trkfit.cc 26.6 KB
Newer Older
1 2 3 4 5 6
/*  PAON4 analysis software 
    classes and functions to read in and perform array geometry determination 
    using satellites and celestial sources tracks  
    R. Ansari, Fevrier 2019                                             */


7 8
#include <iomanip>

9 10 11
#include "pexceptions.h"
#include "trkfit.h"
#include "datacards.h"
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#include "array.h"

#include "acbeam.h"
#include "gacfit.h"
#include "gcxfit.h"
#include "gcxfitbaseline.h"

#include "p4autils.h"


//------------------- Print Level for this file --------------------------
static int _prtlevel_ =0;
void TrkFit_SetPrintLevel(int lev) 
{ 
  _prtlevel_=lev; 
  return;
}
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

//------------------- TrkInputDataSet -------------------------------------

TrkInputDataSet::TrkInputDataSet(string dcfilename)
  : zenang(0.) , theta_0(0.) , phi_0(0.)
{
  ReadDatacardFile(dcfilename);
}


static vector<string> * dataflnm_p_ = NULL;
static vector<double> * tstart_p_ = NULL;
static vector<double> * tend_p_ = NULL;
static vector<double> * v_freqs_p_ = NULL;
static vector<string> * trkflnm_p_ = NULL;
static size_t trk_cnt = 0;

static int decode_trkcard(string const& key, string const& toks)
{
  if (key != "trk") {  // CA NE DEVRAIT PAS ARRIVER 
    cout << "decode_trkcard/ERROR  BAD key = " << key << " ( <> trk"<<endl;
    return 1;
  }
  if (! dataflnm_p_ ) { // CA NE DEVRAIT PAS ARRIVER
    cout << "decode_trkcard/ERROR  dataflnm_p_ = NULL !"<<endl;
    return 1;
  }
  char flnmdata[256], flnmtrk[256];
  double ts,te,freq;
  sscanf(toks.c_str(),"%s %lg,%lg %lg %s",flnmdata,&ts,&te,&freq,flnmtrk);

  dataflnm_p_->push_back(flnmdata);
  tstart_p_->push_back(ts*60.);
  tend_p_->push_back(te*60.);
  v_freqs_p_->push_back(freq);
  trkflnm_p_->push_back(flnmtrk);
  trk_cnt++;
  return 0;
}


size_t TrkInputDataSet::ReadDatacardFile(string dcfilename)
{
  DataCards dc;
  string match="freqband";
  dc.AddProcF(decode_trkcard, match);

  zenang=0.; theta_0=0.;  phi_0=0.;
  dataflnm.clear();
  tstart.clear();
  tend.clear();
  v_freqs.clear();
  trkflnm.clear();
  dataflnm_p_ = &dataflnm;
  tstart_p_ = &tstart;
  tend_p_ = &tend;
  v_freqs_p_ = &v_freqs;
  trkflnm_p_ = &trkflnm;
  trk_cnt = 0;
  // @trk visiDataTableFile tstart,tend freq TrackFileName
  //  tstart , tend in minutes freq in MHz
  dc.ReadFile(dcfilename);
  if (dc.HasKey("inpath"))   {   // @inpath  InputFilesDirectoryPath    
    input_base_path = dc.SParam("inpath",0,"");
  }
  if (dc.HasKey("zenang"))   {   // @zenang  Zenith Angle in degree   
    zenang = dc.DParam("zenang",0,0.);
    if (zenang<0.) {
      theta_0 = Angle(-zenang, Angle::Degree).ToRadian();  phi_0 = Angle::PioTwoCst()+Angle::OnePiCst();
    }
    else {
      theta_0 = Angle(+zenang, Angle::Degree).ToRadian();  phi_0 = Angle::PioTwoCst();
    }
  }

  dataflnm_p_ = NULL;
  tstart_p_ = NULL;
  tend_p_ = NULL;
  v_freqs_p_ = NULL;
  trkflnm_p_ = NULL;

  if (trk_cnt != trkflnm.size()) {  // ca ne devrait pas arriver
    cout << " TrkInputDataSet::ReadDatacardFile()/BUG  trk_cnt != trkflnm.size()"<<endl;
    throw PError("TrkInputDataSet::ReadDatacardFile() trk_cnt != trkflnm.size()");
  }
  trk_cnt=0;
  dcfilename_ = dcfilename;
  return trkflnm.size();
}

ostream & TrkInputDataSet::Print(ostream & os) const
{
  os << "TrkInputDataSet(dcfilename="<<dcfilename_<<")/Info:  dec-shift(zenithAngle)= "<<zenang<<" NbTrk="<<NbTrk()<<endl;
  os << "...InputBaseDirectoryPath="<<input_base_path<<endl;
  for(size_t i=0; i<NbTrk(); i++)  {
    os <<"["<<i<<"] data= "<< dataflnm[i]<<"  ts,te(min)= "<<tstart[i]/60.<<","<<tend[i]/60.<<" freg(MHz)= "<<v_freqs[i]
       <<" TrkFile="<<trkflnm[i]<<endl;
  }
  return os;
}


131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

//------------------------ ACxDataSet -------------------------------------

AcxDataSet::AcxDataSet(TrkInputDataSet & tkds)
  : tot_npoints(0),zenang(0.),theta_0(0.),phi_0(0.)
{
  ReadData(tkds);
}

AcxDataSet::AcxDataSet(AcxDataSet const & a)
  : v_time_data(a.v_time_data), vv_data(a.vv_data), vv_err(a.vv_err), 
    v_min_data(a.v_min_data), v_max_data(a.v_max_data),
    vv_cxdata(a.vv_cxdata), v_min_cxdata(a.v_min_cxdata), v_max_cxdata(a.v_max_cxdata), 
    tot_npoints(a.tot_npoints), zenang(a.zenang), theta_0(a.theta_0), phi_0(a.phi_0)
{
}

AcxDataSet & AcxDataSet::operator = (AcxDataSet const & a)
{
  v_time_data=a.v_time_data; vv_data=a.vv_data; vv_err=a.vv_err; 
  v_min_data=a.v_min_data;   v_max_data=a.v_max_data;
  vv_cxdata=a.vv_cxdata;  v_min_cxdata=a.v_min_cxdata;  v_max_cxdata=a.v_max_cxdata; 
  tot_npoints=a.tot_npoints; zenang=a.zenang;  theta_0=a.theta_0;  phi_0=a.phi_0;
  return (*this);
}

size_t AcxDataSet::ReadData(TrkInputDataSet & tkds)    
{
  cout << "---- AcxDataSet::AcxDataSet() reading 4 PAON4 auto-correlation & 6 Cross-cor signals/DataTables for"
       <<tkds.NbTrk()<<" tracks ..."<<endl;

  if (tkds.NbTrk() != v_time_data.size()) {
    v_time_data.resize(tkds.NbTrk());
    vv_data.resize(tkds.NbTrk());
    vv_err.resize(tkds.NbTrk());
    v_min_data.resize(tkds.NbTrk());
    v_max_data.resize(tkds.NbTrk());
    vv_cxdata.resize(tkds.NbTrk());
    vv_cxerr.resize(tkds.NbTrk());
    v_min_cxdata.resize(tkds.NbTrk());
    v_max_cxdata.resize(tkds.NbTrk());    
  }
  v_freqs=tkds.v_freqs;
  zenang=tkds.zenang;   theta_0=tkds.theta_0;    phi_0=tkds.phi_0;
  size_t NB_ANTENNES=getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=getNbCrossCor();
  tot_npoints = 0;   // total number of points for fit 
  const char * acname[4]={"V11","V22","V33","V44"};
  const char * cxname[6]={"V12","V13","V14","V23","V24","V34"};
  
  for(size_t j=0; j<tkds.dataflnm.size(); j++) {
    string flnm = tkds.input_base_path+tkds.dataflnm[j]+".ppf";
    cout << "1."<<j+1<<" Extracting data from data file DataTable: " << flnm<<endl
	 << " ... For time interval (Trk"<<j+1<<") "<<tkds.tstart[j]<<" < t < "<<tkds.tend[j]<<endl;
    DataTable dt_data;
    PInPersist pin(flnm);
    pin >> dt_data;
    dt_data.SetShowMinMaxFlag(true);
    size_t ktime = dt_data.IndexNom("timesec");
    vector<double> vtm;
    dt_data.GetColumn(ktime, vtm);
    vector< vector<double> > v_vac(NB_ANTENNES);
    for(size_t ii=0; ii<NB_ANTENNES; ii++) {   // 4 auto-correlations
      size_t kac = dt_data.IndexNom(acname[ii]);
      dt_data.GetColumn(kac, v_vac[ii]);
      vector<double> vtmp, vetmp;
      vv_data[j].push_back(vtmp);
      vv_err[j].push_back(vetmp);
      v_min_data[j].push_back(9.e19);
      v_max_data[j].push_back(-9.e19);
    }
    vector< vector <complex<double> > > v_vcx(NB_CXCORS);
    for(size_t ii=0; ii<NB_CXCORS; ii++) {   // 6 cross-correlations
      size_t kac = dt_data.IndexNom(cxname[ii]);
      dt_data.GetColumn(kac, v_vcx[ii]);
      vector< complex<double> > vtmp;
      vector<double> vetmp;
      vv_cxdata[j].push_back(vtmp);
      vv_cxerr[j].push_back(vetmp);
      v_min_cxdata[j].push_back(9.e19);
      v_max_cxdata[j].push_back(-9.e19);
    }
    
    vector< vector<double> > & v_data = vv_data[j];
    vector< vector<double> > & v_err = vv_err[j];
    vector< vector< complex<double> > > & v_cxdata = vv_cxdata[j];
    vector< vector<double> > & v_cxerr = vv_cxerr[j];

    for(size_t k=0; k<vtm.size(); k++) {
      if ((vtm[k]<tkds.tstart[j])||(vtm[k]>tkds.tend[j]))  continue;
      v_time_data[j].push_back(vtm[k]);
      for(size_t ii=0; ii<NB_ANTENNES; ii++) {
	vector<double> & vac = v_vac[ii];
	v_data[ii].push_back(vac[k]);
	v_err[ii].push_back(0.1*sqrt(fabs(vac[k])));   // calcul d'erreur, a affiner 
	if (vac[k]<v_min_data[j][ii])  v_min_data[j][ii]=vac[k];
	if (vac[k]>v_max_data[j][ii])  v_max_data[j][ii]=vac[k];
      }
      for(size_t ii=0; ii<NB_CXCORS; ii++) {   // 6 cross-correlations
	vector< complex<double> > & vcx = v_vcx[ii];
	v_cxdata[ii].push_back(vcx[k]);
	double acx=std::abs(vcx[k]);
	v_cxerr[ii].push_back(0.1*sqrt(acx));
	if (acx<v_min_cxdata[j][ii])  v_min_cxdata[j][ii]=acx;
	if (acx>v_max_cxdata[j][ii])  v_max_cxdata[j][ii]=acx;
      }
    }
    
    tot_npoints += v_time_data[j].size();   // total number of points for fit 
    cout << " ... Done for " << j+1 << " data size="<<v_time_data[j].size()<<endl;
    cout << "  Data-AutoCor Min,Max[A1...A4]="; 
    for(size_t ii=0; ii<NB_ANTENNES; ii++)
      cout<<setw(10)<<v_min_data[j][ii]<<","<<setw(10)<<v_max_data[j][ii]<<" ; ";   cout << endl;
    cout << "  Data-CxCorr (abs) Min,Max[Cx1...Cx6]="; 
    for(size_t ii=0; ii<NB_ANTENNES; ii++)
      cout<<setw(10)<<v_min_cxdata[j][ii]<<","<<setw(10)<<v_max_cxdata[j][ii]<<" ; ";   cout << endl;

  }
  return tot_npoints;
}


//------------------------ TrackSet -------------------------------------
TrackSet::TrackSet(TrackSet const & a)
  : v_time_sat(a.v_time_sat), v_sat_elev(a.v_sat_elev), v_sat_azim(a.v_sat_azim),
    v_interp_elev(a.v_interp_elev), v_interp_sazim(a.v_interp_sazim)							   
{
}

TrackSet & TrackSet::operator = (TrackSet const & a)
{
  v_time_sat=a.v_time_sat;  v_sat_elev=a.v_sat_elev;  v_sat_azim=a.v_sat_azim;
  v_interp_elev=a.v_interp_elev;  v_interp_sazim=a.v_interp_sazim; 
  return *this;
}

TrackSet::TrackSet(TrkInputDataSet & tkds)
{
  ReadData(tkds);
}

size_t TrackSet::ReadData(TrkInputDataSet & tkds)
{
  cout << "---- TrackSet::ReadData() ; reading source (satellites, ..) for "
       <<tkds.NbTrk()<<" tracks ..."<<endl;
  if (tkds.NbTrk() != v_time_sat.size()) {
    v_time_sat.resize(tkds.NbTrk());
    v_sat_elev.resize(tkds.NbTrk());
    v_sat_azim.resize(tkds.NbTrk());
    v_interp_elev.resize(tkds.NbTrk());
    v_interp_sazim.resize(tkds.NbTrk());
  }

  for(size_t j=0; j<tkds.NbTrk(); j++) {
    string flnm = tkds.input_base_path+tkds.trkflnm[j]+".ppf";
    cout << "2."<<j+1<<" Extracting data from  satellite track DataTables: " << tkds.trkflnm[j] << endl;
    DataTable dt_sat;
    PInPersist pin(flnm);
    pin >> dt_sat;
    dt_sat.SetShowMinMaxFlag(true);
    size_t ktime = dt_sat.IndexNom("timesec");
    dt_sat.GetColumn(ktime, v_time_sat[j]);
    size_t kelev = dt_sat.IndexNom("elevation");
    dt_sat.GetColumn(kelev, v_sat_elev[j]);
    size_t kazim = dt_sat.IndexNom("azimuth");
    dt_sat.GetColumn(kazim, v_sat_azim[j]);
    cout << "2."<<j+1<<"  Done for satellite from file "<<tkds.trkflnm[j]<<"  -> size()="<<v_time_sat[j].size()<<endl;
    v_interp_elev[j].DefinePoints(v_time_sat[j], v_sat_elev[j]);
    double last_azim=v_sat_azim[j][0];
    //    vector<double> cazim(v_sat_azim[j].size());
    // azimuth values, shifted possibly +360 +720 deg ... to avoid jumping from 360 deg to 0 deg  
    vector<double> shifted_azim(v_sat_azim[j].size());   
    double azim_offset=0.;
    for(size_t k=0; k<v_sat_azim[j].size(); k++)  {
      double azim=v_sat_azim[j][k];
      if ((k>0)&&(azim<last_azim)) {
	if ((last_azim>270)&&(azim<90.))  {
	  azim_offset += 360.;
	  if (_prtlevel_>0) 
	    cout << " read_srctracks k="<<k<<" last_azim="<<last_azim<<" azimuth= "<<azim<<" Offset->"<<azim_offset<<endl;
	}
      }
      last_azim = azim;
      shifted_azim[k]=azim+azim_offset;
      /*
      double phisrcdeg=90.-v_sat_azim[j][k];
      if (phisrcdeg<0.)  phisrcdeg+=360.;
      double phisrc=Angle(phisrcdeg,Angle::Degree).ToRadian();
      cazim[k]=cos(phisrc);
      */
    }
    v_interp_sazim[j].DefinePoints(v_time_sat[j], shifted_azim);
    //    v_interp_cphi[j].DefinePoints(v_time_sat[j], cazim);
    cout<<"  DONE Creation SLinInterp1D for elevation / azimuth ..."<<endl;
    cout << v_interp_elev[j];
    cout << v_interp_sazim[j];
  }
  return 0;
}


//------------------------ TrackSet -------------------------------------
ACxSetFitter::ACxSetFitter(AcxDataSet & data, TrackSet & tks)
334
  : fggaussbeam_(true), D_dish(5.), acxd_(data), tks_(tks), fit_ac_done(false), fit_cx_done(false), 
335 336 337 338 339
    v_RcFit_ac(tks.getNbAutoCor()), v_xi2red_ac(tks.getNbAutoCor()),
    v_Ddish(tks.getNbAutoCor()), v_thetaant(tks.getNbAutoCor()), 
    v_phiant(tks.getNbAutoCor()), v_A(tks.getNbAutoCor()), v_B(tks.getNbAutoCor()), 
    v_err_Ddish(tks.getNbAutoCor()), v_err_thetaant(tks.getNbAutoCor()), 
    v_err_phiant(tks.getNbAutoCor()), v_err_A(tks.getNbAutoCor()), v_err_B(tks.getNbAutoCor()), 
340
    v_acbeams(tks.getNbAutoCor()),
341 342
    v_RcFit_cx(tks.getNbCrossCor()), v_xi2red_cx(tks.getNbCrossCor()),
    v_phase(tks.getNbCrossCor()), v_Acx(tks.getNbCrossCor()),
343 344
    v_err_phase(tks.getNbCrossCor()), v_err_Acx(tks.getNbCrossCor()),
    v_cxbeams(tks.getNbCrossCor())
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
{
}

int ACxSetFitter::doACfit(string outfilename)
{
  cout << "======================================================================================"<<endl;
  cout << "---- ACxSetFitter::doACfit() ; Performing antenna pointing fit ..."<<endl;
  ofstream ofr(outfilename.c_str());
  ofr << "#### Pointing/dish diameter fit on autocorrelation (ACxSetFitter::doACfit() "<<endl
      << "## NumAntenna Xi2red  Deff err_Deff  Elevation err_Elev  Azimuth err_Ezim  A0 err_A0 B0 err_B0 A1 err_A1 B1 err_B1 ..."<<endl;
  size_t NB_ANTENNES = acxd_.getNbAutoCor();
  size_t NTRK = acxd_.NbTrk();

  for(size_t ii=0; ii<NB_ANTENNES; ii++)  { 
    v_A[ii].resize(NTRK);     v_B[ii].resize(NTRK); 
    v_err_A[ii].resize(NTRK);     v_err_B[ii].resize(NTRK); 
  }
  int tot_npoints_fit = 0;
  for(size_t j=0; j<NTRK; j++) tot_npoints_fit += acxd_.v_time_data[j].size();
  for(size_t ii=0; ii<NB_ANTENNES; ii++) {
    cout << "-------- doACfit() 1."<<ii+1<<" Creating General Fit for AutoCor Antenna= " << ii+1 << endl;
    GeneralFitData gdata(1, tot_npoints_fit);
    for(size_t j=0; j<NTRK; j++) {
      vector< vector<double> > & v_data = acxd_.vv_data[j];
      vector< vector<double> > & v_err = acxd_.vv_err[j];
      for(size_t k=0; k<acxd_.v_time_data[j].size(); k++) {
	gdata.AddData1(acxd_.v_time_data[j][k],v_data[ii][k],v_err[ii][k]); // Fill x, y and error on y     
      }
    }
    MyACGenXi2 gxi2( acxd_.v_time_data, acxd_.vv_data, acxd_.vv_err, acxd_.v_freqs, 
		     tks_.v_interp_elev, tks_.v_interp_sazim, ii, fggaussbeam_);
    GeneralFit mFit(&gxi2);
    mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
    mFit.SetMaxStep(1000);
    // SetParam(int n,double value, double step,double min=1., double max=-1.);
    mFit.SetParam(0,"D_dish",D_dish,0.1,D_dish*0.8,D_dish*1.2);
    // mFit.SetFix(0, D_dish);
    
    double thetaAntenne=0., phiAntenne=0.;
    if (fabs(acxd_.zenang)>1.e-6) {
      if (acxd_.zenang<0)  {
	thetaAntenne=Angle(-acxd_.zenang,Angle::Degree).ToRadian();
	phiAntenne=Angle(270.,Angle::Degree).ToRadian();
      }
      else {
	thetaAntenne=Angle(acxd_.zenang,Angle::Degree).ToRadian();
	phiAntenne=Angle(90.,Angle::Degree).ToRadian();
      }
    }
    mFit.SetParam(1,"ThetaAntenne",thetaAntenne,M_PI/1440,0.,thetaAntenne+M_PI/36.);
    mFit.SetParam(2,"PhiAntenne",phiAntenne,M_PI/180.,0.,2.*M_PI);
    // mFit.SetFix(1, thetaAntenne);
    // mFit.SetFix(2, phiAntenne);
    
    for(size_t j=0; j<NTRK; j++) {
      char pname[32];
      sprintf(pname,"A%d",(int)(j+1));
      double A = acxd_.v_max_data[j][ii];
      mFit.SetParam(2*j+3,pname,A,A/10.,A/20,A*5);
      sprintf(pname,"B%d",(int)(j+1));
      double B = acxd_.v_min_data[j][ii];
      mFit.SetParam(2*j+4,pname,B,B/10.,B/20,B*5);
      mFit.SetFix(2*j+4, B);
      
    }
    //DBG mFit.PrintFit();
    //    cout << "do_p4_trkfit 2."<<ii+1<<" Performing the fit for AutoCor Antenna= " << ii+1 << endl;
    int rcfit = mFit.Fit();
    if (_prtlevel_>1) mFit.PrintFit();
    v_RcFit_ac[ii]=rcfit;  v_xi2red_ac[ii]=-9999.;
    if(rcfit>0) { 
      cout<< "------- Fit result for Antenna No="<<ii+1<<" Reduce_Chisquare = " << mFit.GetChi2Red()
	  << " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
      ofr <<setw(4)<<ii+1<<" "<<setw(8)<<mFit.GetChi2Red()<<" "; 
      v_xi2red_ac[ii]=mFit.GetChi2Red();
      double Dfit=mFit.GetParm(0);   double err_Dfit=mFit.GetParmErr(0);
      cout <<setw(16)<<"DishDiameter= "<<setw(10)<<Dfit<<" +/- "<<setw(10)<<err_Dfit<<" m."<<endl;
      ofr <<setw(8)<<Dfit<<" "<<setw(8)<<err_Dfit<<"  "; 
      v_Ddish[ii]=Dfit;
      v_err_Ddish[ii]=err_Dfit;
      double thetaant=mFit.GetParm(1);   double err_thetaant=mFit.GetParmErr(1);
      v_thetaant[ii]=thetaant;
      double elevdeg=90.-Angle(thetaant).ToDegree();
      double err_elevdeg=Angle(err_thetaant).ToDegree();
      cout <<setw(16)<<"ThetaAntenne= "<<setw(12)<<Angle(thetaant).ToDegree()<< " +/- "
	   <<setw(12)<<Angle(err_thetaant).ToDegree()<<" (elevation="
	   <<setw(8)<<elevdeg<<" +/- "<<setw(8)<<err_elevdeg<<") deg."<<endl;
      ofr <<setw(8)<<elevdeg<<" "<<setw(8)<<err_elevdeg<<"  "; 
      double phiant=mFit.GetParm(2);   double err_phiant=mFit.GetParmErr(2);
      double azimdeg=90.-Angle(phiant).ToDegree();
      if (azimdeg<0.)  azimdeg += 360.;
      double err_azimdeg=Angle(err_phiant).ToDegree();
      v_phiant[ii]=phiant;
      cout <<setw(16)<<"PhiAntenne= "<<setw(12)<<Angle(phiant).ToDegree()<< " +/- "
	   <<setw(12)<<Angle(err_phiant).ToDegree()<<" (azimuth  ="
	   <<setw(8)<<azimdeg<<" +/- "<<setw(8)<<err_azimdeg<<" ) deg."<<endl;
      ofr <<setw(8)<<azimdeg<<" "<<setw(8)<<err_azimdeg<<"  "; 
      for(size_t j=0; j<NTRK; j++) {
	double A=mFit.GetParm(3+2*j);   double err_A=mFit.GetParmErr(3+2*j);
	double B=mFit.GetParm(4+2*j);   double err_B=mFit.GetParmErr(4+2*j);
	cout << "  Trk/Sat["<<j<<"] -> A= "<<A<<" +/- "<<err_A<<"  B= "<<B<<" +/- "<<err_B<<endl;
	v_A[ii][j]=A;  v_B[ii][j]=B;
	v_err_A[ii][j]=err_A;  v_err_B[ii][j]=err_B;
	ofr <<setw(8)<<A<<" "<<setw(8)<<err_A<<" "<<setw(8)<<B<<" "<<setw(8)<<err_B<<" ";
      }
      ofr << endl;
451 452 453 454 455 456 457 458
      double clight = PhysQty::c().SIValue();
      double lambda = clight/(acxd_.v_freqs[0]*1.e6);
      ACBeam acb1(Dfit, thetaant, phiant, lambda);
      acb1.setGaussianLobe(fggaussbeam_);
      ACBeam acb2(Dfit, thetaant, phiant, lambda);
      acb2.setGaussianLobe(fggaussbeam_);
      Vector3d baseline0(0.,0.,0.);
      v_acbeams[ii]=CxBeam(acb1, acb2, baseline0);
459 460 461 462 463 464 465 466
    }
    else {
      cout << "---Fit failed for "<<ii+1<<"--- Fit_Error, rc = " << rcfit << "  nstep="<<mFit.GetNStep()<<endl;
      ofr <<setw(4)<<ii+1<<" ERROR FIT RC="<<rcfit<<"  nstep="<<mFit.GetNStep()<<endl;
      if (_prtlevel_>0) mFit.PrintFitErr(rcfit);
    } 
  }
  
467 468
  fit_ac_done=true;
  acxd_.v_acbeams=v_acbeams;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
  return 0;
}

int ACxSetFitter::saveExpectedAC(string outcheckfilename)
{
  if (outcheckfilename.length()<1)  return 1;
  cout << "-----ACxSetFitter::saveExpectedAC() : computing expected signal for fitted params , will be saved to file "
       <<outcheckfilename<<endl;
  POutPersist pos(outcheckfilename);
  size_t NB_ANTENNES = acxd_.getNbAutoCor();
  size_t NTRK = acxd_.NbTrk();

  for(size_t ii=0; ii<NB_ANTENNES; ii++)     {
    if (_prtlevel_>1) 
      cout << "... Computing DataSignal & Expected Signal for fitted params and dish "<<ii+1<<endl;
    
    MyACSignal macs(acxd_.v_time_data, acxd_.vv_data, acxd_.vv_err, acxd_.v_freqs, 
		    tks_.v_interp_elev, tks_.v_interp_sazim, ii, fggaussbeam_);
      
    double Ddishfit=v_Ddish[ii];
    double thetafit=v_thetaant[ii];
    double phifit=v_phiant[ii];
    
    char oname[32];
    for(size_t j=0; j<NTRK; j++)  {
      double A = v_A[ii][j];
      double B = v_B[ii][j];
      Vector signal = macs.getDataSignal(j);
      sprintf(oname,"ac_%d_%d",(int)ii+1,(int)j+1);
      pos << PPFNameTag(oname)<<signal;
      Vector expsignal = macs.getExpectedSignal(j, Ddishfit, thetafit, phifit, A, B);
      sprintf(oname,"simac_%d_%d",(int)ii+1,(int)j+1);      
      pos << PPFNameTag(oname)<<expsignal;
    }
  } 
  return 0;
}


int ACxSetFitter::doCxfit(string outfilenamecx, string outcheckfilenamecx, bool useAac)
{
  size_t NB_ANTENNES=acxd_.getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=acxd_.getNbCrossCor();
  size_t NTRK = acxd_.NbTrk();

  cout << "======================================================================================"<<endl;
  cout << "---------- ACxSetFitter::doCxfit() ; Performing cross-cor phase fit ..."<<endl;
  if (useAac) cout << " ... Using Amplitude from auto-correlations fit for initial fit parameter value..."<<endl; 
  POutPersist * pox = NULL ;
  if (outcheckfilenamecx.length()>0)  {
    cout << "... expected cross-cor for fitted params (and cadata) will be saved to file "<<outcheckfilenamecx<<endl;
    pox = new POutPersist(outcheckfilenamecx);
  }
  ofstream ofr(outfilenamecx.c_str());
  ofr << "#### cross-cor phase fit (ACxSetFitter::doCxfit() ) "<<endl
      << "## NumCxCor Xi2red  Phase err_Phase  (deg)  A0 err_A0 A1 err_A1  ..."<<endl;
  int tot_npoints_fit = 0;
  for(size_t j=0; j<NTRK; j++) tot_npoints_fit += 2*(acxd_.v_time_data[j].size());
  size_t Anum1[6]={0,0,0,1,1,2};
  size_t Anum2[6]={1,2,3,2,3,3};
  for(size_t ii=0; ii<NB_CXCORS; ii++) {
    v_Acx[ii].resize(NTRK);   
531 532 533 534
    v_Bcx[ii].resize(NTRK);   
    for(size_t j=0; j<NTRK; j++) {
      v_Acx[ii][j]=1.;   v_Bcx[ii][j]=complex<double>(0.,0.);
    }
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    Vector3d baseline=P4Coords::getBaseline(Anum1[ii]+1,Anum2[ii]+1);
    cout << "--------- 1."<<ii+1<<" doCxfit() Doing fit for CrossCor= " << ii << " FxF= " 
	 << Anum1[ii]+1<<"x"<<Anum2[ii]+1<<" Baseline="<<baseline<<endl;
    GeneralFitData gdata(1, tot_npoints_fit);
    for(size_t j=0; j<NTRK; j++) {
      vector< vector< complex<double> > > & v_cxdata = acxd_.vv_cxdata[j];
      vector< vector<double> > & v_cxerr = acxd_.vv_cxerr[j];
      for(size_t k=0; k<acxd_.v_time_data[j].size(); k++) {
	gdata.AddData1(acxd_.v_time_data[j][k],v_cxdata[ii][k].real(),v_cxerr[ii][k]); // Fill x, y and error on y
	gdata.AddData1(acxd_.v_time_data[j][k],v_cxdata[ii][k].imag(),v_cxerr[ii][k]); // Fill x, y and error on y     
      }
    } 
    double clight = PhysQty::c().SIValue();
    double lambda = clight/(acxd_.v_freqs[0]*1.e6);
    ACBeam acb1(v_Ddish[Anum1[ii]], v_thetaant[Anum1[ii]], v_phiant[Anum1[ii]], lambda);
    acb1.setGaussianLobe(fggaussbeam_);
    ACBeam acb2(v_Ddish[Anum2[ii]], v_thetaant[Anum2[ii]], v_phiant[Anum2[ii]], lambda);
    acb2.setGaussianLobe(fggaussbeam_);
    CxBeam cxbeam(acb1, acb2, baseline);
554
    v_cxbeams[ii]=cxbeam;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

    MyCxGenXi2 gxi2( acxd_.v_time_data, acxd_.vv_cxdata, acxd_.vv_cxerr, 
		     tks_.v_interp_elev, tks_.v_interp_sazim, cxbeam, ii);
    GeneralFit mFit(&gxi2);
    mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
    mFit.SetMaxStep(1000);
    // SetParam(int n,double value, double step,double min=1., double max=-1.);
    mFit.SetParam(0,"Phase",0.,M_PI/360.,0.,2.2*M_PI);

    char oname[32];
    vector<double> v_amp(NTRK);
    for(size_t j=0; j<NTRK; j++) {
      double A=1.; // v_max_cxdata[j][ii]; 
      TVector< complex<double> >  signal = gxi2.getDataSignal(j);
      Vector asig = SOPHYA::abs(signal);
      double mins, maxs;
      asig.MinMax(mins, maxs);
      if (pox) {
	sprintf(oname,"cx_%d_%d",(int)ii+1,(int)j+1);
	(*pox) << PPFNameTag(oname)<<signal;
      }
      TVector< complex<double> >  expsignal = gxi2.getExpectedSignal(j, 0., A);
      Vector aexpsig = SOPHYA::abs(expsignal);
      double mine, maxe;
      aexpsig.MinMax(mine, maxe);
      A=maxs/maxe;
      v_amp[j]=A; 
      /*DBG if (pox) {
	expsignal *= complex<double>(A,0.);
	sprintf(oname,"ecx_%d_%d",(int)ii+1,(int)j+1);
	(*pox) << PPFNameTag(oname)<<expsignal;
	}  */
    }

    double fparm[50];  fparm[0]=0.;

    double bestxi2 = 9.e19;
    double bestphase=0.;
    int bestnpts,npts;
    int bestafact;
    double afact[10]={0.3,0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.5,3.};
    for(int ia=0; ia<12; ia++) {
      for(size_t j=0; j<NTRK; j++) {
	double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
	fparm[1+3*j]=(useAac?Aac:v_amp[j]);
	fparm[1+3*j]*=afact[ia];   fparm[2+3*j]=fparm[3+3*j]=0.;
      }
      for(double ph=0.; ph<360.; ph += 1) {
	fparm[0]=Angle(ph, Angle::Degree).ToRadian();
	double xi2 = gxi2.getXi2(fparm, npts);
	if (xi2 < bestxi2) {
	  bestxi2 = xi2; bestphase=fparm[0]; bestnpts=npts;  bestafact=afact[ia];
	}
      }
    }
    mFit.SetParam(0,"Phase",bestphase,M_PI/720.,-0.5*M_PI,2.5*M_PI);
    cout << "2."<<ii+1<<" Scan param bestxi2_red="<<bestxi2/(double)(tot_npoints_fit-(1+NTRK))<<"  bestphase="
	 <<Angle(bestphase).ToDegree()<<" bestnpts="<<bestnpts<<" bestafact="<<bestafact<< " A= ";  
    v_phase[ii]=bestphase;
    for(size_t j=0; j<NTRK; j++)  {
      cout << v_amp[j] << " , ";  
      double Aac=sqrt(v_A[j][Anum1[ii]] * v_A[j][Anum2[ii]]);
      v_Acx[ii][j]=(useAac?Aac:v_amp[j]);
    }
    cout << endl;
    for(size_t j=0; j<NTRK; j++) {
      char pname[32];
      sprintf(pname,"A%d",(int)(j+1));
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
      double A=(useAac?Aac:v_amp[j]);
      //DBG      cout << "*DBG* j="<<j<<" Aac= "<<Aac<<" v_amp="<<v_amp[j]<<"  A= "<<A<<"  A1="<<v_A[Anum1[ii]][j]<<" A2="<<v_A[Anum2[ii]][j]<<endl;
      mFit.SetParam(1+3*j,pname,A,A/10.,A/4,A*4);
      sprintf(pname,"Bre%d",(int)(j+1));
      mFit.SetParam(2+3*j,pname,0.,A/25.,-A/5,A/5.);
      sprintf(pname,"Bim%d",(int)(j+1));
      mFit.SetParam(3+3*j,pname,0.,A/25.,-A/5,A/5.);
      mFit.SetFix(2+3*j,0.);
      mFit.SetFix(3+3*j,0.);
    }
    //DBG mFit.PrintFit();
    if (_prtlevel_>1)    
      cout << " 3."<<ii+1<<" Performing the fit for CrossCor " << ii << " FxF= " << Anum1[ii]+1<<"x"<<Anum2[ii]+1<<endl;
    int rcfit = mFit.Fit();
    v_RcFit_cx[ii]=rcfit;   v_xi2red_cx[ii]=-99999.;
    if (_prtlevel_>1) mFit.PrintFit();
    if(rcfit>0) { 
      v_xi2red_cx[ii]=mFit.GetChi2Red();
      //      cout<< "-------------------------- Result for Cross No " << ii << endl; 
      cout<< "------ Fit result for Cross No "<<ii<<" Reduce_Chisquare = " << mFit.GetChi2Red()
	  << " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
      ofr <<setw(4)<<ii+1<<" "<<setw(8)<<mFit.GetChi2Red()<<" "; 
      double phase=mFit.GetParm(0);   double err_phase=mFit.GetParmErr(0);
      if (phase<0.) phase += 2.*M_PI;
      if (phase>2.*M_PI) phase -= 2.*M_PI;
      cout <<"Phase= "<<setw(10)<<Angle(phase).ToDegree()<<" +/- "<<setw(10)<<Angle(err_phase).ToDegree()<<" deg."<<endl;
      ofr <<setw(8)<<Angle(phase).ToDegree()<<" "<<setw(8)<<Angle(err_phase).ToDegree()<<"  "; 
      v_phase[ii]=phase;
      v_err_phase[ii]=err_phase;
      for(size_t j=0; j<NTRK; j++) {
	double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
	double Ai=(useAac?Aac:v_amp[j]);
	double A=mFit.GetParm(1+3*j);   double err_A=mFit.GetParmErr(1+3*j);
	cout << "  Trk["<<j<<"]  A= "<<A<<" +/- "<<err_A<<"  (A/Ai="<<A/Ai<<")"<<endl;
658 659
	v_Acx[ii][j]=A;  
	v_Bcx[ii][j]=complex<double>(0.,0.);
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	v_err_Acx[ii][j]=err_A; 
	ofr <<setw(8)<<A<<" "<<setw(8)<<err_A<<" "; 
      }
      ofr << endl;
    }
    else {
      cout << "---Fit failed for "<<ii<<" Fit_Error, rc = " << rcfit << "  nstep="<<mFit.GetNStep()<<endl;
      ofr <<setw(4)<<ii+1<<" ERROR FIT RC="<<rcfit<<"  nstep="<<mFit.GetNStep()<<endl;
      if (_prtlevel_>0) mFit.PrintFitErr(rcfit);
    }
    if (pox) {
      for(size_t j=0; j<NTRK; j++) {
	TVector< complex<double> >  expsignal = gxi2.getExpectedSignal(j, v_phase[ii], v_Acx[ii][j]);
	sprintf(oname,"simcx_%d_%d",(int)ii+1,(int)j+1);
	(*pox) << PPFNameTag(oname)<<expsignal;
      }
    }
  }
  if (pox) delete pox;
679 680 681 682
  fit_cx_done=true;
  acxd_.v_cxbeams=v_cxbeams;
  acxd_.v_Acx=v_Acx;
  acxd_.v_Bcx=v_Bcx;
683 684
  return 0;
}