User Guide - CLASS v3.0

Core Library for Advanced Scenario Simulation

B. MOUGINOT! & B. LENIAU?

I Baptiste. Mouginot @subatech.in2p3.fr
2 Baptiste.Leniau@subatech.in2p3.fr

CNRS:IN2P3:Subatech:Erdre

Baptiste.Mouginot@subatech.in2p3.fr
Baptiste.Leniau@subatech.in2p3.fr

Abstract

Table of Contents

Abstract

Table of Contents

List of figures

I

Introduction

II First Steps

1

2

I

ii

Package Contents

Install procedure
2.1 Requirement.
2.2 Installation

CLASS Execution

News, forum, troubleshooting, doxygen ...

CLASS : General overview

Generalities
5.1 Basicunit
5.2 CLASS working process principle

Facilities descriptions
6.1 CLASSFacility

ii

6.2 Reactor e e
6.2.1 Generalities e e
6.2.2 ConStruCtor e e e e e e e

6.2.2.1 Normal constructor
6.2.2.2 Fixed fuel constructor,
6.2.2.3 Reprocessed fuel constructor L.

6.3 CLASSBackEnd
6.3.1 Storage e e e e e e
6.3.2 Pool e

6.4 FabricationPlant

Other objects

T ZAL L e e
7.2 IsotopicVector o e e e e e e e e e
7.3 Log management : CLASSLogger
7.4 EvolutionData L

8 Decay data bases

IV Physics Models

9 Description and implementation

10 Equivalence Model

10.1 Available Equivalence Models

10.1.1.1 Linear BU model : EQM_LIN_MOX
10.1.1.2 Quadratic Model : EQM_QUAD_MOX
10.1.1.3 Neural network model : EQM_MLP MOX

11 XS Model

11.1 Available XSModels e
11.1.1 Pre-calculated XS : XSM_CLOSEST
11.1.2 XSpredictor: XSM_MLP

11.2 Howtobuildan XSModel

17
17
17
17
17

18

19
20

22
22
22
22
23
24
27
27
27
30
30

11.2.1 Compile your cross section model with your CLASS executable :
11.2.2 Your cross section model in the CLASS library :

12 Irradiation Model
12.1 Available Irradiation Model

V CLASSGui : The results viewer
12.1.1 How to build an Irradiation Model

VI CLASSGui : The results viewer

VII Input examples

VIII In development

41
41

42
43

44

45

46

List of Figures

Part I

Introduction

code de scenar tatati c’est gnial ca sert a ca ¢a et ¢a ... donner le forge in2p3

Part 11

First Steps

Chapter 1

Package Contents

Ya quoi dans ce que je viens de downloader

Chapter 2

Install procedure

2.1 Requirement

e User skills : Good knowledge of C++. Abilities in using Root (cern). Experience in depletion
codes and neutron transport codes.

e OS : CLASS is known to work under Linux (64 bits) and MacOSX (64 bits). It has never
been tested on any Windows distribution.

e Root (CERN) : CLASS uses Root to store output data. The graphical user interface CLASS-
Gui is based on Root. Some algorithms uses the TM VA module of Root.

e C++ compiler : we recommend to use a gnu compiler like gcc4.8. If your platform is
DARWIN (Mackintosh OSX) we strongly recommend not to use the clang compiler
You should install macport. then types this following command in terminal :

|
sudo port install gcc48

sudo port select --set gcc mp-gccé48

IMPORTANT NOTE :

The actual root package (version 5.34/20) and earlier (and maybe latter) has a memory leak
issue when using TMVA leading to a freeze of your computer. To avoid this dramatical error to
happen do the following :

If the thread RootTalk ! or RootSupport 2 indicates status solved then download and install the
more recent ROOT version.

If the status is still unresolved proceed as follow :

Open with your favourite text editor the file SROOTSY S/tmva/src/Reader.cxx (SROOTSYS is the

Thttp://root.cern.ch/phpBB3/viewtopic.php?f=3&t=18360&p=78586&hilit=TMVA#p78586
Zhttps://sft.its.cern.ch/jira/browse/ROOT-6551

http://root.cern.ch/phpBB3/viewtopic.php?f=3&t=18360&p=78586&hilit=TMVA#p78586
https://sft.its.cern.ch/jira/browse/ROOT-6551

path to your ROOT installation folder) and replace the following :

TMVA :: Reader::~Reader(void)
{
// destructor

delete fDataSetManager; // DSMTEST

delete fLogger;

by :

TMVA :: Reader::~Reader(void)
{

// destructor

std::map<TString, IMethod* >::iterator itr;

for(itr = fMethodMap.begin(); itr != fMethodMap.end(); itr++) {
delete itr—>second;

}
fMethodMap.clear();

delete fDataSetManager; // DSMTEST

delete fLogger;

then type in your terminal :

cd $ROOTSYS
sudo make -j

2.2 Installation

Decompress the CLASS .tar.gz in your wanted location . Then type in terminal:

3 $CLASS_PATH is the path of your CLASS installation folder

cd $CLASS_PATH/
mkdir 1ib

cd source/src
make -j
make install

Then to install the Graphical User Interface :

cd $CLASS_PATH/gui

mkdir bin

make -j

Finally add the following environment variables (in your .tcsh or .csh):

setenv CLASS_PATH YourPathToCLASS

setenv CLASS_lib ${CLASS_PATH}/1lib

setenv CLASS_include ${CLASS_PATH}/source/include
setenv PATH ${PATH}:${CLASS_PATH}/bin/gui

Chapter 3

CLASS Execution

CLASS is a set of C++ libraries, there is no CLASS binary file. A CLASS executable has to
be build by user using objects and methods defined in the CLASS package.
The compilation line for generating your executable from a .cxx file is the following :

g++ -o CLASS_exec YourScenario.cxx -I $CLASS_include -L $CLASS_lib -1CLASSpkg ‘root-config

--cflags‘ ‘root-config --1libs‘ -fopenmp -lgomp -Wunused-result

Chapter 4

News, forum, troubleshooting, doxygen ...

CLASS has a forge! hosted by the IN2P3 where you can find :

e A forum? where you are invited to post your trouble about CLASS installation and usage.
You may find the answer to your trouble on a already posted thread.

o A doxygen® where all the CLASS objects and methods are defined and explained.

e News? : All the news related to CLASS

A Mailing List® also exist in order to be warned of all the change inside CLASS and to allow user
to exchange directly on the code. One can join the mailing list through the following link®.

Uhttps://forge.in2p3.fr/projects/classforge
Zhttps://forge.in2p3.fr/projects/classforge/boards
3https://forge.in2p3.fr/projects/classforge/embedded/annotated.html
“https://forge.in2p3.fr/projects/classforge/news
Sclassuser-1@ccpntc02.in2p3.fr
Ohttp://listserv.in2p3.fr/cgi-bin/wa?SUBED 1 =classuser-1&A=1

https://forge.in2p3.fr/projects/classforge
https://forge.in2p3.fr/projects/classforge/boards
https://forge.in2p3.fr/projects/classforge/embedded/annotated.html
https://forge.in2p3.fr/projects/classforge/news
classuser-l@ccpntc02.in2p3.fr
http://listserv.in2p3.fr/cgi-bin/wa?SUBED1=classuser-l&A=1

10

Part 111

CLASS : General overview

Chapter 5

Generalities

5.1 Basic unit

All time in CLASS should be written in second. It corresponds to the cSecond, a CLASS c++
type, which are a long long int going, in 32 bits and 64 bits, up to (2% —1)s ~2.9-10'! years,
enough for any electro-nuclear scenarios one can consider....

5.2 CLASS working process principle

image : shéma de principe de class

11

Chapter 6

Facilities descriptions

All the facility in CLASS project are regroup inside a large group called CLASSFacility (and
inherit of all the properties of the CLASSFacility in a C++ way). Inside the CLASSFacility, 3
different types has be defined, the reactor, the FabricationPlant (or more generally, all the fuel
cycle front-end facilities) and the backend facilities.

6.1 CLASSFacility

The CLASSFacility should never be used directly in the main CLASS program (the one made
to perform the simulation). The aim of these object is to regroup all the common properties of the
nuclear facilities, such as common variables, methods, and builder. Its includes 3 variables needed
by CLASS environment:

private :
int fId; //'< TIdentity of the Facility inside the Parc
int fFacilityType; ///< Type of facility
/// \1i1 4 reactor ,
/// \11 8 Pool,
/// \11 16 FabricationPlant.
Scenariox fParc; //!'< Pointer to the main Parc

The fld variable correspond to the unique identity number allowing to differentiate all the facility
of a certain type. The fFacilityType variable correspond to an identity number allowing to separate
the different type of facilities. Those to variable are "private", which mean it is not possible to
access to them directly, one must to use there Get-xxx() and the Set-xxx() function (even inside
the daughter class such as reactor...). fParc is a pointer to the main park, which allow to access to
the rest of the park. Be careful the fParc pointer main not be assigned if the facility is not included
in a park...

12

The CLASSFacility also includes all the generic variable and method for time and simple fuel
management:

protected
bool fIsStarted; ///< True if Running, False Otherwise
bool fIsShutDown; /1< True if the facility is stoped, False Otherwise
bool fIsShutDown; ///< True if Reaching the End of a Facility Cycle
cSecond fInternalTime; ///< Internal Clock
cSecond fInCycleTime; /1< Time spend since the beginning of the last

Cycle

cSecond fCycleTime; /1< Cycle duration Time

IsotopicVector fInsideIV; ///< All IV in the Facility (fuel for reactor,

total for all others...)

IsotopicVector fCumulativeIVIn; ///< All IV in the Facility (fuel for
reactor , total for all others...)

IsotopicVector fCumulativeIVOut; ///< All IV in the Facility (fuel for
reactor , total for all others...)

[/ x*xxkxxx%x Internal Parameter ssksksxsksxkx//

private
[...]
cSecond fCreationTime; ///< CLASS Universal Time of Creation
cSecond fLifeTime; /1< Time of life Of the Reactor (Operating’s

Duration)

[IsStarted, flsShutDown, flsShutDown allows to the Dump() method to determine the state of the
facility and do what is necessary.

[fInternalTime, fInCycleTime, fCycleTime variable allows the time the time management inside the
facility. fInternalTime correspond to the last time until the evolution of the facility as been calcu-
lated. fCycleTime the time length of a cycle in this facility (note that it could be irradiation cycle
in a Reactor, fabrication time in a FabricationPlant, or cooling time in a Pool). And fInCycleTime
correspond to the time already past in the current cycle.

fCreationTime, fLifeTime are private and used to define the creation time of the facility, and its
operation time length.

Besides all the time management of the facility, it also contain the basic tool for fuel manage-
ment the three [sotopicVector : fInsidelV, fCumulativelVIn, fCumulativelVOut, which correspond
respectively to the isotopic vector present in the facility, to the cumulative income inside the facil-
ity, and the cumulative outcome outside the facility.

By default af the Get-xxx() and Set-xxx() method associated to those variable are define, and
some can be overloaded.

The CLASSFacility also comes with 2 virtual method (which means one must overloading it
when defining a new facility) : Evolution(cSecond t) and Dump(). They are both used to perform
the evolution of the facility. Where the first one (Evolution) is used to specify the change inside
the facility (mainly fuel evolution), the second one (Dump) is used to deal the exchange between
facility, such as refilling a reactor or send a fuel to the stock at the end of cooling.

6.2 Reactor

6.2.1 Generalities

The aim of this class is to deal the evolution of the fuel inside a reactor. The fuel state of

the reactor is describe in the IsotopicVector fInsidelV (which are inherit from the CLASSFacility
class). Its evolution is always contain in the EvolutionData fEvolutionDB.
There are 2 way to provide the EvolutionData to the reactor. In the case of fixed fuel the user need
to provide it, using the appropriated constructor, the set function, or a CLASSFuelPlan. In the case
of recycled fuel or unfixed fuel, the user need to provide a PhysicsModels, using the appropriated
constructor, the set function, and/or a CLASSFuelPlan.

6.2.2 Constructor

There are many ways to define a reactor.

6.2.2.1 Normal constructor

Reactor () ; ///< Normal Constructor.

Just define a simple reactor without fuel, starting time, mass of fuel, time of life or anything.

Reactor (CLASSLoggerx* log);

Just define a simple reactor without fuel, starting time, mass of fuel, time of life or anything, but
set a CLASSLogger log to send the CLASS message.

6.2.2.2 Fixed fuel constructor

Constructor defining the a reactor using fixed fuel.

Reactor (CLASSLogger* log, EvolutionData evolutivedb, CLASSBackEnd* CBE,
cSecond creationtime, cSecond lifetime,
double power, double HMMass, double BurnUp, double ChargeFactor = 1);

Reactor (CLASSLogger* log, EvolutionData evolutivedb, CLASSBackEnd* Pool,
cSecond creationtime, cSecond lifetime,
cSecond cycletime, double HMMass, double BurnUp);

The evolution of the fuel is given by the EvolutionData evolutivedb the mass of heavy metal in the
reactor core by HMMass, the power by Power and its charge factor by ChargeFactor.

To avoid mixing between constructor, only 2 constructor exist to set the triplet (power, burnup,
cycle time). (if more 2 constructor would have the same number of input variables.)

After irradiation the fuel goes in the CLASSBackEnd CBE, which as seen section can be any
CLASSBackEndFacility (SeparationPlant, Pool or storage).

6.2.2.3 Reprocessed fuel constructor

As well as in the fixed fuel constructor, the mass of heavy metal in the reactor core by HM-
Mass, the power by Power and its charge factor by ChargeFactor. Only 2 constructor exist to set
the triplet (power, burnup, cycle time).

The PhysicsModels is fuelDB, and the FabricationPlant is FabricationPlant.

Reactor (CLASSLogger* log, PhysicsModels fueltypeDB,
FabricationPlant* fabricationplant, CLASSBackEndx Pool,
cSecond creationtime , cSecond lifetime, cSecond cycletime,
double HMMass, double BurnUp);

Reactor (CLASSLogger* log, PhysicsModels fueltypeDB,
FabricationPlant* fabricationplant, CLASSBackEndx Pool,
cSecond creationtime , cSecond lifetime,
double Power, double HMMass, double BurnUp, double ChargeFactor);

6.3 CLASSBackEnd

6.3.1 Storage
6.3.2 Pool

6.4 Fabrication Plant

Chapter 7

Other objects

71 ZAIl
7.2 IsotopicVector
7.3 Log management : CLASSLogger

7.4 EvolutionData

17

Chapter 8

Decay data bases

18

Part IV

Physics Models

19

Chapter 9

Description and implementation

A Physic Models is related to one or several reactors , it is a container of three models :

e Equivalence Model : Tells to the Fabrication Plant how to build the fuel.

e XS Model : "Calculates" the mean cross sections of this fuel and sends it to the Bateman
Solver.

e Irradiation Model : It is the Bateman Solver. User can choose between different numerical
method.

A physic model is called in the CLASS input like the following example :

#include "XS/XSM_MLP.hxx"

#include "Irradiation/IM_RK4.hxx"

#include "Equivalence/EQM_MLP_PWR_MOX.hxx"
int main ()

{

EQM_MLP_MOX* Equivalence = new EQM_MLP_MOX("PathToTMVAWeightFile/
TMVAWeightFile.xml");

XSM_MLP* XS = new XSM_MLP(gCLASS—>GetLog() ,"PathToTMVAWeighstFolder"
OneMLPPerTimeStep);

IM_RK4x* Solver = new IM_RK4(gCLASS—>GetLog());

PhysicsModels* PHYMOD = new PhysicsModels(XS , Equivalence , Solver);

Reactor *PWR_MOX = new Reactor(log, PHYMOD, fabricationplant, Pool,
creationtime, lifetime, cycletime, HMMass, BurnUp);

In this latter example a physics model called "PHYMOD" is defined, it contains the bateman
solver "Solver" which is the Runge Kutta (4" order) method. The mean cross sections predictor,

20

"XS", used is based on a Multi Layer Perceptron. The Equivalence Model "Equivalence" is the
one used for PWR MOX fuels. The arguments of the 3 objects constructor are explained in its

corresponding sections.
All the existing models are define in the following sections, furthermore, the way to build its

own Model is presented.

Chapter 10

Equivalence Model

The aim of an equivalence model is to predict the content of fissile element needed in a fuel to
reach a given burn-up or to satisfied criticality conditions.

10.1 Available Equivalence Models

The CLASS package contains, for the moment, 4 different equivalence models where three
are related to the building of fuels for a PWR-MOX and one to the building of PWR-UOX fuels :

10.1.1 PWR-MOX models :

The following models returns the molar fraction %p, of plutonium needed to reach a given
burn-up according to the plutonium isotopic composition available in stocks.

10.1.1.1 Linear BU model : EQM_LIN_MOX

It was initially applied for MOX fuel, but because of the lack of precision, this model could
be deprecated (at least in the PWR MOX case). It remain in the CLASS packages only because it
was present historically.

Nevertheless it could be use as an example for similar model for other fuel. This model suppose
it is possible to describe the maximal burn-up accessible for a set fuel using its initial composition
using a simple linear modelisation (equation 10.1):

N
BUpax = 0+ Y 0+ 1y, (10.1)

where BU,,,, represent the maximal accessible burn-up for the fuel, n; the isotopic fraction of the
isotope i, N the number of isotope present in the fuel, and the ¢; the parameter of the model. The
main difficulty concerning this model, is the determination of the ¢;: to be correct the ¢; should
be fitted on a set of evolution data which are not constrain to reach an unique burn-up, but a large
burn-up region. One can see the problem guessing it is possible to build a set a fuel evolution
reaching exactly a unique burn-up (45 GWd/t by example), the 2 minimization of the ¢; will

22

end up with ap = 45 and all the other at zero. That why, when using a linear burn-up description
model, one should test the validity of the model, on many random compositions by example...

10.1.1.2 Quadratic Model : EQM_QUAD_MOX

The %p, is calculated according a quadratic model. See equation 10.2.

N
Yop, = 0y + Z (oci-ni —|—Z(Xij-l’li-l’lj> , (10.2)

i€Pu i<i

where n; is the molar proportion (in %mol.) of isotope i ! in the fresh plutonium vector. o j» 0 and

Qo are the weights resulting from a minimization procedure and are related to one targeted burn-up

and one fuel management. Furthermore, >*! Am from 2*! Py decay is not one of the considered com-
ponent of the model (n;), instead the model considers a fixed time since plutonium separation. For
instance the o given in file SCLASS_PATH/DataBase/Equivalence/PWR_MOX_45GW_3Batch_2y.dat
are representative of a PWR-MOX with a maximal burn-up of 45GWd /tHM, a fuel management

of 3 batches, and a time between separation and irradiation of 2 years.

The file containing the weights is formatted as follow :

PARAM "238Pu 238Pu*x238Pu 238Pu*239Pu 238Pu*x240Pu 238Pu*241Pu 238Pu*242Pu 239Pu
239Pu*239Pu 239Pu*x240Pu 239Pux241Pu 239Pu*242Pu 240Pu 240Pu*x240Pu 240Pu
*241Pu 240Pu*x242Pu 241Pu 241Pu*241Pu 241Pu*242Pu 242Pu 242Pu*242Pu 1"

Where 238Pu stands for o35 p, and it is the first order weight related to the molar proportion of
238py and 1 is a. The weights are in units of %mol. - %omol." for o; in units of %mol. - Yomol.~>
for ;; and in units of %mol. for oy. The Keyword "PARAM" has to be present in the file before
the o values. For more informations about this model and the generation of the coefficients please
refer to reference [@ @PAPIER BAM].

Implementation in a .cxx :

Ufrom 238 Py to 22Pu

#include "Equivalence/EQM_QUAD_PWR_MOX.hxx"

int main ()
{
EQM_QUAD_PWR_MOX* Equivalence = new EQM_QUAD_PWR_MOX(LogObject, AlphasFile);
/] or

/1 EQM_QUAD PWR MOXx Equivalence = new EQM _QUAD PWR MOX(AlphasFile);

}

With LogObject a CLASSLogger object (see section 7.3) and AlphasFile a string which is the
complete path to the file containing the weights (the o parameters)

Available weight file (.dat) :

e @@@ BAM

e @@@ BAM

10.1.1.3 Neural network model : EQM_MLP_MOX

This equivalence model is based on a Multi Layer Perceptron (MLP) and predict the amount
of plutonium needed to reach any burn-up. The MLP inputs are the isotopic compositions of the
plutonium (including %*! Am), the enrichment of depleted uranium, and the targeted burn-up. The
output is the plutonium content needed to reach the burn-up. This method uses the neural networks
of the root module TMVA (@ @ @ Ref TMVA). To executes this model, TMVA is run in CLASS
and need a .xml file. This file contains the neural network architecture and the weights resulting
from the training procedure.

Implementation in a .cxx :

#include "Equivalence/EQM_MLP_PWR_MOX.hxx"

int main ()

{

EQM_MLP_PWR_MOX* Equivalence = new EQM_MLP_PWR_MOX(LogObject, TMVAWeightPath
)

!/l or

/1 EQM_MLP PWR MOX.* Equivalence = new EQM MLP PWR MOX(TMVAWeightPath);

With LogObject a CLASSLogger object (see section 7.3) and TMVAWeightPath a string con-
taining the path to the .xml file.

In order to make his own .xml file one need to have a training data containing the fresh fuel
composition and the achievable burn-up of many examples. The fuel composition is characterized
by the mean of :

e The plutonium composition (i.e : %mol. of 238py 239py 240py 241py 242p, and 241Am)

Pu)

e The plutonium content (i.e : 7,77

e The 23U content in the depleted uranium.

The file SCLASS_PATH/DataBases/Equivalence/EQM_MLP_PWR_MOX_3batch.xml has been
generated from the file SCLASS_PATH/Utils/Equivalence/PWR_MOX_MLP/Train_MLP.cxx To
train a new MLP from your own training sample proceed as follow :

cd $CLASS_PATH/Utils/Equivalence/PWR_MOX_MLP
g++ -o Train_MLP ‘root-config --cflags‘ Train_MLP.cxx ‘root-config --glibs‘ -1TMVA -

I$RO0OTSYS/tmva/test/
Train_MLP YourTrainingData.root

Where YourTrainingData.root is a root file containing a TTree filled with fuel compositions
and corresponding burn-ups. The .xml file will be generated in a folder named weight. The results
of the testing procedure of the MLP are in a file named TMVA_MOX_Equivalence.root but will
be presented to you graphically as soon as the training and the testing procedure are finished.

To make your YourTrainingData.root file you have to fill a TTree with your data. To do so,
create a .cxx file and copy past this :

TFilex
the
TTreex

.root fil

fOutFile =

f0utT =

(&

new TTree("Data",

new TFile("YourTrainingData.root","RECREATE");

"Data");//create the TTree

% sk k ok sk ok ok ok ok ok ok ok ok ook ok ok ook ok ok INTTTALIS ATTONNN sk sk sk sk sk sk sk ok sk sk sk ok ok sk ok sk ok k% % /

//WARNING :
double
double
double
double
double
double
double
double
double

keep

Pu8
Pu9
Pul0
Pull
Pul2
Am1l

BU
teneur

the same
U5_enrichment =

0;
9’
;
;
;
;

)

Il
el eBoNeoReol o]

variable names

; //BU means Burn—Up
// French for content

(here Pu content)

[% k% k% sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok x BRAINCHIING s % s s sk % s sk s sk % sk ok s ok ok % sk ok kok ok x % /

fOutT—>Branch(
fO0utT—>Branch(
fOutT—>Branch (
fO0utT—>Branch (
fOutT—>Branch(
fOutT—>Branch(
fO0utT—>Branch(
fO0utT—>Branch (
fO0utT—>Branch (

"U5_enrichment"

,&U5_enrichment

"Pu8" ,&Pu8 ,"Pu8/D"
"Puo" ,&Pu9 ,"Pu9/D"
"Pulo" ,&Pul0 ,"Pul0/D"
"Pulil" ,&Pull ,"Pull/D"
"Puil2" ,&Pu12 ,"Pu12/D"
"Am1" ,&Am1 ,"Am1/D"
"BU" ,&BU ,"BU/D"
"teneur" ,&teneur ,"teneur/D"

,"U5_enrichment /D"

)

[% sk ok sk ok ok ok ok okok ook ok okok okokok ok ok FTLILTINGE sk o sk ok sk ok sk stk ok sk ok sk ok ok ok ok ok ok ok skok ok ook skokok o ok /

/1

for(int ex=0;ex<Nex;ex++)

int Nex=NumberOfDifferentExample;

{ /xxxxxxxFresh Fuel ComposSition sskkskskskskkk */

US_enrichment
Pu8 =
Pu9 =
Pul0 =
Pull

Pul2

Am1

teneur =

= fU5_enrichment[ex];

fPu8[ex];
fPu9[ex];
fPulOfex];
fPullfex];
fPul2fex];
fAml[ex];
fteneur[ex];

[+ xxxx Corresponding maximal Burn—up sk x/

BU =
/+xxx F111 the
fOutT-—>Fill () ;

}

BurnUps[ex];

tree with this

fOutFile—>Write () ;

delete f0utT;

fOutFile—> Close();

delete fOutFile;

fuel

composition and

this

// create

)

burnup #*x x/

Then, build the arrays fU5_enrichment, fPu8 ... with your data, compile and execute. For
more informations about this model please refer to [@ @Papier Bal].

Available weight file (.xml) :

e $CLASS_PATH/DataBases/Equivalence/EQM_MLP_PWR_MOX_3batch.xml : Gen-
erated with 5000 MURE evolutions with different fuel composition, using a full mirrored
assembly calculation with JEFF3.1.1 cross section and fission yield data bases. Valid for
mono-recycling of plutonium and a fuel management of 3 batches. More details about the
generation of this .xml file can be found in reference[@ @ @BaL paper].

10.1.2 PWR-UOX model :
10.1.2.1 Linear Model: EQM_LIN_UOX

@@ @BAM

10.2 How to build an Equivalence Model

The strength of CLASS is to allow the user to build his own physic models, this section
explains how to build a new equivalence model and to incorporate it into CLASS.

First you have to create the file EQM_NAME.cxx and EQM_NAME.hxx, where NAME is a
name you choose. Then open with a text editor the .hxx and copy past the following replacing
NAME by the name you want.

#ifndef _EQM_NAME_HXX
#define _EQM_NAME_HXX
#include "EquivalenceModel.hxx"
using namespace std;
/1 //
[* !
Define a EQM_NAME
Explain briefly what is it.
@author YourName
@version 3.0

*/
/1 _ _ _ _ _ _
class EQM_NAME : public EquivalenceModel
{
public
/* Constructor */
EQM_NAME (/* parameters*/); //!< Explain what is the parameters (if any)
/*+This function IS the equivalence model *x/
double GetFissileMolarFraction(IsotopicVector Fissil,IsotopicVector Fertil,
double BurnUp); //!<Return the molar fraction of fissile element
private
/*Your private variables %/
1
#endif

Open the .cxx file and copy past the following in it (replacing NAME by the same name you
used in the .hxx).

#include "EquivalenceModel.hxx"
#include "EQM_NAME.hxx"
#include "CLASSLogger.hxx"

/+* Whatever include you need %/

/1 _ _ _ _ L _ _ L _ . _
/1 EQM_NAME

/1

/" Brief description

/1

// Constructor(s)
EQM_NAME :: EQM_NAME(/* parameters */)
{
// Do whatever you want with your parameters
/%
Fill the two isotopic vectors fFissileList and fFertileList
see explanation in the manual

*/
// Fertile
ZAT U8(92,238.,0);
ZAI U5(92,235.,0);
double U5_enrich= 0.0025;
fFertileList = U5%U5_enrich + U8x%(1—-U5_enrich);
// Fissile
ZAI Pu8(94,238,0);
ZATI Pu9(94,239,0);
/...
fFissileList = Pu8x*1+Pu9x1+ /x ... x/;
}
/1

double EQM_NAME::GetFissileMolarFraction(IsotopicVector Fissil,IsotopicVector
Fertil,double BurnUp)
{
// Code your Equivalence Model : This function has to return the molar fraction
of fissile in the fuel needed to reach the BurnUp(GWd/tHM) according to
the composition of the Fissil and Fertil vectors

In the constructor (EQM_NAME::EQM_NAME) you have to fill two isotopic vectors named
fFissileList and fFertileList. Don’t declare these isotopic vector in the .hxx, there are already
declared in the file src/EquivalenceModel.hxx. fFissileList is used by the FabricationPlant to do
the chemical separation of the fissile element from the other present in stock. For instance, for
the plutonium, add the ZAl 238py, 239py, 240py, 241py and 242py. fFertile List is used by the
FabricationPlant the same way fFissileList is used but you have to define a default IsotopicVector

to be used if you didn’t provide a fertile stock to your FabricationPlant. In the example given above
the fertile is depleted uranium and the proportion of each isotope is given (>*U is unheeded). Now
you have to build the function GetFissileMolarFraction(IsotopicVector Fissil, IsotopicVector
Fertil, double BurnUp). Its parameters are provided by the FabricationPlant and are :

e IsotopicVector Fissil : it is the proportion of each nucleus you give in the fFissileList plus
the proportion of the nuclei that appears during the fabrication time (time given in the Fab-
ricationPlant constructor, is default is 2 years)

e IsotopicVector Fertil : it is the proportion of each nucleus you give in the fFertileList plus the
proportion of the nuclei that appears during the fabrication time. If you didn’t provide any
fertile stock to your FabricationPlant then it’s the default vector given in the EQM_NAME
constructor.

e double BurnUp : The maximal average burn-up for your fuel to reach (in GWd/tHM).

Fill free to have a look at the models present in SCLASS_PATH/source/Model/Equivalence to get
inspiration.

Now that your equivalence model is ready two choices are offered to you. You can compile the
two files of your model with your CLASS input or you can add this model to the CLASS package.
The second option will modify the CLASS software and we will be no longer able to troubleshoot
your scenario. So use the second option only if you are a completely independent user !

10.2.1 Compile your equivalence model with your CLASS executable :

@@BAM

10.2.2 Your equivalence model in the CLASS library :

Move your EQM_NAME.hxx and EQM_NAME.cxx in $CLASS_PATH/source/Model/Equivalence/.
Then open with your favourite text editor the file SCLASS_PATH/source/src/Makefile, find "OB-
JMODEL" and add $(EQM)/EQM_NAME.o within the others $(EQM) objects. Then re-compile
CLASS, fix the compilation errors ;) and voila your equivalence model is now available in the
CLASS library.

Chapter 11

XS Model

The aim of a mean cross section model (XSModel) is to predict the mean cross sections of a
fuel built by an EquivalenceModel (EQM) (see section 10. The mean cross sections are required
to compute fuel depletion in a reactor.

11.1 Available XS Models

There is, for the moment, 2 XSModel in CLASS :

11.1.1 Pre-calculated XS : XSM_CLOSEST

This method looks, in a data base, for a fresh fuel with a composition close to the brandy
new fuel built by the EquivalenceModel. Here, close means that the fresh fuel in the data base
minimizes the distance d (see equation 11.1).

d= \/Zwi-(n?B—n;wW)Z, (11.1)
i

where nlDB is the number of nuclei 7 in one element of the data base and n7*" the number of nuclei
i in the new fuel built by the EQM. w; is a weight associated to each isotopes, its value is 1 by de-
fault. When the closest evolution in the database is found, the corresponding mean cross sections
are extracted and used for the calculation of the depletion of the new fuel.

Implementation in a .cxx :

31

#include "XS/XSM_CLOSEST.hxx"

int main ()
{
XSM_CLOSEST* XSMOX = new XSM_CLOSEST(gCLASS—>GetLog(), PathToIdxFile);
/] or
/1 XSM_CLOSESTx* XSMOX = new XSM_CLOSEST(PathToldxFile);

With LogObject a CLASSLogger object (see section 7.3) and PathToldxFile a string contain-
ing the path to the .idx file. The .idx file lists all the EvolutionData (see section 7.4) of the data
base. This file is formatted as follow :

TYPE "NameOfTheFuel (withoutspace)"
"PATH_TO_DATA_BASE/EvolutionName.dat"
"PATH_TO_DATA_BASE/OtherEvolutionName.dat"

Each EvolutionName.dat file contains a fuel depletion calculation formatted as follow :

Listing 11.1: Evolution Data format

time "0 t2 t3 ..." /! in seconds

keff "k1 k2 k3 ..." /! not mandatory entry

flux "phil phi2 phi3 ..." // (neutron/(second.cm2))not mandatory entry
Inv "Z A I invl inv2 inv 3 ..." //in atoms

XSFis "Z A I xsfisl xsfis2 xsfis3 ..."//in barns

n

XSCap "Z A I xscapl xscap2 xscap3

XSn2n "Z A I xsn2nl xsnsn2 xsn2n3 ..."

The meaning of each keyword is listed in table 11.1. The number of .dat files has an influence
on the model accuracy. Furthermore, the initial composition of the different fuel depletion calcu-
lations has to be representative of the fresh fuel compositions encounter in a scenario. For more
details on this method please refer to [ref @ @ @ BAM physor].

Table 11.1: .dat Key words meaning

Key words Meaning
Inv Inventory
XSFis mean fission cross section
XSCap mean (n,y) cross section
XSn2n mean (n,2n) cross section
Value meaning
Z Charge number
A Mass number
| State (fundamental=0, 1* excited =1, ...)

Each EvolutionName.dat files comes with a EvolutionName.info file, which describes the re-
actor, it is formatted like this :

Reactor "ReactorName" //What ever string without space
Fueltype "FuelName" // What ever string without space
CycleTime "t" // The final time simulated (@@BaM)
ConstantPower "P" // Simulated power (in W)

Available .idx file :
e @@@ BAM

e @@@ BAM

For MURE user only : The program $CLASS_PATH/Utils/XS/CLOSEST/WriteDataBase
converts a list of MURE evolutions to a list of .dat and .info files and creates the .idx file, type in
terminal the following command for more details.

R R RRREEEEEEEE———————————————————————
\$CLASS\ _PATH/Utils/XS/CLOSEST/WriteDataBase -h
@@BAM

Users of others fuel depletion code (e.g VESTA, ORIGEN, MONTEBURNS, SERPENT)
have to create their own program to generate these files.

11.1.2 XS predictor : XSM_MLP

This method calculates the mean cross sections by the mean of a set of neural networks (MLP
from TMVA module) . There is two configurations available :

e One MLP per nuclear reaction and per time step (this one is deprecated and not describe in
this manual) .

e One MLP per nuclear reaction. the irradiation time is one of the MLP inputs.

Implementation in a .cxx :

#include "XS/XSM_MLP.hxx"

int main ()

{ ...

XSM_MLP* XSMOX = new XSM_MLP(ClassLog, PathToWeightFolder, InfoFileName,
OneMLPPerTime);

/] or

/1 XSM_MLPx XSMOX = new XSM_MLP(PathToWeightFolder, InfoFileName , OneMLPPerTime
)

PathToWeightFolder (string) is the path to the folder containing the weight files (.xml files).
OneMLPPerTime is a boolean setted to true if there is one MLP per reaction and per time step.
InfoFileName (string) is the name of the file located in PathToWeightFolder which is informing
on the reactor and on the inputs of the XS_MLP model. Format of InfoFileName is :

Listing 11.2: Information file format

ReactorType :"ReactorName" //without space

FuelType :"FuelName" //without space

Heavy Metal (t) :"m"

Thermal Power (W) :"P" //power corresponding to the heavy metal mass
Time (s) :"O0 t2 t3 t4 ..." //Time when the cross section are updated

Z A I Name (input MLP) : //see explanations below

"z a i InputName"

"z2 a2 i2 InputName2"

n n

The input of MLPs are the atomic proportion of each nuclei present in the fresh fuel (plus time
if OneMLPPerTime=false). The InfoFile has to indicates the variable names (nuclei name) you
used for the training of your MLPs. For instance if the fresh fuel contains 238 Py you will write
in the InfoFile :

Z A I Name (input MLP)
94 238 0 Pu8//(if Pu8 is the variable name used for 238Pu proportion in fresh
fuel in your training sample)

Training MLPs for cross sections prediction :

Preparation of the training sample :

Like for the equivalence model, first of all you have to create a training sample. This is one of
the most important thing since the way of filling the hyperspace of the MLP inputs will influence
the accuracy of your model. We suggest to used the Latin Hyper Cube method [@ @ @REFF] to
generate many fresh fuel compositions, then, calculates with your favourite neutron transport code
(MCNP, MORET, SERPENT ...) the mean cross sections of each fresh fuel for different irradiation
time. Please refer to [REFFFBAL MLPXS] for more informations about the space filling and the
validation of this cross sections predictor . Once all your calculations are complete you have to
convert them into the .dat format (see code frame 11.1). Then type :

R ———————————————————————————————
cd $CLASS_PATH/Utils/XS/MLP/BuildInput

Open the file Gene.cxx, looks for @ @Change and make the appropriate changes. Then type :

g++ -o Gene Gene.cxx ‘root-config --cflags‘ ‘root-config --1libs®

Gene PATH_To_dat_Folder/

Where PATH_To_dat_Folder/ is the path to the folder containing the .dat files. This program
should have built two files :

e TrainingInput.root : This root file contains the fresh fuel inventories and the cross sections
values of all the read .dat files. You can plot the data with the root command line tool if you
wish. This file is the Training and testing sample that will be used for the TM VA training
and testing procedure.

e TrainingInput.cxx : This file contains, in a vector, the names of all the MLP outputs. The
number of lines in this file is the number of MLP that will be train.

Training and testing procedure :

Once the two TrainingInput (.cxx and .root) are generated type :

[
cd $CLASS_PATH/Utils/XS/MLP/Train

Look for @ @Change in the file Train_XS.cxx , and make the appropriate changes. Then type

g+t+ -o Train_XS f‘root-config --cflags‘ Train_XS.cxx ‘root-config --glibs‘ -1TMVA

According the number of "events" in your .root file and the number of cross sections, the
training time can be very very very long. You might want to decrease the number of events (this
will probably deteriorate the model accuracy) : look for nTrain_Regression in Train_XS.cxx and
change its value to your wanted number of events. And/Or you may want to use more than one
processor or perhaps a supercomputer : This is completely doable since the program Train_XS
trains only one MLP (one cross section). Indeed the execution line is the following :

-
L

where i is the index of the cross section in the vector created in TrainingInput.cxx. So feel free
to create a script to run the training on a wanted number of processors. For instance let’s say you
have 40 cross sections and 4 processors, creates 4 files (make them executable) and in the first one

type :

Train_XS O
Train_XS 1

TrainXS 9

continue in the second file, and so on. Then execute all of them. The architecture and weights
of each MLP (.xml files) are stored in the folder weights. Rename this folder by the name of the
reactor and fuel, then create in this folder the information file (see code frame 11.2). And voila

your new XSM_MLP is ready to be used.

After each training (using by default the half of the events) a testing procedure (using the
other half) is performed. This latter consists on executing the trained MLP with input data from
a known sample and compare the MLP result to the true value. These data and other infor-
mations about the training are stored in file Training_ output_i.root, with i the index of the
cross section. In order to see either the MLPs predictions are accurate or not, the root macro
$CLASS_PATH/Utils/XS/MLP/Train/deviations.C plot the distribution of relative differences be-
tween model executions and the true values and a Gaussian fit of it. Then, the mean and the
standard deviation of the Gaussian fit are stored in file XS_accuracy.dat (format : XSName mean
std.dev.). Type the following to get, in file XS_accuracy.dat, the mean and the standard deviation
of all the MLPs (with N the number of cross sections (number of MLPs)) :

cd $CLASS_PATH/Utils/XS/MLP/Train/
root
.L deviations.C

for(int i=0;i<N;i++) {stringstream ss;ss<<"Training_output_"<<i<<".root";deviations(ss.str ()
.c_str() ,0,kTRUE ,kFALSE ,kFALSE); }

The closest to O the mean is and the smaller standard deviation, the better.

11.2 How to build an XS Model

The strength of CLASS is to allow the user to build his own physic models, this section
explains how to build a new cross section model and to incorporate it into CLASS. First you have
to create the file XSM_NAME.cxx and XSM_NAME.hxx, where NAME is a name you choose.
Then open with a text editor the .hxx and copy past the following replacing NAME by the name
you want.

#ifndef _XSM_NAME_HXX
#define _XSM_NAME HXX
#include "XSModel.hxx"
// add include if needed
using namespace std;
// //
/%
Define a XSM_NAME
describe your model
@authors YourName
@version 1.0
*/
/1 _ _
class XSM_NAME : public XSModel
{

public

XSM_NAME (/« parameters (if any)=x/);

~XSM_NAME () ;

EvolutionData GetCrossSections(IsotopicVector IV,double t=0);

private

//'your private variables and methods
}s
#endif

Open the .cxx file and copy past the following in it (replacing NAME by the same name you
used in the .hxx).

#include "XSModel.hxx"
#include "XSM_NAME.hxx"
#include "CLASSLogger.hxx"
#include "StringlLine.hxx"

#include <TGraph.h>

/1

/1

/1 XSM_NAME

/1 _ . _ _ L _
XSM_NAME :: XSM_NAME(/+ parameters (if any)x/)
{
// do what you want : for instance save path of eventual files
}
/1 _ . _
XSM_NAME ::~XSM_NAME ()
{

// delete pointer if any; clear map if any ; empty vector if any

}
/1 _ _

EvolutionData XSM_NAME::GetCrossSections(IsotopicVector IV ,double t)

{

EvolutionData EvolutionDataFromXSM_NAME = EvolutionData();

[sokokoskoskok ok sokok kokDATA BASE TINFO skt sk sk sk skoskok sk skok soskok ok /

EvolutionDataFromXSM_NAME.SetReactorType(fDataBaseRType);// Give the reactor
name

EvolutionDataFromXSM_NAME.SetFuelType(fDataBaseFType);// Give the fuel name

EvolutionDataFromXSM_NAME.SetPower (fDataBasePower);//Set the power W

EvolutionDataFromXSM_NAME.SetHeavyMetalMass (fDataBaseHMMass);// corresponding

to this mass (t)

map<ZAI ,TGraph*x> ExtrapolatedXS[3];
// ... Fill the 3 maps ExtrapolatedXS according to your model and the
// fresh fuel composition given by argument IsotopicVector IV
// argument double t may be not used.

/% xxxxTHE CROSS SECTIONS s */
EvolutionDataFromXSM_NAME.SetFissionXS(ExtrapolatedXS[0]);
EvolutionDataFromXSM_NAME.SetCaptureXS(ExtrapolatedXS[1]);
EvolutionDataFromXSM_NAME.Setn2nXS(ExtrapolatedXS[2]);

return EvolutionDataFromXSM_NAME;

}

Then, edit these two files to make the function XSM_NAME::GetCrossSections to return the
cross sections in a EvolutionData object. To do so you have to fill three maps (ExtrapolatedXS in

.cxx), one for fission, one for (n,7), and one for (n,2n) . Each map associates a nucleus (a ZAI)
to a TGraph. A TGraph is a root object, here, it contains the cross section (barns) evolution over
time (seconds). If your are not comfortable with TGraph refer to the root website !

Now that your cross section model is ready, two choices are offered to you. You can compile
the two files of your model with your CLASS input or you can add this model to the CLASS
package. The second option will modify the CLASS software and we will be no longer able to
troubleshoot your scenario. So use the second option only if you are a completely independent
user !

11.2.1 Compile your cross section model with your CLASS executable :

@@BAM

11.2.2 Your cross section model in the CLASS library :

Move your XSM_NAME.hxx and XSM_NAME.cxx in $CLASS_PATH/source/Model/XS/.
Then open with your favourite text editor the file
$CLASS_PATH/source/src/Makefile, find "OBJIMODEL" and add $(XSM)/XSM_NAME.o within
the others $(XSM) objects. Then re-compile CLASS, fix the compilation errors ;) and voila your
cross section model is now available in the CLASS library.

Uhttp://root.cern.ch/root/html/TGraph.html

http://root.cern.ch/root/html/TGraph.html

Chapter 12

Irradiation Model

The irradiation model is the Bateman equations solver. It is used for the calculation of fuel
depletion in reactor. The decay depletion (without neutron flux) is not managed by an irradiation
model but with a decay data bases (see section 8).

12.1 Available Irradiation Model

At the moment, there is two Irradiation Model available. The two solvers differs according
to the numerical integration method used. The Irradiation Model IM_RK4 uses the fourth order
Runge-Kutta method. And IM_Matrix uses the development in a power series of the exponential
of the Bateman matrix.

Implementation in a .cxx :

#include "CLASSHeaders.hxx"
#include "Irradiation/IM_RK4.hxx"
//#include "Irradiation/IM_Matrix.hxx"

using namespace std;
int main ()
{
/...

IM_RK4x* Solver = new IM_RK4(LogObject); // or new IM_RK4(); // uses a

default logfile
/1 IM_Matrix* Solver = new IM_Matrix(LogObject); // or new IM_Matrix(); //
uses default logfile

PhysicsModels* PHYMOD = new PhysicsModels(XSMOX, EQMLINPWRMOX, Solver);

/...

}

LogObject is a CLASSLogger object (see section 7.3).

41

42

Part V

CLASSGui : The results viewer

12.1.1 How to build an Irradiation Model

The strength of CLASS is to allow the user to build his own physic models, this section
explains how to build a new Bateman solver (Irradiation Model) and to incorporate it into CLASS.

44

Part VI

CLASSGui : The results viewer

Part VII

Input examples

45

46

Part VIII

In development

	Abstract
	Table of Contents
	List of figures
	I Introduction
	II First Steps
	Package Contents
	Install procedure
	Requirement
	Installation

	CLASS Execution
	News, forum, troubleshooting, doxygen ...

	III CLASS : General overview
	Generalities
	Basic unit
	CLASS working process principle

	Facilities descriptions
	CLASSFacility
	Reactor
	Generalities
	Constructor
	Normal constructor
	Fixed fuel constructor
	Reprocessed fuel constructor

	CLASSBackEnd
	Storage
	Pool

	Fabrication Plant

	Other objects
	ZAI
	IsotopicVector
	Log management : CLASSLogger
	EvolutionData

	Decay data bases

	IV Physics Models
	Description and implementation
	Equivalence Model
	Available Equivalence Models
	PWR-MOX models :
	Linear BU model : EQM_LIN_MOX
	Quadratic Model : EQM_QUAD_MOX
	Neural network model : EQM_MLP_MOX

	PWR-UOX model :
	Linear Model: EQM_LIN_UOX

	How to build an Equivalence Model
	Compile your equivalence model with your CLASS executable :
	Your equivalence model in the CLASS library :

	XS Model
	Available XS Models
	Pre-calculated XS : XSM_CLOSEST
	XS predictor : XSM_MLP

	How to build an XS Model
	Compile your cross section model with your CLASS executable :
	Your cross section model in the CLASS library :

	Irradiation Model
	Available Irradiation Model

	V CLASSGui : The results viewer
	How to build an Irradiation Model

	VI CLASSGui : The results viewer
	VII Input examples
	VIII In development

