How to build an Irradiation Model

	VI CLASSGui : The results viewer
	VII Input examples
	VIII In development

