User Guide - CLASS v3.0

Core Library for Advanced Scenario Simulation

B. MOUGINOT! & B. LENIAU?

I Baptiste. Mouginot @subatech.in2p3.fr
2 Baptiste.Leniau@subatech.in2p3.fr

CNRS:IN2P3:Subatech:Erdre

Baptiste.Mouginot@subatech.in2p3.fr
Baptiste.Leniau@subatech.in2p3.fr

Abstract

Table of Contents

Abstract

Table of Contents

List of figures

I

Introduction

II First Steps

1

2

I

ii

Package Contents

Install procedure
2.1 Requirement.
2.2 Installation

CLASS Execution

News, forum, troubleshooting, doxygen ...

CLASS : General overview

Generalities
5.1 Basicunit
5.2 CLASS working process principle

Facilities descriptions
6.1 CLASSFacility

ii

6.2

6.3

6.4
6.5

Reactor e e
6.2.1 Generalities e e e e
6.2.2 Use e e

6.22.1 FixedFuel

6.2.2.2 ReprocessedFuel
CLASSBackEnd e
6.3.1 Storage e
632 Pool e
6.3.3 SeparationPlant L oL oL
Fabrication Plant
PathWay between Faiclity o
6.5.1 Reactor with fixed fuel and a Storage
6.5.2 Reactor with fixed fuel, a Pool and a Storage

6.5.3 Reactor with fixed fuel, two SeprationPlant, a Pool and four Storage
6.5.4 Reactor, a FabricationPlant, a Pool and a Storage

7 Other objects

7.1
7.2

7.3

7.4

ZAL e
IsotopicVector e e e
7.2.1 Generality e e
7.22 Printmethod
723 GetTotalMass
7.2.4 Multiplication between IsotopicVector
EvolutionData
7.3.1 EvolutionData ASCII format
7.3.2 DecayDataBank
Log management : CLASSLogger

8 Scenario/Park

8.1
8.2

Fill the scenario e
OutPut e
82.1 General Output
822 Outputnamest e e e e e e
823 OutputFrequency

IV Physics Models

9 Description and implementation

23
23
23
23
24
24
24
25
25
26
27

28
28
29
29
29
29

30

31

10 Equivalence Model

10.1.1.1 Linear BU model : EQM_LIN_MOX
10.1.1.2 Quadratic Model : EQM_QUAD_MOX
10.1.1.3 Neural network model : EQM_MLP_ MOX

11 XS Model
11.1 Available XS Models
11.1.1 Pre-calculated XS : XSM_CLOSEST
11.1.2 XSpredictor: XSM_MLP
11.2 Howtobuildan XSModel
11.2.1 Compile your cross section model with your CLASS executable :
11.2.2 Your cross section model in the CLASS library :

12 Irradiation Model
12.1 Available Irradiation Model,
12.1.1 How to build an Irradiation Model
12.1.2 Compile your cross section model with your CLASS executable :
12.1.3 Your cross section model in the CLASS library :

V CLASSGui : The results viewer

VI Input examples

VII In development

33
33
33
33
34
35
38
38
38
41
41

42
42
42
44
47
50
50

51
51
52
54
54

55

58

59

List of Figures

6.1 Shematic Pathway 19
6.2 Shematic Pathway 19
6.3 Shematic Pathway 20
6.4 Shematic Pathway 22
12.1 Shematic Pathway 57

Part I

Introduction

code de scenar tatati c’est gnial ca sert a ca ¢a et ¢a ... donner le forge in2p3

Part 11

First Steps

Chapter 1

Package Contents

Ya quoi dans ce que je viens de downloader

Chapter 2

Install procedure

2.1 Requirement

e User skills : Good knowledge of C++. Abilities in using Root (cern). Experience in depletion
codes and neutron transport codes.

e OS : CLASS is known to work under Linux (64 bits) and MacOSX (64 bits). It has never
been tested on any Windows distribution.

e Root (CERN) : CLASS uses Root to store output data. The graphical user interface CLASS-
Gui is based on Root. Some algorithms uses the TM VA module of Root.

e C++ compiler : we recommend to use a gnu compiler like gcc4.8. If your platform is
DARWIN (Mackintosh OSX) we strongly recommend not to use the clang compiler
You should install macport. then types this following command in terminal :

|
sudo port install gcc48

sudo port select --set gcc mp-gccé48

IMPORTANT NOTE :

The actual root package (version 5.34/20) and earlier (and maybe latter) has a memory leak
issue when using TMVA leading to a freeze of your computer. To avoid this dramatical error to
happen do the following :

If the thread RootTalk ! or RootSupport 2 indicates status solved then download and install the
more recent ROOT version.

If the status is still unresolved proceed as follow :

Open with your favourite text editor the file SROOTSY S/tmva/src/Reader.cxx (SROOTSYS is the

Thttp://root.cern.ch/phpBB3/viewtopic.php?f=3&t=18360&p=78586&hilit=TMVA#p78586
Zhttps://sft.its.cern.ch/jira/browse/ROOT-6551

http://root.cern.ch/phpBB3/viewtopic.php?f=3&t=18360&p=78586&hilit=TMVA#p78586
https://sft.its.cern.ch/jira/browse/ROOT-6551

path to your ROOT installation folder) and replace the following :

TMVA :: Reader::~Reader(void)
{
// destructor

delete fDataSetManager; // DSMTEST

delete fLogger;

by :

TMVA :: Reader::~Reader(void)
{

// destructor

std::map<TString, IMethod* >::iterator itr;

for(itr = fMethodMap.begin(); itr != fMethodMap.end(); itr++) {
delete itr—>second;

}
fMethodMap.clear();

delete fDataSetManager; // DSMTEST

delete fLogger;

then type in your terminal :

cd $ROOTSYS
sudo make -j

2.2 Installation

Decompress the CLASS .tar.gz in your wanted location . Then type in terminal:

3 $CLASS_PATH is the path of your CLASS installation folder

cd $CLASS_PATH/
mkdir 1ib

cd source/src
make -j
make install

Then to install the Graphical User Interface :

cd $CLASS_PATH/gui

mkdir bin

make -j

Finally add the following environment variables (in your .tcsh or .csh):

setenv CLASS_PATH YourPathToCLASS

setenv CLASS_lib ${CLASS_PATH}/1lib

setenv CLASS_include ${CLASS_PATH}/source/include
setenv PATH ${PATH}:${CLASS_PATH}/bin/gui

Chapter 3

CLASS Execution

CLASS is a set of C++ libraries, there is no CLASS binary file. A CLASS executable has to
be build by user using objects and methods defined in the CLASS package.
The compilation line for generating your executable from a .cxx file is the following :

g++ -o CLASS_exec YourScenario.cxx -I $CLASS_include -L $CLASS_lib -1CLASSpkg ‘root-config

--cflags‘ ‘root-config --1libs‘ -fopenmp -lgomp -Wunused-result

Chapter 4

News, forum, troubleshooting, doxygen ...

CLASS has a forge! hosted by the IN2P3 where you can find :

e A forum? where you are invited to post your trouble about CLASS installation and usage.
You may find the answer to your trouble on a already posted thread.

o A doxygen® where all the CLASS objects and methods are defined and explained.

e News? : All the news related to CLASS

A Mailing List® also exist in order to be warned of all the change inside CLASS and to allow user
to exchange directly on the code. One can join the mailing list through the following link®.

Uhttps://forge.in2p3.fr/projects/classforge
Zhttps://forge.in2p3.fr/projects/classforge/boards
3https://forge.in2p3.fr/projects/classforge/embedded/annotated.html
“https://forge.in2p3.fr/projects/classforge/news
Sclassuser-1@ccpntc02.in2p3.fr
Ohttp://listserv.in2p3.fr/cgi-bin/wa?SUBED 1 =classuser-1&A=1

https://forge.in2p3.fr/projects/classforge
https://forge.in2p3.fr/projects/classforge/boards
https://forge.in2p3.fr/projects/classforge/embedded/annotated.html
https://forge.in2p3.fr/projects/classforge/news
classuser-l@ccpntc02.in2p3.fr
http://listserv.in2p3.fr/cgi-bin/wa?SUBED1=classuser-l&A=1

10

Part 111

CLASS : General overview

Chapter 5

Generalities

5.1 Basic unit

All time in CLASS should be written in second. It corresponds to the cSecond, a CLASS c++
type, which are a long long int going, in 32 bits and 64 bits, up to (2% —1)s ~2.9-10'! years,
enough for any electro-nuclear scenarios one can consider....

5.2 CLASS working process principle

image : shéma de principe de class

11

Chapter 6

Facilities descriptions

All the facilities in CLASS project are regrouped inside a large group called CLASSFacility
(and inherit of all the properties of the CLASSFacility in a C++ way). Inside the CLASSFacility,
3 different types has been defined, the reactor, the FabricationPlant (or more generally, all the fuel
cycle front-end facilities) and the backend facilities.

6.1 CLASSFacility

The CLASSFacility should never be used directly in the main CLASS program (the one made
to perform the simulation). The aim of these object is to regroup all the common properties of the
nuclear facilities, such as common variables, methods, and builder.

6.2 Reactor

6.2.1 Generalities

The aim of this class is to deal with the evolution of the fuel inside a reactor.
The evolution of the fuel is always contain in the EvolutionData fEvolutionDB.
There are 2 way to provide the EvolutionData to the reactor. In the case of fixed fuel' the user need
to provide it, using the appropriated constructor, the set function, or a CLASSFuelPlan. In the case
of recycled fuel or unfixed fuel, the user need to provide a PhysicsModels, using the appropriated
constructor, the set function, and/or a CLASSFuelPlan.

6.2.2 Use

There are 2 main ways to define a reactor, depending on the type of fuel loaded.

! Always the same input/output isotopic composition.

12

6.2.2.1 Fixed Fuel

Reactor using fixed fuel, which

load always the same fresh fuel, and unload it with always the

same burnup (same spent fuel...), to declare a reactor proceed as follow:

Reactor xMyReactor =

myFuel_EvolutionData
aBackEnd, // Back
myRe_StartingTime, /
myRe_LifeTime, /1
myRe_Power,
myRe_HeavyMetalMass,
myRe_BurnUp,
myRe_LoadFactor);

new reactor (aCLASSLogger,

/1 CLASSLogger
s // EvolutionData

End

/ Starting Time

Time of Life

// Power

// HM mass

/1 BurnUp
// LoadFactor

or

Reactor *MyReactor =

myFuel_EvolutionData,
/1 BackEnd
/! Starting Time

aBackEnd,
myRe_StartingTime,

myRe_LifeTime, //
myRe_CycleTime, //
myRe_HeavyMetalMass,
myRe_BurnUp) ; /1

new reactor(aCLASSLogger,

/1 CLASSLogger
// EvolutionData

Time of Life
Time of Cycle
/1 HM mass

BurnUp

The meaning of each arguments of the two constructor previously defined are summed up in the

following table

Table 6.1: Arguments of Reactor constructors

Argument type meaning unit
aCLASSLogger CLASSLogger Output messages N.A.
myFuel_EvolutionData EvolutionData Fuel evolution description N.A.
aBackEnd CLASSBackEnd | Facility getting the spent fuel N.A.
myRe_StartingTime cSecond Creation time second
myRe_LifeTime cSecond Operation time second
myRe_Power double Thermal power Watt
myRe_HeavyMetalMass double Heavy metal mass tons
myRe_BurnUp double Burn up at EOC GWd/tHM
myRe_LoadFactor double Fraction of nominal power
myRe_CycleTime cSecond the cycle time second

6.2.2.2 Reprocessed Fuel

In this case, the fuel is provided by an external facility, so called, the FabricationPlant. The
way to build the reprocessed fresh fuel and to handle the fuel depletion calculation is done by the
PhysicsModels. The main ways to defined a Reactor (with reprocessed fuel) is shown in the next

two examples :

Reactor *MyReactor = new Reactor(aCLASSLogger, /1 CLASSLogger
myFuel_PhysicsModels, // PhysicsModels
aFabricationPlant, // FabricationPlant

aBackEnd, // BackEnd
myRe_StartingTime, // Starting Time
myRe_LifeTime, // Time of Life
myRe_Power, /!l Power
myRe_HeavyMetalMass, // HM mass
myRe_BurnUp, /1 BurnUp

myRe_LoadFactor); // LoadFactor

or

Reactor xMyReactor = new Reactor(aCLASSLogger, /1 CLASSLogger
myFuel_PhysicsModels, // PhysicsModels
aFabricationPlant, // FabricationPlant
aBackEnd, // BackEnd
myRe_StartingTime, // Starting Time
myRe_LifeTime, /1 Time of Life
myRe_CycleTime, // Time of Cycle
myRe_HeavyMetalMass, // HM mass
myRe_BurnUp) ; /1 BurnUp

The meaning of each arguments of the two constructor previously defined are summed up in the

following table

Table 6.2: Arguments of Reactor constructors

Argument type meaning unit
aCLASSLogger CLASSLogger Output messages N.A.
myFuel_PhysicsModels | PhysicsModels | Fuel construction/evolution N.A.
aFabricationPlant FabricationPlant Facility building the fuel N.A.
aBackEnd CLASSBackEnd | Facility getting the spent fuel N.A.
myRe_StartingTime cSecond Creation time second
myRe_LifeTime cSecond Operation time second
myRe_Power double Thermal power Watt
myRe_HeavyMetalMass double Heavy metal mass tons
myRe_BurnUp double Burn up at EOC GWd/tHM
myRe_loadFactor double Fraction of nominal power
myRe_CycleTime cSecond the cycle time second

6.3 CLASSBackEnd

The CLASSBackEnd class is a master class which aims to regroup all common properties of
the fuel back-end facilities. All other back-end facilities in CLASS inherit of the CLASSBackEnd.
In CLASS, a CLASSBackEnd does not control its upstream. Its incoming material flux is pushed
by its upstream facility (a Reactor, or an other CLASSBackEnd). It only controls its downstream
flux.

This object is not supposed to be used explicitly in a CLASS input.

6.3.1 Storage

Storage is a CLASSBack end without associated downstream factory. All the incoming mate-
rial are stored individually. During the storage, the depletion by decay is taken into account. The
storage has to be defined as follow :

Storage *Stock = new Storage(aCLASSLogger);

6.3.2 Pool

Pool is a CLASSBack end with an associated downstream factory. All incoming material will
be pushed in the downstream factory after a set time, so called CoolingTime. All the incoming
material are stored individually. During the cooling process, the depletion by decay is taken into
account. The storage has to be defined as follow :

Pool xMyPool = new Pool(aCLASSLogger, aCLASSBackEnd, 5%365.25%24.%x3600);

In the previous example, a 5 years cooling time has been used. If no downstream facility is set, all
the material will be pushed after cooling to the WASTE of the Scenario. To do so :

Pool xMyPool = new Pool(aCLASSLogger, 5%365.25%24.%x3600);

6.3.3 SeparationPlant

The role of the SeparationPlant is to separate an incoming IsotopicVector from a facility into
an arbitrary number of outgoing CLASSBackEnd.
To define a SeparationPlant proceed as follow :

SeparationPlant* MySeparationPlant = new SeparationPlant(aCLASSLogger);

The separation process is instantaneous and it follow the isotopic separation efficiency. It must
be given as an IsotopicVector containing the separation efficiency for each nucleus. Note that it is
possible to separate the incoming IsotopicVector in many, the users must provide as many isotopic
separation efficiency as outgoing CLASSBackEnd.

In addition of a outgoing CLASSBackEnd and an associated isotopic separation efficiency, the
user must provide a date for the separation to be effective. To do so :

IsotopicVector IV_MA;
IV_MA.Add (93, 237, 0, 1.);
IV_MA.Add(95, 242, 1, 1.);
IV_MA.Add(96, 245, 0, 1.)
/...
MySeparationPlant —>SetBackEndDestination(aCLASSBackEndl,
IV_MA,
2000%365.25%24.3600) ;

>

IsotopicVector IV_Pu;

IV_Pu.Add (94, 238, 0, 0.8);

IV_Pu.Add (94, 239, 0, 0.8);

/...

MySeparationPlant —>SetBackEndDestination(aCLASSBackEnd2,
IV_Pu,
2005%365.25%24.3600) ;

IsotopicVector IV_U;

IV_U += 0.5%xZAI(92, 235, 0);

IV_U += 0.5%xZAI(92, 238, 0);

/...

MySeparationPlant —>SetBackEndDestination(aCLASSBackEnd3,
IV_U,
2015%365.25%24.3600) ;

In the present example, the separation of Minor Actinides start in 2000 sending it to the CLASS-
BackEnd aCLASSBackEndI (the rest going to the WASTE). The separation of the plutonium start
in 2005 (send in the aCLASSBackEnd?2) and the separation of uranium in 2010.

Note that between 2005 and 2010, both MA and Pu are separated and sent respectively to aCLASS-
BackEndl and aCLASSBackEnd?2, all the remaining isotopes are sent to the WASTE. After 2010,
MA, Pu and U are separated and sent to their respective CLASSBackEnd facilities, the rest is still
send to WASTE.

Furthermore, the separation of Actinides Minor has an efficiency of 100%, Pu of 80% and U of
50%.

6.4 Fabrication Plant

The FabricationPlant is the facility which takes care about the fuel Fabrication. The "action"
in FabricationPlant appends before the beginning of Cycle of a reactor: One fabrication time (Fab-
rication duration) before the BOC, it start the building process of the fuel.

First it sort the different stock in the different input Storage according the users priority. Then take
the EquivalenceModel in PhysicsModels of the reactor, ask it how to build a fuel with the correct

properties using some stock available. The EquivalenceModel provide a list a fraction to take in
each stock. According to this fraction list, the FabricationPlant take the fraction is each stock and
build the reprocessed fuel. Once the reprocess fuel is made, it ask to the PhyscisModel to calculate
its evolution and store it in EvolutionData form until the reactor load the fuel.
Between the fuel fabrication and the fuel loading in the reactor, the deplay through decay of the
fuel is of course taking into account.
Note that, the FabricationPlant provide to the EquivalenceModel a list of stock which have virtually
decay during the fabrication time in order to build a proper fuel.

To setup a FabricationPlant do as follow :

FabricationPlant *xMyFabricationPlant = new FabricationPlant (gCLASS—>GetLog(),
lxyear) ;
MyFabricationPlant —>SetFiFo () ;

In the previous example, the SetFifo() method set the first in first out priority for the stock
usage.
One must also provide a list of Storage used to extract the Fissile part of the fuel by using :

MyFabricationPlant —>AddFissileStorage(Stock);

And if necessary it is possible to storage to extract fertile isotopes using :

MyFabricationPlant —>AddFertileStorage (Stock);

If no Fertile Storage are defined, the fertile part is taken from outside of the Scenario. By default
the unuse part of the stock is send to WASTE.But it is possible to set a storage where the unuse
part of the stock using :

MyFabricationPlant —>SetReUsableStorage (ReUsable);

6.5 PathWay between Faiclity

As explain previously, there are 3 different facility family, the FabricationPlant, the reactor,
and the CLASSBackEnd. The CLASSBackEnd facilities can’t pull material inside, there is always
a other facility which push material inside the CLASSBackEnd, but some can also push material
inside other facilities: the SeparationPlant and the Pool. The Storage can only store materials.
The reactor take is fuel in a FabricationPlant and push the irradiated fuel in a CLASSBackEnd.

The FabricationPlant take its materials inside storage and stock the reprocessed fuel its makes
unties the BoC. We propose in the following 4 example of pathway between difference facilities.
The point here is only to illustrated possible pathway, but the illustration may not be exhaustive.

Furthermore, almost any composition between these examples could be made.

6.5.1 Reactor with fixed fuel and a Storage

Reactor > Storage

Figure 6.1: Shematic Pathway

CLASSLogger xLogger = new CLASSLogger ("CLASS_OUTPUT.log",1,2);
EvolutionData* myFuel_EvolutionData = new EvolutionData(Logger, "/PATH/
EvolData.dat");

new Storage(Logger);

Storagex MyStorage

Reactor *MyReactor = new Reactor(Logger, myFuel_EvolutionData, MyStorage,
40%365.25%24.3600, 900E6, 100, 45, 1);

O s

6.5.2 Reactor with fixed fuel, a Pool and a Storage

Y
Y

Reactor

Pool Storage

Figure 6.2: Shematic Pathway

CLASSLogger *xLogger = new CLASSLogger("CLASS_OUTPUT.log",1,2);
EvolutionData* myFuel_EvolutionData = new EvolutionData(Logger, "/PATH/
EvolData.dat");

Storage*x MyStorage = new Storage(Logger);
Pool* MyPool = new Pool(Logger, MyStorage, 5%365.25%24x3600);

Reactor *MyReactor = new Reactor(Logger, myFuel_EvolutionData, MyPool, O,
40%365.25%24.3600, 900E6, 100, 45, 1);

6.5.3 Reactor with fixed fuel, two SeprationPlant, a Pool and four Storage

Pool > Storage
Reactor > SeparationPlant > Storage
/ Storage
SeparationPlant
\ Storage

Figure 6.3: Shematic Pathway

CLASSLogger *xLogger = new CLASSLogger ("CLASS_OUTPUT.log",1,2);
EvolutionData* myFuel_EvolutionData = new EvolutionData(Logger, "/PATH/
EvolData.dat");

Storage* MyStoragel
Storagex MyStorage2
Storage* MyStorage3
Storagex* MyStorage4d

new Storage(Logger);
new Storage(Logger);

new Storage(Logger);

new Storage(Logger);
Pool*x MyPooll = new Pool(Logger, MyStoragel, 5%365.25%x24x3600);

// SeparationPlant separate US from U8 which goes in Storage 3 and 4.
SeparationPlan* MySeparationl = new SeparationPlant(Logger);
IsotopicVector IV_US8;

IV_U8.Add (92, 238, 0, 1);
MySeparationPlantl—>SetBackEndDestination(MyStorage3, IV_U8, 0);

IsotopicVector IV_U5;
IV_U5 += 1%xZAI(92, 235, 0);
MySeparationPlantl —>SetBackEndDestination(MyStoraged4, IV_U5, 0);

/' SeparationPlant separate Am Pu and U which goes respectively in myPooll,
myStorage2 and mySeparationPlanl .

SeparationPlanx MySeparation2 = new SeparationPlant(Logger);

IsotopicVector IV_MA;

IV_MA.Add(95, 242, 1, 1.);

MySeparationPlant2—>SetBackEndDestination(MyPooll, IV_MA, 0);

IsotopicVector IV_Pu;
IV_Pu.Add (94, 239, 0, 0.8);
MySeparationPlant2—>SetBackEndDestination(MyStorage2, IV_Pu, 0);

IsotopicVector IV_U;

IV_U.Add (92, 238, 0, 0.5);

IV_U.Add (92, 235, 0, 0.5);
MySeparationPlant2—>SetBackEndDestination(MySeparationPlantl, IV_U, 0);

Reactor *MyReactor = new Reactor(Logger, myFuel_EvolutionData, MySeparation2,

0, 40%365.25%x24.3600, 900E6, 100, 45, 1);

6.5.4 Reactor, a FabricationPlant, a Pool and a Storage

CLASSLogger xLogger = new CLASSLogger ("CLASS_0U TPUT.log",1,2);

IM_RK4 xIMRK4 = new IM_RK4(Logger);

EQM_LIN_PWR_MOX* EQMLINPWRMOX = new EQM_LIN_PWR_MOX(Logger, "/PATH/EQ_Lin.dat"
)3

EQM_QUAD_PWR_MOX* EQMQUADPWRMOX = new EQM_QUAD_PWR_MOX(Logger, "/PATH/DBParam.
dat");

PhysicsModels* myFuel_PhysicsModel = new PhysicsModels(XSMOX, EQMQUADPWRMOX,
IMRK4) ;

Storage* MyStorage = new Storage(Logger);
Pool* MyPool = new Pool(Logger, MyStorage, 5%365.25%24%3600);

FabricationPlant* myFabrication = new FabricationPlant(Logger, MyStorage,
2%365.25%24%3600) ;

Reactor xMyReactor = new Reactor(Logger, myFuel_PhysicsModel, myFabrication,
MyPool, 0, 40%365.25%24.3600, 900E6, 100, 45, 1);

Reactor

\ 4

\ 4

Pool

v

FabricationPlant Storage

Figure 6.4: Shematic Pathway

Chapter 7

Other objects

71 ZAIl

The ZAi object represents a nucleus, from its charge number, mass number and isomeric state.
The object save the charge number Z, the mass number A and the isomeric state I of a nucleus :
I=0 for ground state , I=1 for the first isomeric state ...

To declare a ZAI object proceed as follow :

ZATI U238 = ZAI(92, 238, 0);

This class includes the mains logical comparators (e.g ==, >, !=). Fill free to read the doxygen for
more details on the methods associated to this class. (e.g A(), Z(), 1(), N()...) [?].

7.2 IsotopicVector

7.2.1 Generality

The IsotopicVector object is a collection of ZAlI, for each ZAI a number of nuclei is associated
(IsotopicVector is a c++ map of ZAl and double, which corresponds to a sorted array of ZAI and
its quantity).

Two pincipales operation have been defined on IsotopicVector. The following illustrates the possi-
ble operation allowed for IsotopicVectors :

Definiton & Addition of nuclei

IsotopicVector IV_1;
IsotopicVector IV_2;

IV_1 += 23 % ZAI(92, 238, 0); // Add 23 nucleus of uranium 238 to ZAI_I
IV_1 += 52 x ZAI(92, 235, 0); // Add 52 nucleus of uranium 235 to ZAI_l

23

Multiplication

IV_1 %= 100; // Multiply all the nuclei quantities by 100 —> resulting : 2300
uranium 238 and 5200 uranium 235

IV_2 = IV_1 x 10; // IV_2 will be equal to 10 IV_I

Sum

IsotopicVector IV_sum = IV_1 + IV2; // IV_sum will be equal to 11 IV_I

Some additional operations have been also implemented, such as subtraction. It works as the
sum, but if the result of the subtraction is negative for some nuclei, those nuclei are set to zero
and the difference is added to the, so called, fIsotopicQuantityNeeded. It so, a WARNING will be
written on the terminal.

@ @ Link WARNING
To insure the quality and the reliability of the simulation, the flsotopicQuantityNeeded MUST
remain empty.

7.2.2 Print method

You can use the Print() method to write the composition of an IsotopicVector. When printing
the IsotopicVector composition present nuclei, as well as the needed one, are written with their
corresponding quantity (unit: nucleus number).

7.2.3 GetTotalMass

Return the mass of the IsotopicVector in tons using :

double TotalMass = IV.GetTotalMass () ;

7.2.4 Multiplication between IsotopicVector

The result of this operation is an IsotopicVector, where each nucleus quantity is the product of
the corresponding nucleus quantity of the two IsotopicVector.
In other words :
If a nucleus A is present in both IsotopicVector, with respective quantity o and 3, the resulting

IsotopicVector will contain o x 8 nucleus A. If the nucleus A is not present in both IsotopicVector,
the resulting IsotopicVector will not contain the nucleus A.

By exemple, this method can be used to apply separation efficiency: one IsotopicVector con-
taining real material and the other one containing separation efficiency of each nucleus.

7.3 EvolutionData

An EvolutionData aims to describe the evolution of an IsotopicVector through a physical pro-
cess (decay or irradiation). The Decay case is fully described in section 7.3.2.

In case of irradiation, it may also contains the evolution of the one group cross section, the
evolution of the neutron flux and the keff and are not mandatory. Note that neutron flux and keff
are not used in CLASS. The EvolutionData MUST contain the power and can contain the heavy
metal mass, the fuel type, reactor type and the cycle time.

These EvolutionData can be loaded into CLASS from a formatted ASCII file see section 7.3.1 as
follow :

CLASSLogger xLogger = new CLASSLogger ("CLASS_OUTPUT.log",1,2);

EvolutionData*x MyEvolutionData = new EvolutionData(Logger, "/PATH/Data.dat");

7.3.1 EvolutionData ASCII format

The formatted ASCII file describing the EvolutionData is formatted as follow:

Listing 7.1: Evolution Data format

time "O t2 t3 ..." /! in seconds

keff "k1 k2 k3 ..." // not mandatory entry

flux "phil phi2 phi3 ..." // (neutron/(second.cm2))not mandatory entry
Inv "Z A I invl inv2 inv 3 ..." //in atoms

XSFis "Z A I xsfisl xsfis2 xsfis3 ..."//in barns

XSCap "Z A I xscapl xscap2 xscap3 ..."

XSn2n "Z A I xsn2nl xsnsn2 xsn2n3 ..."

The meaning of each keyword is listed in table 7.1.

Table 7.1: .dat Key words meaning

Key words Meaning
Inv Inventory
XSFis fission cross section
XSCap (n,7) cross section
XSn2n (n,2n) cross section
Value meaning
Z Charge number
A Mass number
| State (fundamental=0, 1* excited =1, ...)

Each EvolutionName.dat files comes with a EvolutionName.info file, which describes the re-
actor, it is formatted like this :

Reactor "ReactorName" //What ever string without space
Fueltype "FuelName" // What ever string without space
CycleTime "t" // The final time simulated (@@BaM)
ConstantPower "P" // Simulated power (in W)

7.3.2 DecayDataBank

The radioactive decay is handled by a DecayDataBank. The DecayDataBank contains an Evo-
lutionData for each nucleus of the nuclei chart. Each EvolutionData describes the evolution of the
nucleus and all its daughters as a function of the time. The depletion of an isotopic vector corre-
sponds to the sum of all its nucleus depletion contribution.

In other words, in CLASS, for each nucleus of the chart, a depletion calculation has been per-
formed and compiled in a DecayDataBank.
The determination of an IsotopicVector depletion is performed as follow :
First, one determines the depletion of each nucleus of the IsotopicVector following the DecayData-
Bank, then sums all those contributions.

DecayDataBank can be defined as follow :

CLASSLogger xLogger = new CLASSLogger("CLASS_OUTPUT.log",1,2);

DecayDataBank* DecayDB = new DecayDataBank(Logger, "/PATH/Decay.idx");

In the previous example a DecayDataBank has been defined using the file Decay.idx file. This file
lists all the path to EvolutionDatas (each one corresponding to the depletion of one nucleus). The
format of the .idx file is the following :

Z1 A1 I1 PATH/ZAI1l.dat

Zn An In PATH/ZAIn.dat

A DecayDataBank can be find in $PATH_TO_CLASS/Data/@ @ @.

7.4 Log management : CLASSLogger

In CLASS, all messages are handled by the CLASSLogger object. There are 4 verbose levels,
see table 8.1.

Table 7.2: Verbose levels

level # | meaning | informations
0 ERROR | This is the default. It makes the code to stop
1 WARNING | LVL 0 + something may go wrong but the code continue running
2 INFO LVL 1 + simple informations about ongoing process
3 DEBUG | LVL 2 + each method begin and end

There are two outputs for these messages : the standard output (terminal) and a logfile. For
each output a verbose level can be assigned as follow :

CLASSLogger xLogger = new CLASSLogger ("CLASS_OUTPUT.log",1,2);

In the preceding example, verbose level 1 (WARNING) has been set for the terminal output and
level 2 (INFO) for the second output which is the logfile named CLASS_OUTPUT.log.

Chapter 8

Scenario/Park

The Scenario object aims to describe the full scenario, regrouping all facilities inside a full
park or fleet.

8.1 Fill the scenario

Each facilities to be able to evolve during a dynamic fuel cycle calculation need to be added
inside the scenario. To do so five adding method have been implemented :

CLASSLogger xLogger = new CLASSLogger ("CLASS_OUTPUT.log",1,2);
Scenario *gCLASS=new Scenario(Logger, 1977xyear);

gCLASS—>AddPool (myPool);

gCLASS—>AddReactor (myReactor);
gCLASS—>AddStorage (myStorage);
gCLASS—>AddFabricationPlant (myFabricationplant);
gCLASS—>AddSeparationPlant (mySeparationplant);
/'l or

gCLASS—>Add (myPool);

gCLASS—>Add (myReactor);

gCLASS—>Add (myStorage) ;

gCLASS—>Add (myFabricationplant);

gCLASS—>Add (mySeparationplant);

Furthermore, one need to add a DecayDataBase to the Scenario, using :

DecayDataBank* DecayDB = new DecayDataBank(Logger, "/PATH/Decay.idx");

gCLASS—>SetDecayDataBase(DecayDB);

28

8.2 OutPut

8.2.1 General Output

In addition to all facilies added to the Scenario, the output contain also other general informa-

tion.
Table 8.1: General Information in CLASS Output
Output Name Unit description
AbsoluteTime Number [Second] | Time at the step
ParcPower Number [Watt] Effective tbermal power of the $cenario
only working reactor are taked into account
WASTE IsotopicVector | Waste produced by the scenario
STOCK IsotopicVector | All the material in all the Storage
OUTINCOME IsotopicVector | All material taking from outside the Scenario
COOLING IsotopicVector | All the material present in all the Pool
FUELFABRICATION | IsotopicVector | All the material present in all the FabricationPlant
REACTOR IsotopicVector | All the material present in all the Reactor
All th terial in th 1
INCYLE IsotopicVector © matetiatin e C_y © G.:
Reactor + Pool + Fabrication + Storage
All the material in the Scenario
TOTAL IsotopicVect:
SOLOPIEYECTOT | Reactor + Pool + Fabrication + Storage + Waste

8.2.2 OQOutput names

The CLASS output is done in ROOT format, each element of the Scenario is added to a ROOT
TTree, filled at each time step. By default the output file name is "CLASS_Default.root" and the
ROOT TTree name is "Data". It is possible to change those names using :

gCLASS—>SetOutputFileName ("MyFileName.root");
gCLASS—>SetOutputTreeName ("MyTTreeName");

8.2.3 Output Frequency

By default the output is done every years of simulation. To have more frequent (or less) output

use :

gCLASS—>SetTimeStep(365.25%24%x3600/12);

// monthly output

30

Part IV

Physics Models

Chapter 9

Description and implementation

A Physics Models is related to one or several reactors , it is a container of three models :

e Equivalence Model : Tells to the Fabrication Plant how to build the fuel.

e XS Model : "Calculates" the mean cross sections of this fuel and sends it to the Bateman
Solver.

e Irradiation Model : It is the Bateman Solver. User can choose between different numerical
method.

A Physics model is called in the CLASS input like the following example :

Implementation in a .cxx :

Listing 9.1: PhysicsModels

#include "XS/XSM_MLP.hxx"

#include "Irradiation/IM_RK4.hxx"

#include "Equivalence/EQM_MLP_PWR_MOX.hxx"
int main ()

{

EQM_MLP_MOX* Equivalence = new EQM_MLP_MOX("PathToTMVAWeightFile/
TMVAWeightFile.xml");

XSM_MLPx* XS = new XSM_MLP(gCLASS—>GetLog(),"PathToTMVAWeighstFolder"
OneMLPPerTimeStep);

IM_RK4x* Solver = new IM_RK4(gCLASS—>GetLog());

PhysicsModels* PHYMOD = new PhysicsModels(XS , Equivalence , Solver);

Reactor *PWR_MOX = new Reactor(log, PHYMOD, fabricationplant, Pool,
creationtime, lifetime, cycletime, HMMass, BurnUp);

31

In this latter example a Physics model called "PHYMOD" is defined, it contains the bateman
solver "Solver" which is the Runge Kutta (4" order) method. The mean cross sections predictor,
"XS", used is based on a Multi Layer Perceptron. The Equivalence Model "Equivalence" is the
one used for PWR MOX fuels. The arguments of the 3 objects constructor are explained in its
corresponding sections.

All the existing models are define in the following sections, furthermore, the way to build its
own Model is presented.

Chapter 10

Equivalence Model

The aim of an equivalence model is to predict the content of fissile element needed in a fuel to
reach a given burn-up or to satisfied criticality conditions.

10.1 Available Equivalence Models

The CLASS package contains, for the moment, 4 different equivalence models where three
are related to the building of fuels for a PWR-MOX and one to the building of PWR-UOX fuels :

10.1.1 PWR-MOX models :

The following models returns the molar fraction %p, of plutonium needed to reach a given
burn-up according to the plutonium isotopic composition available in stocks.

10.1.1.1 Linear BU model : EQM_LIN_MOX

It was initially applied for MOX fuel, but because of the lack of precision, this model could
be deprecated (at least in the PWR MOX case). It remain in the CLASS packages only because it
was present historically.

Nevertheless it could be use as an example for similar model for other fuel. This model suppose
it is possible to describe the maximal burn-up accessible for a set fuel using its initial composition
using a simple linear modelisation (equation 10.1):

N
BUmax:aO+Zai'ni7 (10.1)
i

where BU,,,, represent the maximal accessible burn-up for the fuel, n; the isotopic fraction of the
isotope i, N the number of isotope present in the fuel, and the ¢; the parameter of the model. The
main difficulty concerning this model, is the determination of the ¢;: to be correct the ¢; should
be fitted on a set of evolution data which are not constrain to reach an unique burn-up, but a large
burn-up region. One can see the problem guessing it is possible to build a set a fuel evolution
reaching exactly a unique burn-up (45 GWd/t by example), the 2 minimization of the ¢; will

33

end up with o = 45 and all the other at zero. That why, when using a linear burn-up description
model, one should test the validity of the model, on many random compositions by example...

10.1.1.2 Quadratic Model : EQM_QUAD_MOX

The %p, is calculated according a quadratic model. See equation 10.2.

N
%P,,,ZOC()-FZ <a,~-n,~+2a,-j-n,--nj), (10.2)

i€Pu i<i

where n; is the molar proportion (in %mol.) of isotope i ! in the fresh plutonium vector. o j» @ and

0 are the weights resulting from a minimization procedure and are related to one targeted burn-up

and one fuel management. Furthermore, 2*!Am from 2*! Pu decay is not one of the considered com-
ponent of the model (n;), instead the model considers a fixed time since plutonium separation. For
instance the o given in file SCLASS_PATH/DataBase/Equivalence/PWR_MOX_45GW_3Batch_2y.dat
are representative of a PWR-MOX with a maximal burn-up of 45GWd /tHM, a fuel management

of 3 batches, and a time between separation and irradiation of 2 years.

The file containing the weights is formatted as follow :

PARAM "238Pu 238Pu*x238Pu 238Pu*239Pu 238Pu*x240Pu 238Pu*241Pu 238Pu*242Pu 239Pu
239Pu*239Pu 239Pu*x240Pu 239Pux241Pu 239Pu*x242Pu 240Pu 240Pu*x240Pu 240Pu
*241Pu 240Pu*x242Pu 241Pu 241Pu*x241Pu 241Pu*242Pu 242Pu 242Pu*242Pu 1"

Where 238Pu stands for o35 p, and it is the first order weight related to the molar proportion of
238py and 1 is a. The weights are in units of %mol. - %emol.~" for o; in units of %mol. - Yomol.~>
for a;; and in units of %mol. for og. The Keyword "PARAM" has to be present in the file before
the o values. For more informations about this model and the generation of the coefficients please
refer to reference [@ @PAPIER BAM].

from 238 Py to 22Py

Implementation in a .cxx

Listing 10.1: Equivalence Model EQM_QUAD_MOX

#include "Equivalence/EQM_QUAD_PWR_MOX.hxx"

int main ()
{
EQM_QUAD_PWR_MOXx* Equivalence = new EQM_QUAD_PWR_MOX(LogObject, AlphasFile);

/] or
/1 EQM_QUAD PWR MOXx Equivalence = new EQM_QUAD PWR MOX(AlphasFile);

}

With LogObject a CLASSLogger object (see section 7.4) and AlphasFile a string which is the
complete path to the file containing the weights (the o parameters)

Available weight file (.dat) :
e @@@ BAM

e @@@ BAM

10.1.1.3 Neural network model : EQM_MLP_MOX

This equivalence model is based on a Multi Layer Perceptron (MLP) and predict the amount
of plutonium needed to reach any burn-up. The MLP inputs are the isotopic compositions of the
plutonium (including 2*! Am), the enrichment of depleted uranium, and the targeted burn-up. The
output is the plutonium content needed to reach the burn-up. This method uses the neural networks
of the root module TMVA (@ @ @ Ref TMVA). To executes this model, TMVA is run in CLASS
and need a .xml file. This file contains the neural network architecture and the weights resulting
from the training procedure.

Implementation in a .cxx :

Listing 10.2: Equivalence Model EQM_MLP_PWR_MOX

#include ”Equivalence/EQM_MLP_PWR_MDX.hxx”

int main ()

{

EQM_MLP_PWR_MOX* Equivalence = new EQM_MLP_PWR_MOX(LogObject, TMVAWeightPath
)

/] or

/1 EQM_MLP PWR MOX.* Equivalence = new EQM MLP PWR MOX(TMVAWeightPath);

With LogObject a CLASSLogger object (see section 7.4) and TMVAWeightPath a string con-
taining the path to the .xml file.

In order to make his own .xml file one need to have a training data containing the fresh fuel
composition and the achievable burn-up of many examples. The fuel composition is characterized
by the mean of :

e The plutonium composition (i.e : %mol. of 238py 239py 240py 241py 242p, and 241Am)

e The plutonium content (i.e : 3 ,f ~7)

e The >U content in the depleted uranium.
The file SCLASS_PATH/DataBases/Equivalence/EQM_MLP_PWR_MOX_3batch.xml has been

generated from the file SCLASS_PATH/Utils/Equivalence/PWR_MOX_MLP/Train_MLP.cxx To
train a new MLP from your own training sample proceed as follow :

cd $CLASS_PATH/Utils/Equivalence/PWR_MOX_MLP
g++ -o Train_MLP ‘root-config --cflags‘ Train_MLP.cxx ‘root-config --glibs‘ -1TMVA -

I$ROOTSYS/tmva/test/
Train_MLP YourTrainingData.root

Where YourTrainingData.root is a root file containing a TTree filled with fuel compositions
and corresponding burn-ups. The .xml file will be generated in a folder named weight. The results
of the testing procedure of the MLP are in a file named TMVA_MOX_Equivalence.root but will
be presented to you graphically as soon as the training and the testing procedure are finished.

To make your YourTrainingData.root file you have to fill a TTree with your data. To do so,
create a .cxx file and copy past this :

TFilex fOutFi
the .root fi
TTreex fOutT

le =
le

new TTree("Data",

new TFile("YourTrainingData.root","RECREATE");

"Data");//create the TTree

[% sk sk ok sk sk ok ok ok ook ok ok ook ok ok ok ok ok ok INTTTALTIS ATTONNN sk sk sk sk sk sk sk ok sk sk ok sk ok sk ok sk ok ok % % /

//WARNING :
double
double
double
double
double
double
double
double
double

keep

Pu8
Pu9
Pul0
Pull
Pul2
Am1l

BU
teneur

the same

US5_enrichment = 0;

)
>
>
il
)

bl

1l
el eBoNeoNeolh o]

=O’

variable names

; //BU means Burn—Up
// French for content

(here Pu content)

[k% ok % ok ok ok ok k ok ok ok ok ok ok ok ok x BRAINCHIING % s % sk % s sk % sk % sk ok s ok s ok % sk ok ok kok ok % /

fOutT—>Branch(
fO0utT—>Branch(
fO0utT—>Branch (
fO0utT—>Branch(
fOutT—>Branch(
fOutT—>Branch(
fO0utT—>Branch(
fO0utT—>Branch (
fO0utT—>Branch (

"U5_enrichment"

,&U5_enrichment

"Pu8" ,&Pu8 ,"Pu8/D"
"Puo" ,&Pu9 ,"Pu9/D"
"Pulo" ,&Pul0 ,"Pul0/D"
"Pulil" ,&Pull ,"Pull/D"
"Pul2" ,&Pul12 ,"Pu12/D"
"Am1" ,&Am1 ,"Am1/D"
"BU" ,&BU ,"BU/D"
"teneur" ,&teneur ,"teneur/D"

,"U5_enrichment /D"

) k)
k)
k]
b}
b}

k)

~— O~ O O

k)

)

[% ok ok sk ok ok ook ok ok ok ook ok okok okokok ok ok FTLILTING sk sk sk ok sk ok sk sk ok ok sk ok okook ok ok ok ok ok ok skok ok okok skokosk ok ok /
// int Nex=NumberOfDifferentExample;

for(int ex=0;ex

<Nex;ex++)

{ /#xsxxxxxFresh Fuel Composition sk sk kkk */
= fU5_enrichment|ex];

US_enrichment
Pu8 =
Pu9

Pul0

Pull

Pul2

Am1

teneur =

fPu8[ex];
fPu9[ex];
fPulOfex];
fPullfex];
fPul2fex];
fAml[ex];
fteneur|ex];

[+ xxxx Corresponding maximal Burn—up sk x/

BU =
[+ xxx F111 the
fOutT—>Fill ()

}

fOutFile—>Write
delete f0utT;

fOutFile—> Clos
delete fOutFile

BurnUps[ex];

tree with this

O

e();

bl

fuel composition and

this

burnup #*x* x/

// create

)

Then, build the arrays fU5_enrichment, fPu8 ... with your data, compile and execute. For
more informations about this model please refer to [@ @Papier Bal].

Available weight file (.xml) :

e $CLASS_PATH/DataBases/Equivalence/EQM_MLP_PWR_MOX_3batch.xml : Gen-
erated with 5000 MURE evolutions with different fuel composition, using a full mirrored
assembly calculation with JEFF3.1.1 cross section and fission yield data bases. Valid for
mono-recycling of plutonium and a fuel management of 3 batches. More details about the
generation of this .xml file can be found in reference[@ @ @BaL paper].

10.1.2 PWR-UOX model :
10.1.2.1 Linear Model: EQM_LIN_UOX

@@ @BAM

10.2 How to build an Equivalence Model

The strength of CLASS is to allow the user to build his own Physics models, this section
explains how to build a new equivalence model and to incorporate it into CLASS.

First you have to create the file EQM_NAME.cxx and EQM_NAME.hxx, where NAME is a
name you choose. Then open with a text editor the .hxx and copy past the following replacing
NAME by the name you want.

Listing 10.3: EQM_NAME.hxx

#ifndef _EQM_NAME HXX
#define _EQM_NAME_HXX
#include "EquivalenceModel.hxx"
using namespace std;
/1 //
/%!
Define a EQM _NAME
Explain briefly what is it.
@author YourName
@version 3.0
*/
/1 _ _ _ -
class EQM_NAME : public EquivalenceModel
{

public
/* Constructor x/
EQM_NAME (/x parameters*/); //!< Explain what is the parameters (if any)

/+*xThis function IS the equivalence model *x/
double GetFissileMolarFraction(IsotopicVector Fissil,IsotopicVector Fertil,
double BurnUp); //!<Return the molar fraction of fissile element

private

/*Your private variables %/
1
#endif

Open the .cxx file and copy past the following in it (replacing NAME by the same name you
used in the .hxx).

Listing 10.4: EQM_NAME.cxx

#include "EquivalenceModel.hxx"
#include "EQM_NAME.hxx"
#include "CLASSLogger.hxx"

/+ Whatever include you need */

/1 _ L _ L L _ L _ _ L
/1 EQM_NAME

/1

// Brief description

/1

// Constructor(s)
EQM_NAME :: EQM_NAME (/% parameters */)
{

[/l Do whatever you want with your parameters

/%
Fill the two isotopic vectors fFissileList and fFertileList
see explanation in the manual

*/
// Fertile
ZATI U8(92,238,0);
ZATI U5(92,235,0);
double U5_enrich= 0.0025;
fFertileList = U5%xU5_enrich + U8x%(1—U5_enrich);
// Fissile
ZATI Pu8(94,238,0);
ZAT Pu9(94,239,0);
/...
fFissileList = Pu8x*x1+Pu9x*1+ /% ... x/;
}
/!

double EQM_NAME::GetFissileMolarFraction(IsotopicVector Fissil,IsotopicVector
Fertil,double BurnUp)

{

//Code your Equivalence Model : This function has to return the molar fraction
of fissile in the fuel needed to reach the BurnUp(GWd/tHM) according to
the composition of the Fissil and Fertil vectors

In the constructor (EQM_NAME::EQM_NAME) you have to fill two isotopic vectors named
fFissileList and fFertileList. Don’t declare these isotopic vector in the .hxx, there are already
declared in the file src/EquivalenceModel.hxx. fFissileList is used by the FabricationPlant to do

the chemical separation of the fissile element from the other present in stock. For instance, for
the plutonium, add the ZAI 28py 239py 240py, 241 py and 242Py. fPFertile List is used by the

FabricationPlant the same way fFissileList is used but you have to define a default IsotopicVector
to be used if you didn’t provide a fertile stock to your FabricationPlant. In the example given above
the fertile is depleted uranium and the proportion of each isotope is given (>**U is unheeded). Now
you have to build the function GetFissileMolarFraction(IsotopicVector Fissil, IsotopicVector
Fertil, double BurnUp). Its parameters are provided by the FabricationPlant and are :

e IsotopicVector Fissil : it is the proportion of each nucleus you give in the fFissileList plus
the proportion of the nuclei that appears during the fabrication time (time given in the Fab-
ricationPlant constructor, is default is 2 years)

e IsotopicVector Fertil : it is the proportion of each nucleus you give in the fFertileList plus the
proportion of the nuclei that appears during the fabrication time. If you didn’t provide any
fertile stock to your FabricationPlant then it’s the default vector given in the EQM_NAME
constructor.

e double BurnUp : The maximal average burn-up for your fuel to reach (in GWd/tHM).

Fill free to have a look at the models present in SCLASS_PATH/source/Model/Equivalence to get
inspiration.

Now that your equivalence model is ready two choices are offered to you. You can compile the
two files of your model with your CLASS input or you can add this model to the CLASS package.
The second option will modify the CLASS software and we will be no longer able to troubleshoot
your scenario. So use the second option only if you are a completely independent user !

10.2.1 Compile your equivalence model with your CLASS executable :
@@BAM

10.2.2 Your equivalence model in the CLASS library :

Move your EQM_NAME .hxx and EQM_NAME.cxx in SCLASS_PATH/source/Model/Equivalence/.
Then open with your favourite text editor the file SCLASS_PATH/source/src/Makefile, find "OB-
JMODEL" and add $(EQM)/EQM_NAME.o within the others $(EQM) objects. Then re-compile
CLASS, fix the compilation errors ;) and voila your equivalence model is now available in the
CLASS library.

Chapter 11

XS Model

The aim of a mean cross section model (XSModel) is to predict the mean cross sections of a
fuel built by an EquivalenceModel (EQM) (see section 10). The mean cross sections are required
to compute fuel depletion in a reactor.

11.1 Available XS Models

There is, for the moment, 2 XSModel in CLASS :

11.1.1 Pre-calculated XS : XSM_CLOSEST

This method looks, in a data base, for a fresh fuel with a composition close to the brandy
new fuel built by the EquivalenceModel. Here, close means that the fresh fuel in the data base
minimizes the distance d (see equation 11.1).

d= \/Zw,--(n?B—n;?eW)% (11.1)
i

where nlDB is the number of nuclei i in one element of the data base and n7*" the number of nuclei
i in the new fuel built by the EQM. w; is a weight associated to each isotopes, its value is 1 by de-
fault. When the closest evolution in the database is found, the corresponding mean cross sections
are extracted and used for the calculation of the depletion of the new fuel.

42

Implementation in a .cxx :

Listing 11.1: Cross section Model XSM_CLOSEST

#include "XS/XSM_CLOSEST.hxx"

int main ()
{
XSM_CLOSEST* XSMOX = new XSM_CLOSEST(gCLASS—>GetLog(), PathToIdxFile);
/] or
/1 XSM_CLOSEST* XSMOX = new XSM_CLOSEST(PathToldxFile);

}

With LogObject a CLASSLogger object (see section 7.4) and PathToldxFile a string contain-
ing the path to the .idx file. The .idx file lists all the EvolutionData (see section 7.3) of the data
base. This file is formatted as follow :

TYPE "NameOfTheFuel (withoutspace)"
"PATH_TO_DATA_BASE/EvolutionName.dat"
"PATH_TO_DATA_BASE/OtherEvolutionName.dat"

Each EvolutionName.dat file contains a formatted fuel depletion calculation. the format of a
EvolutionData ASCII file is detailed in section 7.3.1. The number of .dat files has an influence on
the model accuracy. Furthermore, the initial composition of the different fuel depletion calculations
has to be representative of the fresh fuel compositions encounter in a scenario. For more details on
this method please refer to [ref @ @ @ BAM physor].

Available .idx file :

e @@@ BAM
e @@@ BAM

For MURE user only : The program $CLASS_PATH/Utils/XS/CLOSEST/WriteDataBase
converts a list of MURE evolutions to a list of .dat and .info files and creates the .idx file, type in
terminal the following command for more details.

[
\$CLASS\ _PATH/Utils/XS/CLOSEST/WriteDataBase -h
Q@BAM

Users of others fuel depletion code (e.g VESTA, ORIGEN, MONTEBURNS, SERPENT)
have to create their own program to generate these files.

11.1.2 XS predictor : XSM_MLP

This method calculates the mean cross sections by the mean of a set of neural networks (MLP
from TMVA module) . There is two configurations available :

e One MLP per nuclear reaction and per time step (this one is deprecated and not describe in
this manual) .

e One MLP per nuclear reaction. the irradiation time is one of the MLP inputs.

Implementation in a .cxx :

Listing 11.2: Cross section Model XSM_MLP

#include "XS/XSM_MLP.hxx"

int main()

{ ...

XSM_MLP* XSMOX = new XSM_MLP(ClassLog, PathToWeightFolder, InfoFileName,
OneMLPPerTime);

!/ or

/I XSM_MLP+ XSMOX = new XSM MLP(PathToWeightFolder, InfoFileName, OneMLPPerTime

)

PathToWeightFolder (string) is the path to the folder containing the weight files (.xml files).
OneMLPPerTime is a boolean setted to true if there is one MLP per reaction and per time step.
InfoFileName (string) is the name of the file located in PathToWeightFolder which is informing
on the reactor and on the inputs of the XS_MLP model. Format of InfoFileName is :

Listing 11.3: Information file format

ReactorType :"ReactorName" //without space

FuelType :"FuelName" //without space

Heavy Metal (t) :"m"

Thermal Power (W) :"P" //power corresponding to the heavy metal mass
Time (s) :"O0 t2 t3 t4 ..." //Time when the cross section are updated

Z A I Name (input MLP) : //see explanations below

"z a i InputName"

"z2 a2 i2 InputName2"

n n

The input of MLPs are the atomic proportion of each nuclei present in the fresh fuel (plus time
if OneMLPPerTime=false). The InfoFile has to indicates the variable names (nuclei name) you
used for the training of your MLPs. For instance if the fresh fuel contains 238 Py you will write
in the InfoFile :

Z A I Name (input MLP)
94 238 0 Pu8//(if Pu8 is the variable name used for 238Pu proportion in fresh
fuel in your training sample)

Training MLPs for cross sections prediction :

Preparation of the training sample :

Like for the equivalence model, first of all you have to create a training sample. This is one of
the most important thing since the way of filling the hyperspace of the MLP inputs will influence
the accuracy of your model. We suggest to used the Latin Hyper Cube method [@ @ @REFF] to
generate many fresh fuel compositions, then, calculates with your favourite neutron transport code
(MCNP, MORET, SERPENT ...) the mean cross sections of each fresh fuel for different irradiation
time. Please refer to [REFFFBAL MLPXS] for more informations about the space filling and the
validation of this cross sections predictor . Once all your calculations are complete you have to
convert them into the .dat format (see code frame 7.1). Then type :

R ———————————————————————————————
cd $CLASS_PATH/Utils/XS/MLP/BuildInput

Open the file Gene.cxx, looks for @ @Change and make the appropriate changes. Then type :

g++ -o Gene Gene.cxx ‘root-config --cflags‘ ‘root-config --1libs®

Gene PATH_To_dat_Folder/

Where PATH_To_dat_Folder/ is the path to the folder containing the .dat files. This program
should have built two files :

e TrainingInput.root : This root file contains the fresh fuel inventories and the cross sections
values of all the read .dat files. You can plot the data with the root command line tool if you
wish. This file is the Training and testing sample that will be used for the TM VA training
and testing procedure.

e TrainingInput.cxx : This file contains, in a vector, the names of all the MLP outputs. The
number of lines in this file is the number of MLP that will be train.

Training and testing procedure :

Once the two TrainingInput (.cxx and .root) are generated type :

[
cd $CLASS_PATH/Utils/XS/MLP/Train

Look for @ @Change in the file Train_XS.cxx , and make the appropriate changes. Then type

g+t+ -o Train_XS f‘root-config --cflags‘ Train_XS.cxx ‘root-config --glibs‘ -1TMVA

According the number of "events" in your .root file and the number of cross sections, the
training time can be very very very long. You might want to decrease the number of events (this
will probably deteriorate the model accuracy) : look for nTrain_Regression in Train_XS.cxx and
change its value to your wanted number of events. And/Or you may want to use more than one
processor or perhaps a supercomputer : This is completely doable since the program Train_XS
trains only one MLP (one cross section). Indeed the execution line is the following :

-
L

where i is the index of the cross section in the vector created in TrainingInput.cxx. So feel free
to create a script to run the training on a wanted number of processors. For instance let’s say you
have 40 cross sections and 4 processors, creates 4 files (make them executable) and in the first one

type :

Train_XS O
Train_XS 1

TrainXS 9

continue in the second file, and so on. Then execute all of them. The architecture and weights
of each MLP (.xml files) are stored in the folder weights. Rename this folder by the name of the
reactor and fuel, then create in this folder the information file (see code frame 11.3). And voila

your new XSM_MLP is ready to be used.

After each training (using by default the half of the events) a testing procedure (using the
other half) is performed. This latter consists on executing the trained MLP with input data from
a known sample and compare the MLP result to the true value. These data and other infor-
mations about the training are stored in file Training_ output_i.root, with i the index of the
cross section. In order to see either the MLPs predictions are accurate or not, the root macro
$CLASS_PATH/Utils/XS/MLP/Train/deviations.C plot the distribution of relative differences be-
tween model executions and the true values and a Gaussian fit of it. Then, the mean and the
standard deviation of the Gaussian fit are stored in file XS_accuracy.dat (format : XSName mean
std.dev.). Type the following to get, in file XS_accuracy.dat, the mean and the standard deviation
of all the MLPs (with N the number of cross sections (number of MLPs)) :

cd $CLASS_PATH/Utils/XS/MLP/Train/
root
.L deviations.C

for(int i=0;i<N;i++) {stringstream ss;ss<<"Training_output_"<<i<<".root";deviations(ss.str ()
.c_str() ,0,kTRUE ,kFALSE ,kFALSE); }

The closest to O the mean is and the smaller standard deviation, the better.

11.2 How to build an XS Model

The strength of CLASS is to allow the user to build his own Physics models, this section
explains how to build a new cross section model and to incorporate it into CLASS. First you have
to create the file XSM_NAME.cxx and XSM_NAME.hxx, where NAME is a name you choose.
Then open with a text editor the .hxx and copy past the following replacing NAME by the name
you want.

Listing 11.4: XSM_NAME .hxx

#ifndef _XSM_NAME HXX
#define _XSM_NAME HXX
#include "XSModel.hxx"
// add include if needed
using namespace std;
!/ //
e
Define a XSM_NAME
describe your model
@authors YourName
@version 1.0
x/
/1 _ _ _ __
class XSM_NAME : public XSModel
{

public

XSM_NAME (/« parameters (if any)=x/);

~XSM_NAME () ;

EvolutionData GetCrossSections(IsotopicVector IV,double t=0);

private

//'your private variables and methods
}s
#endif

Open the .cxx file and copy past the following in it (replacing NAME by the same name you
used in the .hxx).

Listing 11.5: XSM_NAME.cxx

#include "XSModel.hxx"
#include "XSM_NAME.hxx"
#include "CLASSLogger.hxx"
#include "StringlLine.hxx"

#include <TGraph.h>

/1

/1

!/ XSM_NAME

/1 _ _ _ _ L _
XSM_NAME :: XSM_NAME (/* parameters (if any)x/)
{
// do what you want : for instance save path of eventual files

}

/1 _ _ _ _ L _ _ . _ _
XSM_NAME ::~XSM_NAME ()

{

// delete pointer if any; clear map if any ; empty vector if any

}
/1 - - -

EvolutionData XSM_NAME::GetCrossSections(IsotopicVector IV ,double t)

{

EvolutionData EvolutionDataFromXSM_NAME = EvolutionData();

[seokckokoskok ok skokokkokDATA BASE TINFO skt st sk sk skoskosk sk skok stk x /

EvolutionDataFromXSM_NAME.SetReactorType(fDataBaseRType);// Give the reactor
name

EvolutionDataFromXSM_NAME.SetFuelType (fDataBaseFType);//Give the fuel name

EvolutionDataFromXSM_NAME.SetPower (fDataBasePower);// Set the power W

EvolutionDataFromXSM_NAME.SetHeavyMetalMass (fDataBaseHMMass);// corresponding

to this mass (t)

map<ZAI,TGraph*> ExtrapolatedXS[3];
// ... Fill the 3 maps ExtrapolatedXS according to your model and the
// fresh fuel composition given by argument IsotopicVector IV
// argument double t may be not used.

/% xxxxTHE CROSS SECTIONS s */
EvolutionDataFromXSM_NAME.SetFissionXS(ExtrapolatedXS[0]);
EvolutionDataFromXSM_NAME.SetCaptureXS(ExtrapolatedXS[1]);
EvolutionDataFromXSM_NAME.Setn2nXS(ExtrapolatedXS[2]);

return EvolutionDataFromXSM_NAME;

}

Then, edit these two files to make the function XSM_NAME::GetCrossSections to return the

cross sections in a EvolutionData object. (In this case, the EvolutionData only contains the 1 group
cross section without the inventory evolution, the power and the corresponding mass.)
To do so you have to fill three maps (ExtrapolatedXS in .cxx), one for fission, one for (n,7), and
one for (n,2n) . Each map associates a nucleus (a ZAI) to a TGraph. A TGraph is a root object,
here, it contains the cross section (barns) evolution over time (seconds). If your are not comfortable
with TGraph refer to the root website !

Now that your cross section model is ready, two choices are offered to you. You can compile
the two files of your model with your CLASS input or you can add this model to the CLASS
package. The second option will modify the CLASS software and we will be no longer able to
troubleshoot your scenario. So use the second option only if you are a completely independent
user !

11.2.1 Compile your cross section model with your CLASS executable :

@@BAM

11.2.2 Your cross section model in the CLASS library :

Move your XSM_NAME.hxx and XSM_NAME.cxx in $CLASS_PATH/source/Model/XS/.
Then open with your favourite text editor the file
$CLASS_PATH/source/src/Makefile, find "OBJIMODEL" and add $(XSM)/XSM_NAME.o within
the others $(XSM) objects. Then re-compile CLASS, fix the compilation errors ;) and voila your
cross section model is now available in the CLASS library.

Uhttp://root.cern.ch/root/html/TGraph.html

http://root.cern.ch/root/html/TGraph.html

Chapter 12

Irradiation Model

The irradiation model is the Bateman equations solver. It is used for the calculation of fuel
depletion in reactor. The decay depletion (without neutron flux) is not managed by an irradiation
model but with a decay data bases (see section 7.3.2).

12.1 Available Irradiation Model

At the moment, there is two Irradiation Model available. The two solvers differs according
to the numerical integration method used. The Irradiation Model IM_RK4 uses the fourth order
Runge-Kutta method. And IM_Matrix uses the development in a power series of the exponential
of the Bateman matrix.

Implementation in a .cxx :

Listing 12.1: Irradiation Model

#include "CLASSHeaders.hxx"
#include "Irradiation/IM_RK4.hxx"
//#include "Irradiation/IM_Matrix.hxx"

using namespace std;
int main ()
{
/...

IM_RK4x* Solver = new IM_RK4(LogObject); // or new IM RK4(); // uses a

default logfile
// IM_Matrix* Solver = new IM_Matrix(LogObject); // or new IM_Matrix(); //
uses default logfile

PhysicsModels* PHYMOD = new PhysicsModels(XSMOX, EQMLINPWRMOX, Solver);

/...

}

LogObject is a CLASSLogger object (see section 7.4).

31

12.1.1 How to build an Irradiation Model

The strength of CLASS is to allow the user to build his own Physics models, this section
explains how to build a new Bateman solver (Irradiation Model) and to incorporate it into CLASS.
First you have to create the file IRM_NAME.cxx and IRM_NAME.hxx, where NAME is a name
you choose. Then open with a text editor the .hxx and copy past the following replacing NAME
by the name you want.

Listing 12.2: IRM_NAME .hxx

#ifndef _IRM_NAME_HXX
#tdefine _IRM_NAME HXX
#include "IrradiationModel.hxx"
using namespace std;

class CLASSLogger;

class EvolutionData;

/1 //
e

Define a IM NAME

Description

@author YourName

@version 3.0

*/

/1 _ __ _
class IM_NAME
{

public IrradiationModel

public
IM_NAME(); //constructor
/%!
virtual method called to perform the irradiation calculation using a set of
cross sections.
\param IsotopicVector IV isotopic vector to irradiate
\param EvolutionData XSSet set of corss section to use to perform the

evolution calculation
*/
EvolutionData GenerateEvolutionData(IsotopicVector IV, EvolutionData XSSet,
double Power,
/1}

private

double cycletime);

// declare your private variables here

}s
#endif

Open the .cxx file and copy past the following in it (replacing NAME by the same name you
used in the .hxx).

Listing 12.3: IRM_NAME.cxx

#include "IRM_NAME.hxx"

#include "CLASSLogger.hxx"

#include <TGraph.h>

// Add whatever includes

using namespace std;

/1 L L L L L L L L L
IRM_NAME :: IRM_NAME () : IrradiationModel (new CLASSLogger ("IRM_NAME.log"))
{

// do what you want

}

/1 _ N _ —

EvolutionData IRM_NAME:: GenerateEvolutionData(IsotopicVector FreshFuellV,
EvolutionData XSSet, double Power, double cycletime)

EvolutionData GeneratedDB = EvolutionData(GetLog());
GeneratedDB.SetPower (Power);
GeneratedDB.SetReactorType(ReactorType);

//Your Solver algorithm has to fill GeneratedDB with the calculated
inventories

//using

GeneratedDB.Nucleilnsert (pair<ZAI, TGraphx> (ZAI(Z,A,I), new TGraph(
Size0fpTime, pTime, pZAIQuantity)));

return GeneratedDB;

The function GenerateEvolutionData returns a EvolutionData (see section 7.3) containing the
inventories evolution over time. This has to be done according to the fresh fuel composition
(FreshFuellV), to the mean cross sections (XSSet), to the (Power : thermal power (W)) and to
the irradiation time (cycletime (seconds)). To fill this EvolutionData you have to call the method
Nucleilnsert which associates a nucleus (a ZAI) to a root object TGraph !. This TGraph is the
evolution (pZAIQuantity in atoms) of this associated nucleus (ZAI(Z,A,I)) over time (pTime in
seconds). This TGraph has SizeOfpTime points.

After making the appropriate changes in this two files to make the function GenerateEvolu-
tionData to return the fuel evolution (fill free to look at
$CLASS_PATH/source/Model/Irradiation/*xx to get inspiration), two choices are offered to you.

Uhttp://root.cern.ch/root/html/TGraph.html

http://root.cern.ch/root/html/TGraph.html

You can compile the two files of your model with your CLASS input or you can add this model
to the CLASS package. The second option will modify the CLASS software and we will be no
longer able to troubleshoot your scenario. So use the second option only if you are a completely
independent user !

12.1.2 Compile your cross section model with your CLASS executable :

@@BAM

12.1.3 Your cross section model in the CLASS library :

Move your IRM_NAME.hxx and IRM_NAME.cxx in SCLASS_PATH/source/Model/Irradiation/.
Then open with your favourite text editor the file
$CLASS_PATH/source/src/Makefile, find "OBJMODEL" and add $(IM)/IRM_NAME.o within
the others $(IM) objects. Then re-compile CLASS, fix the compilation errors ;) and voila your
irradiation model is now available in the CLASS library.

Part V

CLASSGui : The results viewer

55

To use the CLASSGui :

CLASSGui MyCLASSOutput.root

@0 ® x| CLASSGui CLASS_Default.root

Park 0 | park 1]
Total | Reactor(s) | Stock(s) | Pools) | Fabrication Plants) |

4
[T ToOTAL

|
=
[y
=
]
—
m

WASTE
OUTINCOME
REACTOR
COOLIMNG

STOCK
FUELFABRICATION
FO'WER

e

¥ Insice [T Sum OF Selected
[cumul In
[Cumul out

Nuclei 0 | Nuclei 1| Nuclei 2 | Muclei 3 | Nuclel 4 | Nuclei 5|

[T zs6fm [zdact [0 242cm [T o245Pu [T o237mp [T 2300 [T 227w [2106
[T 2esFm [247t [T 241cm [244Pu] 236Mp [234Pa [2282: [2096
[2s5Es [2soBk [240cm [T 243ru [238Mp [233Fa [2278z [2086
[T 254k [T z4aek [T 23acm [T 242Pu [23smp [0 232ra [T 2264c [2076
[2536s [24gex [245em [T 2¢1pu [234mp [o23tPa [2254 [212P0
[T 2525 [zavek [244am [T 290pu [T 2400 [230Pa [T 2244 [210P0
[2s1es [T 2s0Cm [T 2432m [T 2sapy [T 2ssu [T 2z2spra [228Ra [209rk
[2ssce [2e3cm [242sm [T 2zaPu [2370 [234t [226Ra [208Pk
[T 2s4cs [T zascm [T 242am [T o2a7Pu [o230 [232 [T 225Ra [207
[T 2s3ct [2¢47cm [T 2¢1am [T 236Pu [23su [23t [0 224Ra [206PR
[T 2sact [T za6cm [T 240em [o23dpu [230 [230m [T 223Ra [205Pm
[T 2s1ce [T o245cm [T 239am [240mp T 2330 [229 [T 222Rm [204Fk
[T 250t [244cm [T o247Pu [o23gnp [o2z2u [2zsm [T 210r0 [205m
[T z24aci [243cm [T o246Pu [T o23smp [T o231u [o2zam [21260 [T 204Hg

Plot (A1l | Save Data | Quit

Figure 12.1: Shematic Pathway

Part VI

Input examples

57

58

Part VII

In development

	Abstract
	Table of Contents
	List of figures
	I Introduction
	II First Steps
	Package Contents
	Install procedure
	Requirement
	Installation

	CLASS Execution
	News, forum, troubleshooting, doxygen ...

	III CLASS : General overview
	Generalities
	Basic unit
	CLASS working process principle

	Facilities descriptions
	CLASSFacility
	Reactor
	Generalities
	Use
	Fixed Fuel
	Reprocessed Fuel

	CLASSBackEnd
	Storage
	Pool
	SeparationPlant

	Fabrication Plant
	PathWay between Faiclity
	Reactor with fixed fuel and a Storage
	Reactor with fixed fuel, a Pool and a Storage
	Reactor with fixed fuel, two SeprationPlant, a Pool and four Storage
	Reactor, a FabricationPlant, a Pool and a Storage

	Other objects
	ZAI
	IsotopicVector
	Generality
	Print method
	GetTotalMass
	Multiplication between IsotopicVector

	EvolutionData
	EvolutionData ASCII format
	DecayDataBank

	Log management : CLASSLogger

	Scenario/Park
	Fill the scenario
	OutPut
	General Output
	Output names
	Output Frequency

	IV Physics Models
	Description and implementation
	Equivalence Model
	Available Equivalence Models
	PWR-MOX models :
	Linear BU model : EQM_LIN_MOX
	Quadratic Model : EQM_QUAD_MOX
	Neural network model : EQM_MLP_MOX

	PWR-UOX model :
	Linear Model: EQM_LIN_UOX

	How to build an Equivalence Model
	Compile your equivalence model with your CLASS executable :
	Your equivalence model in the CLASS library :

	XS Model
	Available XS Models
	Pre-calculated XS : XSM_CLOSEST
	XS predictor : XSM_MLP

	How to build an XS Model
	Compile your cross section model with your CLASS executable :
	Your cross section model in the CLASS library :

	Irradiation Model
	Available Irradiation Model
	How to build an Irradiation Model
	Compile your cross section model with your CLASS executable :
	Your cross section model in the CLASS library :

	V CLASSGui : The results viewer
	VI Input examples
	VII In development

