visiavg.cc 25.5 KB
Newer Older
OP's avatar
OP committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
// Utilisation de SOPHYA pour faciliter les tests ...
#include "sopnamsp.h"
#include "machdefs.h"

/* ---------------------------------------------------------- 
   Projet BAORadio/PAON4 - (C) LAL/IRFU  2017

   visiavg: programme de lecture des fichiers matrices de 
   visibilites de PAON4, calcul de visibilities moyennes 
    en bin de temps et de frequence
   O. Perdereau, R.Ansari   -  LAL
   ---------------------------------------------------------- */

// include standard c/c++
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <iostream>
#include <string>

#include "pexceptions.h"
#include "tvector.h"
#include "fioarr.h"
// #include "tarrinit.h"
#include "ntuple.h" 
#include "datatable.h" 
#include "histinit.h" 
#include "matharr.h" 
#include "timestamp.h"
#include <utilarr.h>

// include sophya mesure ressource CPU/memoire ...
#include "resusage.h"
#include "ctimer.h"
#include "timing.h"

// include lecteur de fichiers visibilites 
40
#include "visp4winreader.h"
OP's avatar
OP committed
41

OP's avatar
OP committed
42 43 44
#include "fitsioserver.h"
#include "fiosinit.h"

OP's avatar
OP committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
int Usage(void);
int Usage(void)
{
  cout << " --- visiavg.cc : Read PPF files produced by mfacq time-frequency\n" << endl;
  cout << " Usage: visiavg [-arguments] \n" << endl;
  P4AnaParams::UsageOptions();
  cout<< endl;
  return 1;
}

//----------------------------------------------------
int main(int narg, const char* arg[])
{
  // --- Decoding parameters 
  if( (narg<2) || ((narg>1)&&(strcmp(arg[1],"-h")==0) ) )  return Usage();
OP's avatar
OP committed
60
  FitsIOServerInit();
OP's avatar
OP committed
61 62
  P4AnaParams params;
  params.DecodeArgs(narg, arg);
OP's avatar
OP committed
63

OP's avatar
OP committed
64 65
  string outfile = params.outfile_;
  if (outfile.length()<1)  outfile = "visavg.ppf";
OP's avatar
OP committed
66

OP's avatar
OP committed
67 68 69 70
  string fitsoutfile = params.fitsoutfile_;
  if (fitsoutfile.length()>=1) {
    fitsoutfile = "!"+fitsoutfile ; // adds '!' ?
  }
OP's avatar
modifs  
OP committed
71

OP's avatar
OP committed
72 73 74 75 76 77 78 79 80 81 82
  int deltaIavg = params.TFMtimebin_;
  sa_size_t TFMfbin = params.TFMfreqbin_;
  int prtlev = params.prtlev_;
  bool FgTFMAC = true;
  bool FgTFMCX = true;
  string desctfmap;
  bool FgTFM = params.fgTFM_;   // true -> create time-frequency maps

  params.Print(cout);
  cout <<"visiavg/Info: Path BAO5:"<<params.inpath5_<<" BAO6:"<<params.inpath6_<<"\n"
       <<"fgreorderfreq="<<params.fgreorderfreq_<<"\n"
83
       <<" DeltaIAvg="<<deltaIavg<<"\n"
OP's avatar
OP committed
84 85 86 87 88 89 90 91 92 93
       <<"outfile="<<outfile<<" PrtLev="<<prtlev<<endl;

  if (!FgTFM) {
    cout<<" visiavg/parameter error : specify Time-Frequency map parameter with -tfm "<<endl;
    return 5;
  }

  P4AVisiNumEncoder  visiencod;
  vector<sa_size_t> KVAC = visiencod.getAllAutoCor();
  vector<sa_size_t> KVCXHH = visiencod.getAllHCrossCor();
94 95
  vector<sa_size_t> KVCXVV = visiencod.getAllVCrossCor();
  vector<sa_size_t> KVCXHV = visiencod.getAllHVCrossCor();
96 97

  
OP's avatar
OP committed
98 99 100 101
  cout << " List of AutoCorrelation rows:"<<endl;
  for(size_t k=0; k<KVAC.size(); k++) {
    cout << "KVAC["<<k<<"]="<<KVAC[k]<<"  ->"<<visiencod.Convert2VisiName(KVAC[k])<<endl;
  }
102

OP's avatar
OP committed
103 104 105 106
  cout << " List of HH X-cor rows:"<<endl;
  for(size_t k=0; k<KVCXHH.size(); k++) {
    cout << "KVCXHH["<<k<<"]="<<KVCXHH[k]<<"  ->"<<visiencod.Convert2VisiName(KVCXHH[k])<<endl;
  }
OP's avatar
modifs  
OP committed
107 108


OP's avatar
OP committed
109 110 111
  // ---
  HiStatsInitiator _inia;
  int rc = 0;
OP's avatar
modifs  
OP committed
112

OP's avatar
OP committed
113 114 115 116
  try {
    ResourceUsage resu;


117
    VisiP4WindowReader wreader(params);
118

119 120 121
    long Imin = wreader.getReader().getSerialFirst();
    long Imax =  wreader.getReader().getSerialLast();
    long Istep =  wreader.getReader().getSerialStep();
OP's avatar
OP committed
122 123
    cout << "visiavg/Info: processing visibility matrix serial/sequence number range "
	 <<Imin<<" <= seq <= " << Imax << " with step="<<Istep<<endl;
124
    cout << " WindowSize="<<wreader.getWindowSize()<<"  -> TotalNbWindows="<<wreader.getTotalNbWindows()<<endl;
OP's avatar
OP committed
125 126

    bool fgok=true;
OP's avatar
OP committed
127 128
    // vecteur de noms 
    vector <string> ext_names;
OP's avatar
OP committed
129
    // un vecteur avec les temps 
130 131
    TVector< double > timevec(wreader.getTotalNbWindows()/deltaIavg); 
    TVector< double > ravec(wreader.getTotalNbWindows()/deltaIavg); 
OP's avatar
OP committed
132 133
    TMatrix< complex<r_4> > vismtx;
    TMatrix< complex<r_4> > acsum;
OP's avatar
OP committed
134
    TMatrix< r_4 > acsum_sq; // wil sum only the real part ^2
135

OP's avatar
OP committed
136
    TMatrix< complex<r_4> > cxsum;
OP's avatar
OP committed
137 138 139
    // for sums of real and imag parts 
    TMatrix< r_4 > cxsum_sq_rp;
    TMatrix< r_4 > cxsum_sq_ip;
OP's avatar
OP committed
140

141 142 143 144 145 146 147 148 149 150 151 152
    // for VV if needed
    TMatrix< complex<r_4> > cxsum_vv;
    // for sums of real and imag parts 
    TMatrix< r_4 > cxsum_vv_sq_rp;
    TMatrix< r_4 > cxsum_vv_sq_ip;

    // for HV if needed
    TMatrix< complex<r_4> > cxsum_hv;
    // for sums of real and imag parts 
    TMatrix< r_4 > cxsum_hv_sq_rp;
    TMatrix< r_4 > cxsum_hv_sq_ip;

OP's avatar
OP committed
153 154 155 156 157
    TimeStamp dateobs, cfdate,datestart;
    TimeStamp dateorg(2015,1,1,12,0,0.);  // Date origine 1 jan 2015
    double mttag;
    int cnt=0, cntnt=0, pcntnt=0;
    int I=0; 
OP's avatar
OP committed
158
    // for
159

OP's avatar
OP committed
160 161
    //----- 6 H-H cross-cor TimeFrequency maps 
    vector< TArray< complex<r_4> > > vtfm;
OP's avatar
OP committed
162 163 164 165
    //----- 6 H-H cross-cor TimeFrequency maps for the variances of real and imag parts 
    vector< TArray< r_4 > > vtfm_rp_sq;
    vector< TArray< r_4 > > vtfm_ip_sq;

166 167 168 169 170 171 172 173 174 175 176 177
    //----- 6 V-V cross-cor TimeFrequency maps 
    vector< TArray< complex<r_4> > > vtfm_vv;
    //----- 6 V-V cross-cor TimeFrequency maps for the variances of real and imag parts 
    vector< TArray< r_4 > > vtfm_vv_rp_sq;
    vector< TArray< r_4 > > vtfm_vv_ip_sq;

    //----- 16 H-V cross-cor TimeFrequency maps 
    vector< TArray< complex<r_4> > > vtfm_hv;
    //----- 16 H-V cross-cor TimeFrequency maps for the variances of real and imag parts 
    vector< TArray< r_4 > > vtfm_hv_rp_sq;
    vector< TArray< r_4 > > vtfm_hv_ip_sq;

OP's avatar
OP committed
178 179
    //----- 8 auto-corr TimeFrequency maps 
    vector< TArray< r_4 > > vtfmac;
OP's avatar
OP committed
180 181
    //----- 8 auto-corr TimeFrequency variance maps 
    vector< TArray< r_4 > > vtfmac_sq;
OP's avatar
OP committed
182 183 184 185 186 187
    
    //---- for the time-freqency map filling    
    sa_size_t TFMtmidx=0;
    sa_size_t tfmSX, tfmSY;

    while (fgok) {
188
      //reads next visibility matrix window 
189 190
      fgok = wreader.Shift();
      
191 192
      if (!fgok)  break;
     
193
      vismtx = wreader.getAverageVisMtx(cfdate);
194
      
195
      if (cnt==0)  {    //resizing matrices for sum of auto-correlations and sum of 6 cross-correlations 
196

OP's avatar
OP committed
197
	acsum.SetSize(8, vismtx.NCols());
198 199
	if (params.doSigma_)   // for computing Sigma, if required 
	  acsum_sq.SetSize(8, vismtx.NCols());
200

OP's avatar
OP committed
201
	cxsum.SetSize(6, vismtx.NCols());
202 203 204 205
	if (params.doSigma_) {   // for computing Sigma, if required 
	  cxsum_sq_rp.SetSize(6, vismtx.NCols());
	  cxsum_sq_ip.SetSize(6, vismtx.NCols());
	}
206 207 208
	// VV if needed 
	if (params.doVV_){
	  cxsum_vv.SetSize(6, vismtx.NCols());
209 210 211 212
	  if (params.doSigma_) {   // for computing Sigma, if required 
	    cxsum_vv_sq_rp.SetSize(6, vismtx.NCols());
	    cxsum_vv_sq_ip.SetSize(6, vismtx.NCols());
	  }
213 214 215 216 217
	}

	// HV if needed 
	if (params.doHV_){
	  cxsum_hv.SetSize(16, vismtx.NCols());
218 219 220 221
	  if (params.doSigma_) {   // for computing Sigma, if required 
	    cxsum_hv_sq_rp.SetSize(16, vismtx.NCols());
	    cxsum_hv_sq_ip.SetSize(16, vismtx.NCols());
	  }
222 223 224
	}


225
	tfmSX=wreader.getTotalNbWindows()/deltaIavg;
OP's avatar
OP committed
226 227 228
	tfmSY=vismtx.NCols()/TFMfbin;
	//allocating 8 Auto-Corr time-frequency maps 
	cout<<"visiavg/Info: allocating 8 AutoCor Time-Frequency maps : Time->NX="<<tfmSX<<" x Freq->NY="<<tfmSY<<endl;
229 230 231 232 233
	for(int k=0; k<8; k++) vtfmac.push_back( TArray< r_4 >(tfmSX, tfmSY) );
	if (params.doSigma_) {   // for computing Sigma, if required 
	  cout <<" and 8 for the the variance maps "<<endl;
	  for(int k=0; k<8; k++) vtfmac_sq.push_back( TArray< r_4 >(tfmSX, tfmSY) ); 
	}
OP's avatar
OP committed
234 235 236
	//allocating 6 Cross-Corr H-H time-frequency maps 
	cout<<"visiavg/Info: allocating H-H cross-cor Time-Frequency maps : Time->NX="<<tfmSX<<" x Freq->NY="<<tfmSY<<endl;
	for(int k=0; k<6; k++) vtfm.push_back( TArray< complex<r_4> >(tfmSX, tfmSY) );
237 238 239 240 241
	if (params.doSigma_) {   // for computing Sigma, if required 
	  cout << "and the 2x6 for squares of real & imaginary parts " << endl;
	  for(int k=0; k<6; k++) vtfm_rp_sq.push_back( TArray< r_4 >(tfmSX, tfmSY) );
	  for(int k=0; k<6; k++) vtfm_ip_sq.push_back( TArray< r_4 >(tfmSX, tfmSY) );
	}
242 243 244 245 246
	// VV if needed 
	if (params.doVV_){
	  //allocating 6 Cross-Corr V-V time-frequency maps 
	  cout<<"visiavg/Info: allocating V-V cross-cor Time-Frequency maps : Time->NX="<<tfmSX<<" x Freq->NY="<<tfmSY<<endl;
	  for(int k=0; k<6; k++) vtfm_vv.push_back( TArray< complex<r_4> >(tfmSX, tfmSY) );
247 248 249 250 251
	  if (params.doSigma_) {   // for computing Sigma, if required 
	    cout << "and the 2x6 for squares of real & imaginary parts " << endl;
	    for(int k=0; k<6; k++) vtfm_vv_rp_sq.push_back( TArray< r_4 >(tfmSX, tfmSY) );
	    for(int k=0; k<6; k++) vtfm_vv_ip_sq.push_back( TArray< r_4 >(tfmSX, tfmSY) );
	  }
252 253 254 255 256 257 258
	}

	// HV if needed 
	if (params.doHV_){
	  //allocating 16 Cross-Corr H-V time-frequency maps 
	  cout<<"visiavg/Info: allocating 16 H-V cross-cor Time-Frequency maps : Time->NX="<<tfmSX<<" x Freq->NY="<<tfmSY<<endl;
	  for(int k=0; k<16; k++) vtfm_hv.push_back( TArray< complex<r_4> >(tfmSX, tfmSY) );
259 260 261 262 263
	  if (params.doSigma_) {   // for computing Sigma, if required 
	    cout << "and the 2x16 for squares of real & imaginary parts " << endl;
	    for(int k=0; k<16; k++) vtfm_hv_rp_sq.push_back( TArray< r_4 >(tfmSX, tfmSY) );
	    for(int k=0; k<16; k++) vtfm_hv_ip_sq.push_back( TArray< r_4 >(tfmSX, tfmSY) );
	  }
264 265
	}

OP's avatar
OP committed
266 267 268 269 270 271 272 273 274 275 276

	// recupere le jour de depart @ 0h
	datestart = TimeStamp(cfdate.DaysPart(),0.);
 
      }
      if (I==0) {   // start filling a new time bin 
	dateobs=cfdate;
	if (prtlev>0) 
	  cout<<"visiavg/Info:  dateobs="<<dateobs<<" SecondsPart()="<<dateobs.SecondsPart()<<endl;
	acsum = complex<r_4>(0.,0.);
	cxsum = complex<r_4>(0.,0.);
277 278 279 280 281
	if (params.doSigma_) {   // for computing Sigma, if required 
	  acsum_sq = 0.;
	  cxsum_sq_rp = 0.;
	  cxsum_sq_ip = 0.;
	}
282 283 284
	// VV if needed 
	if (params.doVV_){
	  cxsum_vv = complex<r_4>(0.,0.);
285 286 287 288
	  if (params.doSigma_) {   // for computing Sigma, if required 
	    cxsum_vv_sq_rp = 0.;
	    cxsum_vv_sq_ip = 0.;
	  }
289 290 291 292 293
	}

	// HV if needed 
	if (params.doHV_){
	  cxsum_hv = complex<r_4>(0.,0.);
294 295 296 297
	  if (params.doSigma_) {   // for computing Sigma, if required 
	    cxsum_hv_sq_rp = 0.;
	    cxsum_hv_sq_ip = 0.;
	  }
298
	}
OP's avatar
OP committed
299 300 301 302
      }
      
      //   sum (integration) along the time axis 
      for(size_t k=0; k<KVAC.size(); k++)      acsum.Row(k) += vismtx.Row(KVAC[k]);     // Les auto-correlations 
303 304 305 306 307
      if (params.doSigma_) {   // for computing Sigma, if required 
	for(size_t k=0; k<KVAC.size(); k++)      {
	  TVector<r_4> tmp = real(vismtx.Row(KVAC[k]));
	  acsum_sq.Row(k) += tmp.MulElt(tmp,tmp) ;
	}
OP's avatar
OP committed
308 309 310 311
      }

      for(size_t k=0; k<KVCXHH.size(); k++){
	cxsum.Row(k) += vismtx.Row(KVCXHH[k]);   // les cross-correlations 
312 313 314 315 316 317
	if (params.doSigma_) {   // for computing Sigma, if required 
	  TVector<r_4> tmp = real(vismtx.Row(KVCXHH[k]));
	  cxsum_sq_rp.Row(k) +=  tmp.MulElt(tmp,tmp) ;
	  tmp = imag(vismtx.Row(KVCXHH[k]));
	  cxsum_sq_ip.Row(k) +=  tmp.MulElt(tmp,tmp) ;
	}
OP's avatar
OP committed
318
      }
319 320 321 322
      
      if (params.doVV_){
	for(size_t k=0; k<KVCXVV.size(); k++){
	  cxsum_vv.Row(k) += vismtx.Row(KVCXVV[k]);   // les cross-correlations 
323 324 325 326 327 328
	  if (params.doSigma_) {   // for computing Sigma, if required 
	    TVector<r_4> tmp = real(vismtx.Row(KVCXVV[k]));
	    cxsum_vv_sq_rp.Row(k) +=  tmp.MulElt(tmp,tmp) ;
	    tmp = imag(vismtx.Row(KVCXVV[k]));
	    cxsum_vv_sq_ip.Row(k) +=  tmp.MulElt(tmp,tmp) ;
	  }
329 330 331 332 333 334
	}
      }

      if (params.doHV_){
	for(size_t k=0; k<KVCXHV.size(); k++){
	  cxsum_hv.Row(k) += vismtx.Row(KVCXHV[k]);   // les cross-correlations HV
335 336 337 338 339 340
	  if (params.doSigma_) {   // for computing Sigma, if required 
	    TVector<r_4> tmp = real(vismtx.Row(KVCXHV[k]));
	    cxsum_hv_sq_rp.Row(k) +=  tmp.MulElt(tmp,tmp) ; 
	    tmp = imag(vismtx.Row(KVCXHV[k]));
	    cxsum_hv_sq_ip.Row(k) +=  tmp.MulElt(tmp,tmp) ;
	  }
341 342 343
	}
      }

OP's avatar
OP committed
344 345


OP's avatar
OP committed
346
      I++;    // incrementing DeltaTime counter 
347 348 349 350 351 352 353
      // we check that our time index did not go beyond the allocated array size (might not be necessary)
      if ((I==deltaIavg)&&(TFMtmidx>=tfmSX)) {  // Cela ne devrait pas arriver en principe 
	TFMtmidx++;	I=0;  
	cout << "visiavg/Warning: something wrong in the logic , (TFMtmidx="<<TFMtmidx<<") >= (tfmSX="<<tfmSX<<")"
	     << " for read count="<<cnt<<endl; 
      }
      else if (I==deltaIavg) {   // Filling TFM maps 
OP's avatar
OP committed
354 355 356
	//---- On s'occupe d'abord des autocorrelations P1 ... P8 
	for(size_t k=0; k<KVAC.size(); k++) {  // Loop over the 8 auto-correlations 
	  TVector<r_4> vac = real(acsum.Row(k));
357 358 359 360 361 362
	  TArray< r_4 > & tfmap = vtfmac[k];
	  for(sa_size_t jy=0; jy<tfmSY; jy++) {  // frequency binning 
	    tfmap(TFMtmidx, jy) = vac( Range(jy*TFMfbin, (jy+1)*TFMfbin-1) ).Sum();
	  }
	  if (params.doSigma_) {   // for computing Sigma, if required 
	    TVector<r_4> vacsq = acsum_sq.Row(k);
OP's avatar
OP committed
363
	    TArray< r_4 > & tfmap_sq = vtfmac_sq[k];
OP's avatar
OP committed
364
	    for(sa_size_t jy=0; jy<tfmSY; jy++) {  // frequency binning 
OP's avatar
OP committed
365
	      tfmap_sq(TFMtmidx, jy) = vacsq( Range(jy*TFMfbin, (jy+1)*TFMfbin-1) ).Sum();
366 367
	    }
	  }  //-- end of computing sigmas   
OP's avatar
OP committed
368
	}  //----- end of loop over the 8 AutoCor
OP's avatar
OP committed
369

OP's avatar
OP committed
370
	//---- On s'occupe des 6 cross-correlations  1H-2H ... 3H-4H 
OP's avatar
OP committed
371 372
 	for(size_t k=0; k<KVCXHH.size(); k++)   {   // loop over the 6 Xcor 	  
	  TVector< complex<r_4> > vcx = cxsum.Row(k);
373 374 375 376 377 378 379
	  TArray< complex<r_4> > & tfmap = vtfm[k];
	  for(sa_size_t jy=0; jy<tfmSY; jy++) {
	    tfmap(TFMtmidx, jy) = vcx( Range(jy*TFMfbin, (jy+1)*TFMfbin-1) ).Sum();
	  } 
	  if (params.doSigma_) {   // for computing Sigma, if required 
	    TVector<r_4>  vcxprsq = cxsum_sq_rp.Row(k);
	    TVector<r_4>  vcxpisq = cxsum_sq_ip.Row(k);
OP's avatar
OP committed
380 381
	    TArray< r_4 > & tfmapsqpr = vtfm_rp_sq[k];
	    TArray< r_4 > & tfmapsqpi = vtfm_ip_sq[k];
OP's avatar
OP committed
382
	    for(sa_size_t jy=0; jy<tfmSY; jy++) {
OP's avatar
OP committed
383 384
	      tfmapsqpr(TFMtmidx, jy) = vcxprsq( Range(jy*TFMfbin, (jy+1)*TFMfbin-1) ).Sum();
	      tfmapsqpi(TFMtmidx, jy) = vcxpisq( Range(jy*TFMfbin, (jy+1)*TFMfbin-1) ).Sum();
OP's avatar
OP committed
385
	    } 
386
	  }    //-- end of computing sigmas  
OP's avatar
OP committed
387
	}  //----- end of loop over the 6 Xcor 
388 389 390 391 392

	if (params.doVV_){ // Option VV 
	  //---- On s'occupe des 6 cross-correlations  1V-2V ... 3V-4V 
	  for(size_t k=0; k<KVCXVV.size(); k++)   {   // loop over the 6 Xcor 	  
	    TVector< complex<r_4> > vcx = cxsum_vv.Row(k);
393 394 395 396 397 398 399
	    TArray< complex<r_4> > & tfmap = vtfm_vv[k];
	    for(sa_size_t jy=0; jy<tfmSY; jy++) {
	      tfmap(TFMtmidx, jy) = vcx( Range(jy*TFMfbin, (jy+1)*TFMfbin-1) ).Sum();
	    }
	    if (params.doSigma_) {   // for computing Sigma, if required 
	      TVector<r_4>  vcxprsq = cxsum_vv_sq_rp.Row(k);
	      TVector<r_4>  vcxpisq = cxsum_vv_sq_ip.Row(k);
400 401 402 403 404
	      TArray< r_4 > & tfmapsqpr = vtfm_vv_rp_sq[k];
	      TArray< r_4 > & tfmapsqpi = vtfm_vv_ip_sq[k];
	      for(sa_size_t jy=0; jy<tfmSY; jy++) {
		tfmapsqpr(TFMtmidx, jy) = vcxprsq( Range(jy*TFMfbin, (jy+1)*TFMfbin-1) ).Sum();
		tfmapsqpi(TFMtmidx, jy) = vcxpisq( Range(jy*TFMfbin, (jy+1)*TFMfbin-1) ).Sum();
405 406
	      }
	    } //-- end of computing sigmas  
407 408 409 410 411 412 413
	  }  //----- end of loop over the 6 Xcor VV
	} // end VV option 

	if (params.doHV_){ // Option HV 
	  //---- On s'occupe des 16 cross-correlations  1H-1V ... 4H-4V 
	  for(size_t k=0; k<KVCXHV.size(); k++)   {   // loop over the 16 Xcor 	  
	    TVector< complex<r_4> > vcx = cxsum_hv.Row(k);
414 415 416 417 418 419 420
	    TArray< complex<r_4> > & tfmap = vtfm_hv[k];
	    for(sa_size_t jy=0; jy<tfmSY; jy++) {
	      tfmap(TFMtmidx, jy) = vcx( Range(jy*TFMfbin, (jy+1)*TFMfbin-1) ).Sum();
	    } 
	    if (params.doSigma_) {   // for computing Sigma, if required 
	      TVector<r_4>  vcxprsq = cxsum_hv_sq_rp.Row(k);
	      TVector<r_4>  vcxpisq = cxsum_hv_sq_ip.Row(k);
421 422 423 424 425 426
	      TArray< r_4 > & tfmapsqpr = vtfm_hv_rp_sq[k];
	      TArray< r_4 > & tfmapsqpi = vtfm_hv_ip_sq[k];
	      for(sa_size_t jy=0; jy<tfmSY; jy++) {
		tfmapsqpr(TFMtmidx, jy) = vcxprsq( Range(jy*TFMfbin, (jy+1)*TFMfbin-1) ).Sum();
		tfmapsqpi(TFMtmidx, jy) = vcxpisq( Range(jy*TFMfbin, (jy+1)*TFMfbin-1) ).Sum();
	      } 
427
	    } //-- end of computing sigmas  
428 429 430
	  }  //----- end of loop over the 16 Xcor HV
	} // end HV option 

OP's avatar
OP committed
431 432
	double tdif =  cfdate.TimeDifferenceSeconds(cfdate,dateobs)/2.;
	timevec(TFMtmidx) = dateobs.TimeDifferenceSeconds(dateobs.ShiftSeconds (tdif ),datestart);	// centre du bin 
433
	ravec(TFMtmidx) = P4Coords::RAFromTimeTU(dateobs.ShiftSeconds (tdif ));
OP's avatar
OP committed
434 435 436 437 438 439
	TFMtmidx++;
	//  ... done 
	I=0;  cntnt++;
      }
      cnt++;
      if ((cnt>0)&&(cntnt%10==0)&&(cntnt>pcntnt)) {
440 441
	cout<<"visiavg/Info: TFM-Map fill cnt="<<cntnt<<" VisMtxCount="<<cnt
	    <<" /Max="<<wreader.getTotalNbWindows()<<" DateObs="<<dateobs<<endl;
OP's avatar
OP committed
442 443 444
	pcntnt=cntnt;
      }
    }
445
    cout<<"visiavg/Info: count="<<cnt*wreader.getWindowSize()<<" Visibility Matrices read "<<endl;
OP's avatar
OP committed
446

OP's avatar
OP committed
447
    // --- Sauvegarde cartes temps-frequence en fits 
OP's avatar
OP committed
448 449 450
    //FitsABTWriter * fbtw = NULL;
    FitsInOutFile  * fos = NULL ;

OP's avatar
OP committed
451
    if (fitsoutfile.length()>=1){
452
      cout << " fitsoutfile :" <<fitsoutfile<<":"<< endl;
OP's avatar
OP committed
453 454 455
      fos = new FitsInOutFile(fitsoutfile, FitsInOutFile::Fits_Create);
    }
    
OP's avatar
OP committed
456

OP's avatar
OP committed
457
    POutPersist potfm(outfile);
OP's avatar
OP committed
458 459
    char bufnam[10];
    int numkey =0;
OP's avatar
OP committed
460 461 462
    // --- renormalizing and saving AutoCorr time-frequency maps 
    cout<<"  visiavg/Info: Saving 8 AutoCorr time-frequency maps to PPF file "<<outfile<<endl;
    const char* tfm_names[8]={"TFM_1H", "TFM_2H", "TFM_3H", "TFM_4H", "TFM_1V", "TFM_2V", "TFM_3V", "TFM_4V"};
OP's avatar
OP committed
463
    const char* tfmsq_names[8]={"VARTFM_1H", "VARTFM_2H", "VARTFM_3H", "VARTFM_4H", "VARTFM_1V", "VARTFM_2V", "VARTFM_3V", "VARTFM_4V"};
OP's avatar
OP committed
464 465 466 467
    for(int k=0; k<8; k++)  {   // loop over the 8 AutoCorr 
      TArray< r_4 > & tfmap = vtfmac[k];
      tfmap *= (r_4)(1./((double)deltaIavg*(double)TFMfbin));
      potfm << PPFNameTag(tfm_names[k]) << tfmap;
OP's avatar
OP committed
468

OP's avatar
OP committed
469 470 471
      if (fos != NULL) {
	ext_names.push_back(tfm_names[k]);
	(*fos)<<  tfmap;
OP's avatar
OP committed
472
      }
473 474 475 476 477 478 479 480 481 482
      if (params.doSigma_) {   // for saving TFM-Sigma, if required 
	TArray< r_4 > & tfmapsq = vtfmac_sq[k];
	tfmapsq *= (r_4)(1./((double)deltaIavg*(double)TFMfbin));
	tfmapsq = tfmapsq - tfmap.MulElt(tfmap,tfmap) ; // tfmap ->tfmap*tfmap !! 
	potfm << PPFNameTag(tfmsq_names[k]) << tfmapsq;
	if (fos != NULL) {
	  ext_names.push_back(tfmsq_names[k]);
	  (*fos)<<  tfmapsq;
	}
      } // end of saving TFM-of-sigma 
OP's avatar
OP committed
483
    }
OP's avatar
OP committed
484

OP's avatar
OP committed
485 486
    // --- renormalizing and saving H-H Cross-Corr time-frequency maps 
    cout<<"  visiavg/Info: Saving 6 H-H cross-corr time-frequency maps to PPF file "<<outfile<<endl;
OP's avatar
OP committed
487

OP's avatar
OP committed
488
    const char* tfmCC_names[6]={"TFM_1H2H", "TFM_1H3H", "TFM_1H4H", "TFM_2H3H", "TFM_2H4H", "TFM_3H4H"};
OP's avatar
OP committed
489 490 491
    const char* vrtfmCC_names[6]={"RVARTFM_1H2H", "RVARTFM_1H3H", "RVARTFM_1H4H", "RVARTFM_2H3H", "RVARTFM_2H4H", "RVARTFM_3H4H"};
    const char* vitfmCC_names[6]={"IVARTFM_1H2H", "IVARTFM_1H3H", "IVARTFM_1H4H", "IVARTFM_2H3H", "IVARTFM_2H4H", "IVARTFM_3H4H"};

OP's avatar
OP committed
492 493
    for(int k=0; k<6; k++)  {   // loop over the 6 Xcor 
      TArray< complex<r_4> > & tfmap = vtfm[k];
OP's avatar
OP committed
494 495 496

      TArray< r_4 > & tfmap_sqpr = vtfm_rp_sq[k];
      TArray< r_4 > & tfmap_sqpi = vtfm_ip_sq[k];
OP's avatar
OP committed
497
      tfmap *= complex<r_4>((r_4)(1./((double)deltaIavg*(double)TFMfbin)), 0.);
OP's avatar
OP committed
498 499 500 501 502 503 504
      potfm << PPFNameTag(tfmCC_names[k]) << tfmap;
      if (fos != NULL) {
	ext_names.push_back(string(tfmCC_names[k])+"_real");
	(*fos)<<  real(tfmap);
	ext_names.push_back(string(tfmCC_names[k])+"_imag");
	(*fos)<<  imag(tfmap);
      }
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
      if (params.doSigma_) {   // for saving TFM-Sigma, if required 
	TArray< r_4 >  tfmapr = real(tfmap);
	TArray< r_4 >  tfmapi = imag(tfmap);
	
	tfmap_sqpr *= ((r_4)(1./((double)deltaIavg*(double)TFMfbin)));
	tfmap_sqpi *= ((r_4)(1./((double)deltaIavg*(double)TFMfbin)));
	tfmapr = tfmapr.MulElt(tfmapr,tfmapr) ;
	tfmap_sqpr -= tfmapr ;
	tfmapi = tfmapi.MulElt(tfmapi,tfmapi) ;
	tfmap_sqpi -= tfmapi;
	potfm << PPFNameTag(vrtfmCC_names[k]) << tfmap_sqpr;
	potfm << PPFNameTag(vitfmCC_names[k]) << tfmap_sqpi;
	if (fos != NULL) {
	  ext_names.push_back(vrtfmCC_names[k]);
	  (*fos)<<  tfmap_sqpr;
	  ext_names.push_back(vitfmCC_names[k]);
	  (*fos)<<  tfmap_sqpi;
	}
      }  // end of saving TFM-of-sigma  
OP's avatar
OP committed
524
    }
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    // ========================== end saving HH XCorr

    //===========================
    if (params.doVV_){ // Option VV 
      // --- renormalizing and saving V-V Cross-Corr time-frequency maps 
      cout<<"  visiavg/Info: Saving 6 V-V cross-corr time-frequency maps to PPF file "<<outfile<<endl;

      const char* tfmVV_names[6]={"TFM_1V2V", "TFM_1V3V", "TFM_1V4V", "TFM_2V3V", "TFM_2V4V", "TFM_3V4V"};
      const char* vrtfmVV_names[6]={"RVARTFM_1V2V", "RVARTFM_1V3V", "RVARTFM_1V4V", "RVARTFM_2V3V", "RVARTFM_2V4V", "RVARTFM_3V4V"};
      const char* vitfmVV_names[6]={"IVARTFM_1V2V", "IVARTFM_1V3V", "IVARTFM_1V4V", "IVARTFM_2V3V", "IVARTFM_2V4V", "IVARTFM_3V4V"};
      
      for(int k=0; k<6; k++)  {   // loop over the 6 Xcor 
	TArray< complex<r_4> > & tfmap = vtfm_vv[k];
	
	TArray< r_4 > & tfmap_sqpr = vtfm_vv_rp_sq[k];
	TArray< r_4 > & tfmap_sqpi = vtfm_vv_ip_sq[k];
	tfmap *= complex<r_4>((r_4)(1./((double)deltaIavg*(double)TFMfbin)), 0.);
	potfm << PPFNameTag(tfmVV_names[k]) << tfmap;

	if (fos != NULL) {
	  ext_names.push_back(string(tfmVV_names[k])+"_real");
	  (*fos)<<  real(tfmap);
	  ext_names.push_back(string(tfmVV_names[k])+"_imag");
	  (*fos)<<  imag(tfmap);
	}
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	if (params.doSigma_) {   // for saving TFM-Sigma, if required 
	  TArray< r_4 >  tfmapr = real(tfmap);
	  TArray< r_4 >  tfmapi = imag(tfmap);
	  
	  tfmap_sqpr *= ((r_4)(1./((double)deltaIavg*(double)TFMfbin)));
	  tfmap_sqpi *= ((r_4)(1./((double)deltaIavg*(double)TFMfbin)));
	  tfmapr = tfmapr.MulElt(tfmapr,tfmapr) ;
	  tfmap_sqpr -= tfmapr ;
	  tfmapi = tfmapi.MulElt(tfmapi,tfmapi) ;
	  tfmap_sqpi -= tfmapi;
	  potfm << PPFNameTag(vrtfmVV_names[k]) << tfmap_sqpr;
	  potfm << PPFNameTag(vitfmVV_names[k]) << tfmap_sqpi;
	  if (fos != NULL) {
	    ext_names.push_back(vrtfmVV_names[k]);
	    (*fos)<<  tfmap_sqpr;
	    ext_names.push_back(vitfmVV_names[k]);
	    (*fos)<<  tfmap_sqpi;
	  }
	}   // end of saving TFM-of-sigma  
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
      }
    } // end option VV 


    //===========================
    if (params.doHV_){ // Option HV 
      // --- renormalizing and saving H-V Cross-Corr time-frequency maps 
      cout<<"  visiavg/Info: Saving 16 H-V cross-corr time-frequency maps to PPF file "<<outfile<<endl;

      const char* tfmHV_names[16]={"TFM_1H1V", "TFM_1H2V", "TFM_1H3V", "TFM_1H4V", 
				   "TFM_2H1V", "TFM_2H2V", "TFM_2H3V", "TFM_2H4V", 
				   "TFM_3H1V", "TFM_3H2V", "TFM_3H3V", "TFM_3H4V",  
				   "TFM_4H1V", "TFM_4H2V", "TFM_4H3V", "TFM_4H4V"
      };
      const char* vrtfmHV_names[16]={"RVARTFM_1H1V", "RVARTFM_1H2V", "RVARTFM_1H3V", "RVARTFM_1H4V",
				     "RVARTFM_2H1V", "RVARTFM_2H2V", "RVARTFM_2H3V", "RVARTFM_2H4V",
				     "RVARTFM_3H1V", "RVARTFM_3H2V", "RVARTFM_3H3V", "RVARTFM_3H4V",
				     "RVARTFM_4H1V", "RVARTFM_4H2V", "RVARTFM_4H3V", "RVARTFM_4H4V"
      };
      const char* vitfmHV_names[16]={"IVARTFM_1H1V", "IVARTFM_1H2V", "IVARTFM_1H3V", "IVARTFM_1H4V", 
				     "IVARTFM_2H1V", "IVARTFM_2H2V", "IVARTFM_2H3V", "IVARTFM_2H4V", 
				     "IVARTFM_3H1V", "IVARTFM_3H2V", "IVARTFM_3H3V", "IVARTFM_3H4V", 
				     "IVARTFM_4H1V", "IVARTFM_4H2V", "IVARTFM_4H3V", "IVARTFM_4H4V" 
      };
      
      for(int k=0; k<16; k++)  {   // loop over the 6 Xcor 
	TArray< complex<r_4> > & tfmap = vtfm_hv[k];
	
	TArray< r_4 > & tfmap_sqpr = vtfm_hv_rp_sq[k];
	TArray< r_4 > & tfmap_sqpi = vtfm_hv_ip_sq[k];
	tfmap *= complex<r_4>((r_4)(1./((double)deltaIavg*(double)TFMfbin)), 0.);
	potfm << PPFNameTag(tfmHV_names[k]) << tfmap;

	if (fos != NULL) {
	  ext_names.push_back(string(tfmHV_names[k])+"_real");
	  (*fos)<<  real(tfmap);
	  ext_names.push_back(string(tfmHV_names[k])+"_imag");
	  (*fos)<<  imag(tfmap);
	}
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

	if (params.doSigma_) {   // for saving TFM-Sigma, if required 
	  TArray< r_4 >  tfmapr = real(tfmap);
	  TArray< r_4 >  tfmapi = imag(tfmap);
	  
	  tfmap_sqpr *= ((r_4)(1./((double)deltaIavg*(double)TFMfbin)));
	  tfmap_sqpi *= ((r_4)(1./((double)deltaIavg*(double)TFMfbin)));
	  tfmapr = tfmapr.MulElt(tfmapr,tfmapr) ;
	  tfmap_sqpr -= tfmapr ;
	  tfmapi = tfmapi.MulElt(tfmapi,tfmapi) ;
	  tfmap_sqpi -= tfmapi;
	  potfm << PPFNameTag(vrtfmHV_names[k]) << tfmap_sqpr;
	  potfm << PPFNameTag(vitfmHV_names[k]) << tfmap_sqpi;
	  if (fos != NULL) {
	    ext_names.push_back(vrtfmHV_names[k]);
	    (*fos)<<  tfmap_sqpr;
	    ext_names.push_back(vitfmHV_names[k]);
	    (*fos)<<  tfmap_sqpi;
	  }
	}  // end of saving TFM-of-sigma 
628 629 630
      }

    } // end option HV 
OP's avatar
OP committed
631 632 633 634 635 636 637 638 639 640
    P4FreqBand myp4fre;
    TVector <double> lim_freq(2);
    if (params.gain_gnu_file_.length()>0) {
      P4gnuGain p4gnu( params.gain_gnu_file_ );
      lim_freq(0) =  p4gnu. minGoodF();
      lim_freq(1) =  p4gnu. maxGoodF();
    }else{
      lim_freq(0) = myp4fre.freqstart_;
      lim_freq(1) = myp4fre.freqend_;
    }
641 642

    cout  << " frequences limites "<< lim_freq(0) <<" ; "<< lim_freq(1)<<endl;
OP's avatar
OP committed
643
    potfm << PPFNameTag("FreqLims") << lim_freq ;
OP's avatar
OP committed
644
    potfm << PPFNameTag("TimeVec") << timevec ;
OP's avatar
OP committed
645
    potfm << PPFNameTag("RAVec") << ravec ;
OP's avatar
OP committed
646 647
    // --- FIN sauvegarde cartes temps-frequence 
    //    resu.Update();
OP's avatar
OP committed
648 649 650

    

OP's avatar
OP committed
651
    TVector <double> avg_freqs( myp4fre.getP4NbFreqChannels()/TFMfbin);
652
    
OP's avatar
OP committed
653
    double frbase =  myp4fre.freqstart_ + myp4fre.getP4FreqResolution()/2. ;
OP's avatar
OP committed
654
    for (int kf=0 ; kf< myp4fre.getP4NbFreqChannels()/TFMfbin ; kf++,frbase += myp4fre.getP4FreqResolution()*TFMfbin )
OP's avatar
OP committed
655
      avg_freqs(kf) = frbase ;
656
    
OP's avatar
OP committed
657
    potfm << PPFNameTag("FreqVec") << avg_freqs;
OP's avatar
OP committed
658

OP's avatar
OP committed
659
    if (fos != NULL) {
OP's avatar
OP committed
660 661
      ext_names.push_back("FreqsLims");
      (*fos)<< lim_freq ;
OP's avatar
OP committed
662 663 664 665 666 667 668 669 670 671
      ext_names.push_back("Frequences");
      (*fos)<< avg_freqs ;
      ext_names.push_back("RAs");
      (*fos)<<  ravec;
      ext_names.push_back("Times");
      (*fos)<<  timevec;
      cout << " number of objs in fits "<< ext_names.size() << endl;
      cout << ext_names << endl;
      delete(fos);
    }
672
    cout << " return code "<<rc<<endl;
OP's avatar
OP committed
673
    cout << resu;   // Update est fait lors du print
674

OP's avatar
OP committed
675 676 677 678 679 680 681 682 683 684 685 686 687 688
  }
  catch (PException& exc) {
    cerr << " visiavg.cc catched PException " << exc.Msg() << endl;
    rc = 77;
  }  
  catch (std::exception& sex) {
    cerr << "\n visiavg.cc std::exception :" 
         << (string)typeid(sex).name() << "\n msg= " 
         << sex.what() << endl;
    rc = 78;
  }
  catch (...) {
    cerr << " visiavg.cc catched unknown (...) exception  " << endl; 
    rc = 79; 
689
  }
OP's avatar
OP committed
690 691 692 693 694 695

  cout << ">>>> visiavg.cc ------- END ----------- RC=" << rc << endl;
  return rc;

}