trkfit.cc 52.6 KB
Newer Older
1 2 3 4 5 6
/*  PAON4 analysis software 
    classes and functions to read in and perform array geometry determination 
    using satellites and celestial sources tracks  
    R. Ansari, Fevrier 2019                                             */


7 8
#include <iomanip>

9 10 11
#include "pexceptions.h"
#include "trkfit.h"
#include "datacards.h"
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#include "array.h"

#include "acbeam.h"
#include "gacfit.h"
#include "gcxfit.h"
#include "gcxfitbaseline.h"

#include "p4autils.h"


//------------------- Print Level for this file --------------------------
static int _prtlevel_ =0;
void TrkFit_SetPrintLevel(int lev) 
{ 
  _prtlevel_=lev; 
  return;
}
29

30 31 32 33

//--- shift de position en Z pour les 4 antennes 
static vector<double> z_coord_shift; 

34 35 36 37 38 39 40 41
void TrkFit_FitLibInfo() 
{
  cout << "============================================================================"<<endl;
#ifndef TKF_AVEC_MINUIT
  cout << "============ Classe TkF_Fitter : Fitting with Sophya GeneralFit ============"<<endl;
#else 
  cout << "============= Classe TkF_Fitter : Fitting with Minuit MnMigrad ============="<<endl;
#endif
42 43 44 45 46
  if (z_coord_shift.size()>0) {
    cout << " Antenna-Z-coord shift= ";
    for(size_t i=0; i<z_coord_shift.size(); i++) cout<<z_coord_shift[i]<<" ; ";
    cout<<endl;
  }
47 48 49 50
  cout << "============================================================================"<<endl;
  return;
}

51 52 53 54 55 56 57 58 59
//--- On definit la coordonnees z pour les antennes 
void TrkFit_SetZcoordShift(vector<double> & leszs)
{
  if (leszs.size()==0)   return;
  if (leszs.size() != 4) throw ParmError("TrkFit_SetZcoordShift()/ERROR leszs.size() != 4");
  z_coord_shift=leszs;
}


60 61
//------------------- TrkInputDataSet -------------------------------------

62 63

TrkInputDataSet::TrkInputDataSet(string dcfilename, string inp_path)
64 65
  : zenang(0.) , theta_0(0.) , phi_0(0.)
{
66
  setInputBasePath(inp_path);
67 68 69 70 71 72 73 74 75
  ReadDatacardFile(dcfilename);
}


static vector<string> * dataflnm_p_ = NULL;
static vector<double> * tstart_p_ = NULL;
static vector<double> * tend_p_ = NULL;
static vector<double> * v_freqs_p_ = NULL;
static vector<string> * trkflnm_p_ = NULL;
76 77
static vector<bool> * v_noAC_p_ = NULL;
static vector<bool> * v_noCx_p_ = NULL;
78 79 80 81 82 83 84 85 86 87 88 89 90
static size_t trk_cnt = 0;

static int decode_trkcard(string const& key, string const& toks)
{
  if (key != "trk") {  // CA NE DEVRAIT PAS ARRIVER 
    cout << "decode_trkcard/ERROR  BAD key = " << key << " ( <> trk"<<endl;
    return 1;
  }
  if (! dataflnm_p_ ) { // CA NE DEVRAIT PAS ARRIVER
    cout << "decode_trkcard/ERROR  dataflnm_p_ = NULL !"<<endl;
    return 1;
  }
  char flnmdata[256], flnmtrk[256];
91
  char sflags[64];
92
  double ts,te,freq;
93
  sscanf(toks.c_str(),"%s %lg,%lg %lg %s %s",flnmdata,&ts,&te,&freq,flnmtrk,sflags);
94 95 96 97 98 99

  dataflnm_p_->push_back(flnmdata);
  tstart_p_->push_back(ts*60.);
  tend_p_->push_back(te*60.);
  v_freqs_p_->push_back(freq);
  trkflnm_p_->push_back(flnmtrk);
100 101 102 103 104 105 106 107 108 109 110
  size_t ll=strlen(sflags);
  bool noAC=false;
  bool noCx=false;
  if (ll>0) {
    for(size_t l=0; l<ll; l++)  sflags[l]=toupper(sflags[l]);
    string sflg=sflags;
    if ((sflg == "NOAC")||(sflg=="NOACCX"))  noAC=true;
    if ((sflg == "NOCX")||(sflg=="NOACCX"))  noCx=true;
  }
  v_noAC_p_->push_back(noAC);
  v_noCx_p_->push_back(noCx);
111 112 113 114 115
  trk_cnt++;
  return 0;
}


116 117 118 119 120 121
void TrkInputDataSet::setInputBasePath(string inp_path)
{
  if (inp_path.length()>0)  input_base_path=inp_path;
  return;
}

122 123 124
size_t TrkInputDataSet::ReadDatacardFile(string dcfilename)
{
  DataCards dc;
125
  string match="trk";
126 127 128 129 130 131 132 133 134 135 136 137 138
  dc.AddProcF(decode_trkcard, match);

  zenang=0.; theta_0=0.;  phi_0=0.;
  dataflnm.clear();
  tstart.clear();
  tend.clear();
  v_freqs.clear();
  trkflnm.clear();
  dataflnm_p_ = &dataflnm;
  tstart_p_ = &tstart;
  tend_p_ = &tend;
  v_freqs_p_ = &v_freqs;
  trkflnm_p_ = &trkflnm;
139 140
  v_noAC_p_=&v_noAC;
  v_noCx_p_=&v_noCx;
141
  trk_cnt = 0;
142
  // @trk visiDataTableFile tstart,tend freq TrackFileName [FLAG]
143
  //  tstart , tend in minutes freq in MHz
144 145 146
  //  optional FLAG   = NOAC  NOCX   NOACCX   
  //  NOAC : don't use for Auto-correlation fit ;  NOCX : don't use for cross-cor fits 
  //  NOACCX : don't use for Auto-correlation or cross-cor fits 
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  dc.ReadFile(dcfilename);
  if (dc.HasKey("inpath"))   {   // @inpath  InputFilesDirectoryPath    
    input_base_path = dc.SParam("inpath",0,"");
  }
  if (dc.HasKey("zenang"))   {   // @zenang  Zenith Angle in degree   
    zenang = dc.DParam("zenang",0,0.);
    if (zenang<0.) {
      theta_0 = Angle(-zenang, Angle::Degree).ToRadian();  phi_0 = Angle::PioTwoCst()+Angle::OnePiCst();
    }
    else {
      theta_0 = Angle(+zenang, Angle::Degree).ToRadian();  phi_0 = Angle::PioTwoCst();
    }
  }

  dataflnm_p_ = NULL;
  tstart_p_ = NULL;
  tend_p_ = NULL;
  v_freqs_p_ = NULL;
  trkflnm_p_ = NULL;

  if (trk_cnt != trkflnm.size()) {  // ca ne devrait pas arriver
    cout << " TrkInputDataSet::ReadDatacardFile()/BUG  trk_cnt != trkflnm.size()"<<endl;
    throw PError("TrkInputDataSet::ReadDatacardFile() trk_cnt != trkflnm.size()");
  }
  trk_cnt=0;
  dcfilename_ = dcfilename;
  return trkflnm.size();
}

ostream & TrkInputDataSet::Print(ostream & os) const
{
  os << "TrkInputDataSet(dcfilename="<<dcfilename_<<")/Info:  dec-shift(zenithAngle)= "<<zenang<<" NbTrk="<<NbTrk()<<endl;
  os << "...InputBaseDirectoryPath="<<input_base_path<<endl;
  for(size_t i=0; i<NbTrk(); i++)  {
    os <<"["<<i<<"] data= "<< dataflnm[i]<<"  ts,te(min)= "<<tstart[i]/60.<<","<<tend[i]/60.<<" freg(MHz)= "<<v_freqs[i]
       <<" TrkFile="<<trkflnm[i]<<endl;
  }
  return os;
}


188 189 190 191 192 193 194 195 196 197 198 199

//------------------------ ACxDataSet -------------------------------------

AcxDataSet::AcxDataSet(TrkInputDataSet & tkds)
  : tot_npoints(0),zenang(0.),theta_0(0.),phi_0(0.)
{
  ReadData(tkds);
}

AcxDataSet::AcxDataSet(AcxDataSet const & a)
  : v_time_data(a.v_time_data), vv_data(a.vv_data), vv_err(a.vv_err), 
    v_min_data(a.v_min_data), v_max_data(a.v_max_data),
200 201
    vv_cxdata(a.vv_cxdata), vv_cxerr(a.vv_cxerr),
    v_min_cxdata(a.v_min_cxdata), v_max_cxdata(a.v_max_cxdata), 
202
    tot_npoints(a.tot_npoints), v_freqs(a.v_freqs), v_noAC(a.v_noAC), v_noCx(a.v_noCx), 
203 204
    zenang(a.zenang), theta_0(a.theta_0), phi_0(a.phi_0),
    v_acbeams(a.v_acbeams), v_cxbeams(a.v_cxbeams),
205 206 207 208 209 210 211
    v_RcFit_ac(a.v_RcFit_ac), v_xi2red_ac(a.v_xi2red_ac),
    v_Ddish(a.v_Ddish), v_thetaant(a.v_thetaant), v_phiant(a.v_phiant),
    v_err_Ddish(a.v_err_Ddish), v_err_thetaant(a.v_err_thetaant), v_err_phiant(a.v_err_phiant),
    v_RcFit_cx(a.v_RcFit_cx), v_xi2red_cx(a.v_xi2red_cx),
    v_phase(a.v_phase), v_phi_0(a.v_phi_0), v_a_phi(a.v_a_phi),
    v_err_phi_0(a.v_err_phi_0), v_err_a_phi(a.v_err_a_phi),
    v_Acx(a.v_Acx), v_Bcx(a.v_Bcx)
212 213 214 215 216 217 218
{
}

AcxDataSet & AcxDataSet::operator = (AcxDataSet const & a)
{
  v_time_data=a.v_time_data; vv_data=a.vv_data; vv_err=a.vv_err; 
  v_min_data=a.v_min_data;   v_max_data=a.v_max_data;
219 220
  vv_cxdata=a.vv_cxdata;   vv_cxerr=a.vv_cxerr;
  v_min_cxdata=a.v_min_cxdata;  v_max_cxdata=a.v_max_cxdata; 
221
  tot_npoints=a.tot_npoints; v_freqs=a.v_freqs;   v_noAC=a.v_noAC;  v_noCx=a.v_noCx;
222 223
  zenang=a.zenang;  theta_0=a.theta_0;  phi_0=a.phi_0;
  v_acbeams=a.v_acbeams;  v_cxbeams=a.v_cxbeams;
224 225
  v_RcFit_ac=a.v_RcFit_ac;  v_xi2red_ac=a.v_xi2red_ac;
  v_Ddish=a.v_Ddish;  v_thetaant=a.v_thetaant;  v_phiant=a.v_phiant;
226
  v_err_Ddish=a.v_err_Ddish;  v_err_thetaant=a.v_err_thetaant;  v_err_phiant=a.v_err_phiant;
227 228 229 230
  v_RcFit_cx=a.v_RcFit_cx; v_xi2red_cx=a.v_xi2red_cx;
  v_phase=a.v_phase; v_phi_0=a.v_phi_0;  v_a_phi=a.v_a_phi;
  v_err_phi_0=a.v_err_phi_0; v_err_a_phi=a.v_err_a_phi; 
  v_Acx=a.v_Acx;  v_Bcx=a.v_Bcx;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  return (*this);
}

size_t AcxDataSet::ReadData(TrkInputDataSet & tkds)    
{
  cout << "---- AcxDataSet::AcxDataSet() reading 4 PAON4 auto-correlation & 6 Cross-cor signals/DataTables for"
       <<tkds.NbTrk()<<" tracks ..."<<endl;

  if (tkds.NbTrk() != v_time_data.size()) {
    v_time_data.resize(tkds.NbTrk());
    vv_data.resize(tkds.NbTrk());
    vv_err.resize(tkds.NbTrk());
    v_min_data.resize(tkds.NbTrk());
    v_max_data.resize(tkds.NbTrk());
    vv_cxdata.resize(tkds.NbTrk());
    vv_cxerr.resize(tkds.NbTrk());
    v_min_cxdata.resize(tkds.NbTrk());
    v_max_cxdata.resize(tkds.NbTrk());    
  }
250
  v_freqs=tkds.v_freqs;  v_noAC=tkds.v_noAC;  v_noCx=tkds.v_noCx;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  zenang=tkds.zenang;   theta_0=tkds.theta_0;    phi_0=tkds.phi_0;
  size_t NB_ANTENNES=getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=getNbCrossCor();
  tot_npoints = 0;   // total number of points for fit 
  const char * acname[4]={"V11","V22","V33","V44"};
  const char * cxname[6]={"V12","V13","V14","V23","V24","V34"};
  
  for(size_t j=0; j<tkds.dataflnm.size(); j++) {
    string flnm = tkds.input_base_path+tkds.dataflnm[j]+".ppf";
    cout << "1."<<j+1<<" Extracting data from data file DataTable: " << flnm<<endl
	 << " ... For time interval (Trk"<<j+1<<") "<<tkds.tstart[j]<<" < t < "<<tkds.tend[j]<<endl;
    DataTable dt_data;
    PInPersist pin(flnm);
    pin >> dt_data;
    dt_data.SetShowMinMaxFlag(true);
    size_t ktime = dt_data.IndexNom("timesec");
    vector<double> vtm;
    dt_data.GetColumn(ktime, vtm);
    vector< vector<double> > v_vac(NB_ANTENNES);
    for(size_t ii=0; ii<NB_ANTENNES; ii++) {   // 4 auto-correlations
      size_t kac = dt_data.IndexNom(acname[ii]);
      dt_data.GetColumn(kac, v_vac[ii]);
      vector<double> vtmp, vetmp;
      vv_data[j].push_back(vtmp);
      vv_err[j].push_back(vetmp);
      v_min_data[j].push_back(9.e19);
      v_max_data[j].push_back(-9.e19);
    }
    vector< vector <complex<double> > > v_vcx(NB_CXCORS);
    for(size_t ii=0; ii<NB_CXCORS; ii++) {   // 6 cross-correlations
      size_t kac = dt_data.IndexNom(cxname[ii]);
      dt_data.GetColumn(kac, v_vcx[ii]);
      vector< complex<double> > vtmp;
      vector<double> vetmp;
      vv_cxdata[j].push_back(vtmp);
      vv_cxerr[j].push_back(vetmp);
      v_min_cxdata[j].push_back(9.e19);
      v_max_cxdata[j].push_back(-9.e19);
    }
    
    vector< vector<double> > & v_data = vv_data[j];
    vector< vector<double> > & v_err = vv_err[j];
    vector< vector< complex<double> > > & v_cxdata = vv_cxdata[j];
    vector< vector<double> > & v_cxerr = vv_cxerr[j];

    for(size_t k=0; k<vtm.size(); k++) {
      if ((vtm[k]<tkds.tstart[j])||(vtm[k]>tkds.tend[j]))  continue;
      v_time_data[j].push_back(vtm[k]);
      for(size_t ii=0; ii<NB_ANTENNES; ii++) {
	vector<double> & vac = v_vac[ii];
	v_data[ii].push_back(vac[k]);
	v_err[ii].push_back(0.1*sqrt(fabs(vac[k])));   // calcul d'erreur, a affiner 
	if (vac[k]<v_min_data[j][ii])  v_min_data[j][ii]=vac[k];
	if (vac[k]>v_max_data[j][ii])  v_max_data[j][ii]=vac[k];
      }
      for(size_t ii=0; ii<NB_CXCORS; ii++) {   // 6 cross-correlations
	vector< complex<double> > & vcx = v_vcx[ii];
	v_cxdata[ii].push_back(vcx[k]);
	double acx=std::abs(vcx[k]);
	v_cxerr[ii].push_back(0.1*sqrt(acx));
	if (acx<v_min_cxdata[j][ii])  v_min_cxdata[j][ii]=acx;
	if (acx>v_max_cxdata[j][ii])  v_max_cxdata[j][ii]=acx;
      }
    }
    
    tot_npoints += v_time_data[j].size();   // total number of points for fit 
    cout << " ... Done for " << j+1 << " data size="<<v_time_data[j].size()<<endl;
    cout << "  Data-AutoCor Min,Max[A1...A4]="; 
    for(size_t ii=0; ii<NB_ANTENNES; ii++)
      cout<<setw(10)<<v_min_data[j][ii]<<","<<setw(10)<<v_max_data[j][ii]<<" ; ";   cout << endl;
    cout << "  Data-CxCorr (abs) Min,Max[Cx1...Cx6]="; 
    for(size_t ii=0; ii<NB_ANTENNES; ii++)
      cout<<setw(10)<<v_min_cxdata[j][ii]<<","<<setw(10)<<v_max_cxdata[j][ii]<<" ; ";   cout << endl;

  }
  return tot_npoints;
}

329 330 331 332 333 334 335 336 337 338 339 340
ostream & AcxDataSet::PrintACFitSummary(ostream & os)
{
  const char* acnames[4]={"AC-1","AC-2","AC-3","AC-4"}; 
  os << "--------- Fitted Parameters and errors from AutoCorrelations (D-dish, Theta,Phi Antennes) "<<endl;
  for(size_t i=0; i<getNbAutoCor(); i++) {
    double thetaant=v_thetaant[i];  double err_thetaant=v_err_thetaant[i];
    double phiant=v_phiant[i];  double err_phiant=v_err_phiant[i];
    double elevdeg=90.-Angle(thetaant).ToDegree();
    double err_elevdeg=Angle(err_thetaant).ToDegree();
    double azimdeg=90.-Angle(phiant).ToDegree();
    if (azimdeg<0.)  azimdeg += 360.;
    double err_azimdeg=Angle(err_phiant).ToDegree();
341
    os<<acnames[i]<<" D(m)= "<<setw(8)<<v_Ddish[i]<<" +/- "<<setw(8)<<v_err_Ddish[i];
342 343
    os<<" Elev(deg)= "<<setw(8)<<elevdeg<<" +/- "<<setw(8)<<err_elevdeg;
    os<<" Azim(deg)= "<<setw(8)<<azimdeg<<" +/- "<<setw(8)<<err_azimdeg;
344
    os<<"  RcFit="<<setw(6)<<v_RcFit_ac[i]<<" Xi2Red="<<setw(8)<<v_xi2red_ac[i]<<endl;
345 346 347 348
  }
  return os;
}

349 350 351
ostream & AcxDataSet::PrintCxPhaseFitSummary(ostream & os)
{
  const char* cxnames[6]={"Cx-1x2","Cx-1x3","Cx-1x4","Cx-2x3","Cx-2x4","Cx-3x4"};
352
  os << "--------- Cx-Fitted phases @1300 MHz ";
353 354 355 356 357 358 359 360
  for(size_t i=0; i<getNbCrossCor(); i++) os<<setw(8)<<Angle(v_phase[i]).ToDegree()<<" ; ";   cout<<endl;
  double dphi23=v_phase[1]-v_phase[0];   if (dphi23<0.) dphi23+=(2.*M_PI);
  double dphi24=v_phase[2]-v_phase[0];   if (dphi24<0.) dphi24+=(2.*M_PI);
  double dphi34=v_phase[2]-v_phase[1];   if (dphi34<0.) dphi34+=(2.*M_PI);
  os << "--- Compatibility of fitted phases (@1300 MHz) among the six Baselines "<<endl;
  os<<" Cx-2x3: Phi3-Phi2= "<<setw(6)<<Angle(dphi23).ToDegree()<<" EqualTo? Phi23= "<<setw(6)<<Angle(v_phase[3]).ToDegree()<<endl;
  os<<" Cx-2x4: Phi4-Phi2= "<<setw(6)<<Angle(dphi24).ToDegree()<<" EqualTo? Phi24= "<<setw(6)<<Angle(v_phase[4]).ToDegree()<<endl;
  os<<" Cx-3x4: Phi4-Phi3= "<<setw(6)<<Angle(dphi34).ToDegree()<<" EqualTo? Phi34= "<<setw(6)<<Angle(v_phase[5]).ToDegree()<<endl;
361
  os << "--------- Cx-Fitted Phase(freq) parameters and errors  Phi(freq)=phi0+a_phi*(freq-1250.)/250. "<<endl;
362 363
  for(size_t i=0; i<getNbCrossCor(); i++) {
    os<<cxnames[i]<<" phi0= "<<setw(8)<<Angle(v_phi_0[i]).ToDegree()<<" +/- "<<setw(8)<<Angle(v_err_phi_0[i]).ToDegree()
364
      <<" a_phi= "<<setw(8)<<Angle(v_a_phi[i]).ToDegree()<<" +/- "<<setw(8)<<Angle(v_err_a_phi[i]).ToDegree()
365
      <<"  RcFit="<<setw(6)<<v_RcFit_cx[i]<<" Xi2Red="<<setw(8)<<v_xi2red_cx[i]<<endl;
366 367 368 369
  }
  return os;
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

//------------------------ TrackSet -------------------------------------
TrackSet::TrackSet(TrackSet const & a)
  : v_time_sat(a.v_time_sat), v_sat_elev(a.v_sat_elev), v_sat_azim(a.v_sat_azim),
    v_interp_elev(a.v_interp_elev), v_interp_sazim(a.v_interp_sazim)							   
{
}

TrackSet & TrackSet::operator = (TrackSet const & a)
{
  v_time_sat=a.v_time_sat;  v_sat_elev=a.v_sat_elev;  v_sat_azim=a.v_sat_azim;
  v_interp_elev=a.v_interp_elev;  v_interp_sazim=a.v_interp_sazim; 
  return *this;
}

TrackSet::TrackSet(TrkInputDataSet & tkds)
{
  ReadData(tkds);
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
size_t TrackSet::ReadTrackFile(string flnm, vector<double> & tims, vector<double> & elevs, vector<double> & azims, SLinInterp1D & li_elev, SLinInterp1D & li_sazim)
{
  cout <<"TrackSet::ReadTrackFile() Extracting data from source/satellite track DataTables: Filename= " << flnm << endl;
  DataTable dt_sat;
  PInPersist pin(flnm);
  pin >> dt_sat;
  dt_sat.SetShowMinMaxFlag(true);
  size_t ktime = dt_sat.IndexNom("timesec");
  dt_sat.GetColumn(ktime, tims);
  size_t kelev = dt_sat.IndexNom("elevation");
  dt_sat.GetColumn(kelev, elevs);
  size_t kazim = dt_sat.IndexNom("azimuth");
  dt_sat.GetColumn(kazim, azims);
  li_elev.DefinePoints(tims, elevs);
  double last_azim=azims[0];
  //    vector<double> cazim(v_sat_azim[j].size());
  // azimuth values, shifted possibly +360 +720 deg ... to avoid jumping from 360 deg to 0 deg  
  vector<double> shifted_azim(azims.size());   
  double azim_offset=0.;
  double min_azim_offset=0.;
  bool fgneg_azim_offset=false;
  for(size_t k=0; k<azims.size(); k++)  {
    double azim=azims[k];
    if ((k>0)&&(azim<last_azim)) {
      if ((last_azim>300.)&&(azim<60.))  {
	azim_offset += 360.;
	if (_prtlevel_>0) 
	  cout << "TrackSet::ReadTrackFile()/Info-Warning: 360 to 0 deg. Jump k="<<k<<" last_azim="<<last_azim<<" azimuth= "<<azim<<" Offset->"<<azim_offset<<endl;
      }
    }
    else if ((k>0)&&(azim>last_azim)) {
      if ((last_azim<60)&&(azim>300.))  {
	azim_offset -= 360.;
	if (_prtlevel_>0) 
	  cout << "TrackSet::ReadTrackFile()/Info-Warning: 0 to 360 deg. Jump: k="<<k<<" last_azim="<<last_azim<<" azimuth= "<<azim<<" Offset->"<<azim_offset<<endl;
      }
    }
    if (azim_offset<min_azim_offset)  min_azim_offset=azim_offset;
    last_azim = azim;
    shifted_azim[k]=azim+azim_offset;
    /*
      double phisrcdeg=90.-v_sat_azim[j][k];
      if (phisrcdeg<0.)  phisrcdeg+=360.;
      double phisrc=Angle(phisrcdeg,Angle::Degree).ToRadian();
      cazim[k]=cos(phisrc);
    */
  }
  if (min_azim_offset < -300.) {
    cout << "TrackSet::ReadTrackFile()/Info-Warning: - correcting for negative azim_offset -> Adding " << -min_azim_offset <<" deg."<<endl;
    for(size_t k=0; k<shifted_azim.size(); k++)   shifted_azim[k] -= min_azim_offset;
  }
  li_sazim.DefinePoints(tims, shifted_azim);
  return tims.size();
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458
size_t TrackSet::ReadData(TrkInputDataSet & tkds)
{
  cout << "---- TrackSet::ReadData() ; reading source (satellites, ..) for "
       <<tkds.NbTrk()<<" tracks ..."<<endl;
  if (tkds.NbTrk() != v_time_sat.size()) {
    v_time_sat.resize(tkds.NbTrk());
    v_sat_elev.resize(tkds.NbTrk());
    v_sat_azim.resize(tkds.NbTrk());
    v_interp_elev.resize(tkds.NbTrk());
    v_interp_sazim.resize(tkds.NbTrk());
  }

  for(size_t j=0; j<tkds.NbTrk(); j++) {
    string flnm = tkds.input_base_path+tkds.trkflnm[j]+".ppf";
459 460 461 462 463
    size_t npts=ReadTrackFile(flnm, v_time_sat[j], v_sat_elev[j], v_sat_azim[j], v_interp_elev[j], v_interp_sazim[j]);
    cout<<"["<<j+1<<"]  DONE timevec.size()="<<npts<<"  SLinInterp1D for elevation / azimuth created ..."<<endl;
    if (_prtlevel_>0) {
      cout << v_interp_elev[j];
      cout << v_interp_sazim[j];
464
    }
465 466 467 468 469
  }
  return 0;
}


470
//------------------------ ACxSetFitter -------------------------------------
471
ACxSetFitter::ACxSetFitter(AcxDataSet & data, TrackSet & tks)
472
  : fggaussbeam_(true), D_dish(5.), acxd_(data), tks_(tks), fit_ac_done(false), fit_cx_done(false), 
473 474 475 476 477
    v_RcFit_ac(tks.getNbAutoCor()), v_xi2red_ac(tks.getNbAutoCor()),
    v_Ddish(tks.getNbAutoCor()), v_thetaant(tks.getNbAutoCor()), 
    v_phiant(tks.getNbAutoCor()), v_A(tks.getNbAutoCor()), v_B(tks.getNbAutoCor()), 
    v_err_Ddish(tks.getNbAutoCor()), v_err_thetaant(tks.getNbAutoCor()), 
    v_err_phiant(tks.getNbAutoCor()), v_err_A(tks.getNbAutoCor()), v_err_B(tks.getNbAutoCor()), 
478
    v_acbeams(tks.getNbAutoCor()),
479
    v_RcFit_cx(tks.getNbCrossCor()), v_xi2red_cx(tks.getNbCrossCor()),
480 481 482 483
    v_phase(tks.getNbCrossCor()), v_phi_0(tks.getNbCrossCor()), v_a_phi(tks.getNbCrossCor()), 
    v_Acx(tks.getNbCrossCor()), v_Bcx(tks.getNbCrossCor()), 
    v_err_phi_0(tks.getNbCrossCor()), v_err_a_phi(tks.getNbCrossCor()), 
    v_err_Acx(tks.getNbCrossCor()), v_err_Bcx(tks.getNbCrossCor()),
484
    v_cxbeams(tks.getNbCrossCor())
485
{
486 487 488 489
  if (data.NbTrk() != tks.NbTrk())
    throw ParmError("ACxSetFitter(data, tks) NOT same number of tracks NbTrk() in data and tks");
  if (data.NbTrk() < 1)
    throw ParmError("ACxSetFitter(data, tks) 0 tracks in data data.NbTrk()<1 ");
490 491 492 493 494 495 496 497
}

int ACxSetFitter::doACfit(string outfilename)
{
  cout << "======================================================================================"<<endl;
  cout << "---- ACxSetFitter::doACfit() ; Performing antenna pointing fit ..."<<endl;
  ofstream ofr(outfilename.c_str());
  ofr << "#### Pointing/dish diameter fit on autocorrelation (ACxSetFitter::doACfit() "<<endl
498
      << "## NumAntenna RcFit Xi2red  Deff err_Deff  Elevation err_Elev  Azimuth err_Ezim  A0 err_A0 B0 err_B0 A1 err_A1 B1 err_B1 ..."<<endl;
499 500 501 502 503 504 505 506
  size_t NB_ANTENNES = acxd_.getNbAutoCor();
  size_t NTRK = acxd_.NbTrk();

  for(size_t ii=0; ii<NB_ANTENNES; ii++)  { 
    v_A[ii].resize(NTRK);     v_B[ii].resize(NTRK); 
    v_err_A[ii].resize(NTRK);     v_err_B[ii].resize(NTRK); 
  }
  int tot_npoints_fit = 0;
507 508 509 510
  for(size_t j=0; j<NTRK; j++) {
    if (acxd_.v_noAC[j])  continue;
    tot_npoints_fit += acxd_.v_time_data[j].size();
  }
511 512 513 514
  for(size_t ii=0; ii<NB_ANTENNES; ii++) {
    cout << "-------- doACfit() 1."<<ii+1<<" Creating General Fit for AutoCor Antenna= " << ii+1 << endl;
    GeneralFitData gdata(1, tot_npoints_fit);
    for(size_t j=0; j<NTRK; j++) {
515
      if (acxd_.v_noAC[j])  continue;
516 517 518 519 520 521
      vector< vector<double> > & v_data = acxd_.vv_data[j];
      vector< vector<double> > & v_err = acxd_.vv_err[j];
      for(size_t k=0; k<acxd_.v_time_data[j].size(); k++) {
	gdata.AddData1(acxd_.v_time_data[j][k],v_data[ii][k],v_err[ii][k]); // Fill x, y and error on y     
      }
    }
522 523 524 525
    TkF_ACXi2 gxi2( acxd_.v_time_data, acxd_.vv_data, acxd_.vv_err, acxd_.v_freqs, acxd_.v_noAC, 
		    tks_.v_interp_elev, tks_.v_interp_sazim, ii, fggaussbeam_);  // MyACGenXi2
    //    GeneralFit mFit(&gxi2);
    TkF_Fitter mFit(gxi2);
526
    mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
527
    mFit.SetMaxStep(5000);
528
    // SetParam(int n,double value, double step,double min=1., double max=-1.);
529
    mFit.SetParam(0,"D_dish",D_dish,0.1,D_dish*0.7,D_dish*1.4);
530 531 532 533 534 535 536 537 538 539 540 541 542
    // mFit.SetFix(0, D_dish);
    
    double thetaAntenne=0., phiAntenne=0.;
    if (fabs(acxd_.zenang)>1.e-6) {
      if (acxd_.zenang<0)  {
	thetaAntenne=Angle(-acxd_.zenang,Angle::Degree).ToRadian();
	phiAntenne=Angle(270.,Angle::Degree).ToRadian();
      }
      else {
	thetaAntenne=Angle(acxd_.zenang,Angle::Degree).ToRadian();
	phiAntenne=Angle(90.,Angle::Degree).ToRadian();
      }
    }
543
    mFit.SetParam(1,"ThetaAntenne",thetaAntenne,M_PI/1440,0.,M_PI/4.); // thetaAntenne+M_PI/30.); // 
544 545 546
    mFit.SetParam(2,"PhiAntenne",phiAntenne,M_PI/180.,0.,2.*M_PI);
    // mFit.SetFix(1, thetaAntenne);
    // mFit.SetFix(2, phiAntenne);
547

548
    //DEL    size_t jj=0;
549
    for(size_t j=0; j<NTRK; j++) {
550 551
      double A = acxd_.v_max_data[j][ii];
      double B = acxd_.v_min_data[j][ii];
552 553 554 555 556
      A -= B;   
      if (A<1.e-9)  { 
	cout << " doACfit()/Warning NumAnt/ii="<<ii<<" NumTrk/j="<<j<<" Negative A , A="<<A<<" B="<<B<<" A->"<<0.1*B<<endl;
	A=0.1*B;
      }
557 558
      v_A[ii][j]=A;   v_err_A[ii][j]=0.;
      v_B[ii][j]=B;   v_err_B[ii][j]=0.;
559
      //DEL if (acxd_.v_noAC[j])  continue;
560 561
      char pname[32];
      sprintf(pname,"A%d",(int)(j+1));
562
      mFit.SetParam(2*j+3,pname,A,A/10.,A/20,A*5);
563
      sprintf(pname,"B%d",(int)(j+1));
564 565 566 567 568 569 570
      mFit.SetParam(2*j+4,pname,B,B/10.,B/20,B*5);
      // mFit.SetFix(2*jj+4, B);
      if (acxd_.v_noAC[j]) {
	mFit.SetFix(2*j+3, A);
	mFit.SetFix(2*j+4, B);
      }
      //DEL      jj++;
571 572 573
    }
    //DBG mFit.PrintFit();
    //    cout << "do_p4_trkfit 2."<<ii+1<<" Performing the fit for AutoCor Antenna= " << ii+1 << endl;
574
    int rcfit = mFit.doFit();
575
    double xi2red=mFit.GetChi2Red();
576
    if (_prtlevel_>1) mFit.PrintFit();
577
    v_RcFit_ac[ii]=rcfit;  v_xi2red_ac[ii]=xi2red;
578 579 580 581 582 583 584 585 586
    if(rcfit>0) { 
      cout<< "------- Fit result for Antenna No="<<ii+1<<" Reduce_Chisquare = " << mFit.GetChi2Red()
	  << " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
    }
    else {
      cout << "---Fit failed for "<<ii+1<<"--- Fit_Error, rc = " << rcfit << "  nstep="<<mFit.GetNStep()<<endl;
      ofr <<setw(4)<<ii+1<<" ERROR FIT RC="<<rcfit<<"  nstep="<<mFit.GetNStep()<<endl;
      if (_prtlevel_>0) mFit.PrintFitErr(rcfit);
    } 
587 588 589 590 591 592 593 594 595

    ofr <<setw(4)<<ii+1<<" "<<setw(8)<<mFit.GetChi2Red()<<" "; 
    double Dfit=mFit.GetParm(0);   double err_Dfit=mFit.GetParmErr(0);
    cout <<setw(16)<<"DishDiameter= "<<setw(10)<<Dfit<<" +/- "<<setw(10)<<err_Dfit<<" m."<<endl;
    ofr <<setw(5)<<rcfit<<" "<<setw(8)<<Dfit<<" "<<setw(8)<<err_Dfit<<"  "; 
    v_Ddish[ii]=Dfit;
    v_err_Ddish[ii]=err_Dfit;
    double thetaant=mFit.GetParm(1);   double err_thetaant=mFit.GetParmErr(1);
    v_thetaant[ii]=thetaant;
596
    v_err_thetaant[ii]=err_thetaant;
597 598 599 600 601 602 603 604 605 606 607
    double elevdeg=90.-Angle(thetaant).ToDegree();
    double err_elevdeg=Angle(err_thetaant).ToDegree();
    cout <<setw(16)<<"ThetaAntenne= "<<setw(12)<<Angle(thetaant).ToDegree()<< " +/- "
	 <<setw(12)<<Angle(err_thetaant).ToDegree()<<" (elevation="
	 <<setw(8)<<elevdeg<<" +/- "<<setw(8)<<err_elevdeg<<") deg."<<endl;
    ofr <<setw(8)<<elevdeg<<" "<<setw(8)<<err_elevdeg<<"  "; 
    double phiant=mFit.GetParm(2);   double err_phiant=mFit.GetParmErr(2);
    double azimdeg=90.-Angle(phiant).ToDegree();
    if (azimdeg<0.)  azimdeg += 360.;
    double err_azimdeg=Angle(err_phiant).ToDegree();
    v_phiant[ii]=phiant;
608
    v_err_phiant[ii]=err_phiant;
609 610 611
    cout <<setw(16)<<"PhiAntenne= "<<setw(12)<<Angle(phiant).ToDegree()<< " +/- "
	 <<setw(12)<<Angle(err_phiant).ToDegree()<<" (azimuth  ="
	 <<setw(8)<<azimdeg<<" +/- "<<setw(8)<<err_azimdeg<<" ) deg."<<endl;
612
    ofr <<setw(8)<<azimdeg<<" "<<setw(8)<<err_azimdeg<<"  ";
613
    //DEL    jj=0;
614
    for(size_t j=0; j<NTRK; j++) {
615 616 617
      double A=1.,B=0.,err_A=0.,err_B=0.;
      A=mFit.GetParm(3+2*j);    err_A=mFit.GetParmErr(3+2*j);
      B=mFit.GetParm(4+2*j);    err_B=mFit.GetParmErr(4+2*j);
618
      v_A[ii][j]=A;  v_err_A[ii][j]=err_A;  v_B[ii][j]=B;  v_err_B[ii][j]=err_B;
619
      cout << "  Trk/Sat["<<j<<"] -> A= "<<A<<" +/- "<<err_A<<"  B= "<<B<<" +/- "<<err_B<<(acxd_.v_noAC[j]?" FIXED":"")<<endl;
620
      if (acxd_.v_noAC[j])
621
	ofr <<setw(8)<<A<<" "<<setw(8)<<" NOFIT "<<" "<<setw(8)<<B<<" "<<setw(8)<<" FIXED "<<" ";
622 623
      else 
	ofr <<setw(8)<<A<<" "<<setw(8)<<err_A<<" "<<setw(8)<<B<<" "<<setw(8)<<err_B<<" ";
624 625 626 627 628 629 630 631 632 633 634
    }
    ofr << endl;
    double clight = PhysQty::c().SIValue();
    double lambda = clight/(acxd_.v_freqs[0]*1.e6);
    ACBeam acb1(Dfit, thetaant, phiant, lambda);
    acb1.setGaussianLobe(fggaussbeam_);
    ACBeam acb2(Dfit, thetaant, phiant, lambda);
    acb2.setGaussianLobe(fggaussbeam_);
    Vector3d baseline0(0.,0.,0.);
    v_acbeams[ii]=CxBeam(acb1, acb2, baseline0);
    
635 636
  }
  
637 638
  fit_ac_done=true;
  acxd_.v_acbeams=v_acbeams;
639 640 641 642
  acxd_.v_RcFit_ac=v_RcFit_ac;
  acxd_.v_xi2red_ac=v_xi2red_ac;
  acxd_.v_Ddish=v_Ddish;
  acxd_.v_thetaant=v_thetaant;
643
  acxd_.v_phiant=v_phiant;
644 645 646
  acxd_.v_err_Ddish=v_err_Ddish;
  acxd_.v_err_thetaant=v_err_thetaant;
  acxd_.v_err_phiant=v_err_phiant;
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
  return 0;
}

int ACxSetFitter::saveExpectedAC(string outcheckfilename)
{
  if (outcheckfilename.length()<1)  return 1;
  cout << "-----ACxSetFitter::saveExpectedAC() : computing expected signal for fitted params , will be saved to file "
       <<outcheckfilename<<endl;
  POutPersist pos(outcheckfilename);
  size_t NB_ANTENNES = acxd_.getNbAutoCor();
  size_t NTRK = acxd_.NbTrk();

  for(size_t ii=0; ii<NB_ANTENNES; ii++)     {
    if (_prtlevel_>1) 
      cout << "... Computing DataSignal & Expected Signal for fitted params and dish "<<ii+1<<endl;
    
663
    MyACSignal macs(acxd_.v_time_data, acxd_.vv_data, acxd_.vv_err, acxd_.v_freqs, acxd_.v_noAC, 
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
		    tks_.v_interp_elev, tks_.v_interp_sazim, ii, fggaussbeam_);
      
    double Ddishfit=v_Ddish[ii];
    double thetafit=v_thetaant[ii];
    double phifit=v_phiant[ii];
    
    char oname[32];
    for(size_t j=0; j<NTRK; j++)  {
      double A = v_A[ii][j];
      double B = v_B[ii][j];
      Vector signal = macs.getDataSignal(j);
      sprintf(oname,"ac_%d_%d",(int)ii+1,(int)j+1);
      pos << PPFNameTag(oname)<<signal;
      Vector expsignal = macs.getExpectedSignal(j, Ddishfit, thetafit, phifit, A, B);
      sprintf(oname,"simac_%d_%d",(int)ii+1,(int)j+1);      
      pos << PPFNameTag(oname)<<expsignal;
680 681 682 683 684
      if (ii==0)  {
	Vector tmvec = macs.getTimeVec(j);
	sprintf(oname,"tim_%d",(int)j+1);
	pos << PPFNameTag(oname)<<tmvec;
      }
685 686 687 688 689 690
    }
  } 
  return 0;
}


691
int ACxSetFitter::doCxfit(string outfilenamecx, bool useAac, bool fg_B0, bool fgphi0only)
692 693 694 695 696
{
  size_t NB_ANTENNES=acxd_.getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=acxd_.getNbCrossCor();
  size_t NTRK = acxd_.NbTrk();

697

698
  //------ Valeurs de phases et pente de Phi(freq) = Phi0 + aPhi * (freq-1250.)/250.   (en degres) 
699 700 701
  double phi0deg_I[6] = {250. , 110, 60., 220., 170., 310.};
  double aphideg_I[6] = {-71. , 383., 449., 454., 520., 66.};

702
  cout << "======================================================================================"<<endl;
703
  cout << "---------- ACxSetFitter::doCxfit() ; Performing cross-cor phase fit for NTrk="<<NTRK<<endl;
704 705 706
  if (useAac) cout << " ... Using Amplitude from auto-correlations fit for initial fit parameter value..."<<endl; 
  ofstream ofr(outfilenamecx.c_str());
  ofr << "#### cross-cor phase fit (ACxSetFitter::doCxfit() ) "<<endl
707
      << "## NumCxCor RcFit Xi2red Phi0 err_Phi0 a_Phi err_a_Phi (deg) A0 err_A0 B0 errB0 A1 err_A1  ..."<<endl;
708 709
  int tot_npoints_fit = 0;
  for(size_t j=0; j<NTRK; j++) tot_npoints_fit += 2*(acxd_.v_time_data[j].size());
710 711
  cout << " Total number of data points for fit="<< tot_npoints_fit<<endl;

712 713 714 715
  size_t Anum1[6]={0,0,0,1,1,2};
  size_t Anum2[6]={1,2,3,2,3,3};
  for(size_t ii=0; ii<NB_CXCORS; ii++) {
    v_Acx[ii].resize(NTRK);   
716 717 718
    v_Bcx[ii].resize(NTRK);  
    v_err_Acx[ii].resize(NTRK);   
    v_err_Bcx[ii].resize(NTRK);  
719 720
    for(size_t j=0; j<NTRK; j++) {
      v_Acx[ii][j]=1.;   v_Bcx[ii][j]=complex<double>(0.,0.);
721
      v_err_Acx[ii][j]=1.;   v_err_Bcx[ii][j]=complex<double>(0.,0.);
722
    }
723
    Vector3d baseline=P4Coords::getBaseline(Anum1[ii]+1,Anum2[ii]+1);
724 725 726
    if (z_coord_shift.size() > 0) {   // Si on a definit un shift des coordonnees z des antennes   
      baseline += Vector3d(0.,0.,z_coord_shift[Anum2[ii]]-z_coord_shift[Anum1[ii]]);
    }
727 728 729 730 731 732 733 734 735 736
    cout << "--------- 1."<<ii+1<<" doCxfit() Doing fit for CrossCor= " << ii << " FxF= " 
	 << Anum1[ii]+1<<"x"<<Anum2[ii]+1<<" Baseline="<<baseline<<endl;
    GeneralFitData gdata(1, tot_npoints_fit);
    for(size_t j=0; j<NTRK; j++) {
      vector< vector< complex<double> > > & v_cxdata = acxd_.vv_cxdata[j];
      vector< vector<double> > & v_cxerr = acxd_.vv_cxerr[j];
      for(size_t k=0; k<acxd_.v_time_data[j].size(); k++) {
	gdata.AddData1(acxd_.v_time_data[j][k],v_cxdata[ii][k].real(),v_cxerr[ii][k]); // Fill x, y and error on y
	gdata.AddData1(acxd_.v_time_data[j][k],v_cxdata[ii][k].imag(),v_cxerr[ii][k]); // Fill x, y and error on y     
      }
737
    }
738 739 740 741 742 743 744
    double clight = PhysQty::c().SIValue();
    double lambda = clight/(acxd_.v_freqs[0]*1.e6);
    ACBeam acb1(v_Ddish[Anum1[ii]], v_thetaant[Anum1[ii]], v_phiant[Anum1[ii]], lambda);
    acb1.setGaussianLobe(fggaussbeam_);
    ACBeam acb2(v_Ddish[Anum2[ii]], v_thetaant[Anum2[ii]], v_phiant[Anum2[ii]], lambda);
    acb2.setGaussianLobe(fggaussbeam_);
    CxBeam cxbeam(acb1, acb2, baseline);
745
    v_cxbeams[ii]=cxbeam;
746

747
    TkF_CxXi2 gxi2( acxd_.v_time_data, acxd_.vv_cxdata, acxd_.vv_cxerr, acxd_.v_freqs, acxd_.v_noCx, 
748 749 750
		    tks_.v_interp_elev, tks_.v_interp_sazim, cxbeam, ii);  // MyCxGenXi2
    //    GeneralFit mFit(&gxi2);
    TkF_Fitter mFit(gxi2);
751
    mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
752
    mFit.SetMaxStep(3000);
753
    // SetParam(int n,double value, double step,double min=1., double max=-1.);
754 755
    mFit.SetParam(0,"Phi_0",Angle(phi0deg_I[ii],Angle::Degree).ToRadian(),M_PI/180.,-0.5*M_PI,3*M_PI);
    mFit.SetParam(1,"a_phi",Angle(aphideg_I[ii],Angle::Degree).ToRadian(),0.05,-15.,15.);
756 757 758 759 760
    if (fgphi0only) {
      cout << " ACxSetFitter::doCxfit() Fitting Phi0 Only (frequency independent phase)"<<endl;
      mFit.SetFix(1,0.);
    }
    else cout << " ACxSetFitter::doCxfit() Fitting  Phase(freq) = Phi0 + a_Phi * (freq-1250.)/250. "<<endl;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

    char oname[32];
    vector<double> v_amp(NTRK);
    for(size_t j=0; j<NTRK; j++) {
      double A=1.; // v_max_cxdata[j][ii]; 
      TVector< complex<double> >  signal = gxi2.getDataSignal(j);
      Vector asig = SOPHYA::abs(signal);
      double mins, maxs;
      asig.MinMax(mins, maxs);
      TVector< complex<double> >  expsignal = gxi2.getExpectedSignal(j, 0., A);
      Vector aexpsig = SOPHYA::abs(expsignal);
      double mine, maxe;
      aexpsig.MinMax(mine, maxe);
      A=maxs/maxe;
      v_amp[j]=A; 
    }

778
    double fparm[100];  fparm[0]=0.;
779 780
    fparm[0]=Angle(phi0deg_I[ii], Angle::Degree).ToRadian();  // Angle(phi0deg_I[ii],Angle::Degree).ToRadian()
    if (fgphi0only)  fparm[1]=0.;
781
    else  fparm[1]=Angle(aphideg_I[ii], Angle::Degree).ToRadian();;
782
    
783 784 785 786
    double bestxi2 = 9.e19;
    double bestphase=0.;
    int bestnpts,npts;
    int bestafact;
787
    double afact[12]={0.15,0.3,0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.4,2.8,3.2};
788
    bool fg_ph_I=false;   // if true , phase value from phi0deg_I aphideg_I 
789 790 791
    for(int ia=0; ia<12; ia++) {
      for(size_t j=0; j<NTRK; j++) {
	double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
792 793
	//DBG	cout << " *DBG* j="<<j<<" ia="<<ia<<" vA="<<v_A[Anum1[ii]][j]<<" x "<<v_A[Anum2[ii]][j]
	//     <<"  -> "<<Aac<<endl;
794
	fparm[2+3*j]=(useAac?Aac:v_amp[j]);
795
	fparm[2+3*j]*=afact[ia];   fparm[3+3*j]=fparm[4+3*j]=0.;
796
      }
797 798 799 800
      for(int jp=-1; jp<180; jp++) {
	double ph = jp*2.;
	if (jp==-1) fparm[0]=Angle(phi0deg_I[ii], Angle::Degree).ToRadian(); 
	else  fparm[0]=Angle(ph, Angle::Degree).ToRadian();
801
	double xi2 = gxi2.getXi2(fparm, npts);
802
	//DBG	cout << " *DBG* ia="<<ia<<" afact="<<afact[ia]<<" ph="<<ph<<" xi2="<<xi2<<endl;
803
	if (xi2 < bestxi2) {
804
	  if (jp==-1) fg_ph_I=true;  else fg_ph_I=false; 
805 806 807 808
	  bestxi2 = xi2; bestphase=fparm[0]; bestnpts=npts;  bestafact=afact[ia];
	}
      }
    }
809
    mFit.SetParam(0,"Phi_0",bestphase,M_PI/720.,-0.5*M_PI,2.5*M_PI);
810 811 812
    cout << "2."<<ii+1<<" Scan param bestxi2_red="<<bestxi2/(double)(tot_npoints_fit-(2+NTRK))
	 <<" bestphase="<<Angle(bestphase).ToDegree()<<(fg_ph_I?" (Phase from phi0deg_I)":" ")
	 <<" bestnpts="<<bestnpts<<" bestafact="<<bestafact<< " A= ";  
813
    v_phi_0[ii]=bestphase;
814 815
    for(size_t j=0; j<NTRK; j++)  {
      cout << v_amp[j] << " , ";  
816
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
817 818 819 820 821 822 823 824 825
      v_Acx[ii][j]=(useAac?Aac:v_amp[j]);
    }
    cout << endl;
    for(size_t j=0; j<NTRK; j++) {
      char pname[32];
      sprintf(pname,"A%d",(int)(j+1));
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
      double A=(useAac?Aac:v_amp[j]);
      //DBG      cout << "*DBG* j="<<j<<" Aac= "<<Aac<<" v_amp="<<v_amp[j]<<"  A= "<<A<<"  A1="<<v_A[Anum1[ii]][j]<<" A2="<<v_A[Anum2[ii]][j]<<endl;
826
      mFit.SetParam(2+3*j,pname,A,A/10.,A/4,A*4);
827 828
      sprintf(pname,"Bre%d",(int)(j+1));
      mFit.SetParam(3+3*j,pname,0.,A/25.,-A/5,A/5.);
829 830
      sprintf(pname,"Bim%d",(int)(j+1));
      mFit.SetParam(4+3*j,pname,0.,A/25.,-A/5,A/5.);
831 832
      if (acxd_.v_noCx[j]) {
	mFit.SetFix(2+3*j,A);
833 834 835
	mFit.SetFix(3+3*j,0.);
	mFit.SetFix(4+3*j,0.);
      }
836 837 838 839 840 841
      else {
	if (fg_B0) {
	  mFit.SetFix(3+3*j,0.);
	  mFit.SetFix(4+3*j,0.);
	}
      }
842 843 844 845
    }
    //DBG mFit.PrintFit();
    if (_prtlevel_>1)    
      cout << " 3."<<ii+1<<" Performing the fit for CrossCor " << ii << " FxF= " << Anum1[ii]+1<<"x"<<Anum2[ii]+1<<endl;
846
    int rcfit = mFit.doFit();
847
    v_RcFit_cx[ii]=rcfit;   v_xi2red_cx[ii]=mFit.GetChi2Red();
848 849 850
    if (_prtlevel_>1) mFit.PrintFit();
    if(rcfit>0) { 
      //      cout<< "-------------------------- Result for Cross No " << ii << endl; 
851
      cout<< "------ Fit result for Cross No "<<ii+1<<" Reduce_Chisquare = " << mFit.GetChi2Red()
852 853 854 855 856 857 858
	  << " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
    }
    else {
      cout << "---Fit failed for "<<ii<<" Fit_Error, rc = " << rcfit << "  nstep="<<mFit.GetNStep()<<endl;
      ofr <<setw(4)<<ii+1<<" ERROR FIT RC="<<rcfit<<"  nstep="<<mFit.GetNStep()<<endl;
      if (_prtlevel_>0) mFit.PrintFitErr(rcfit);
    }
859 860

    ofr <<setw(4)<<ii+1<<" "<<setw(5)<<rcfit<<setw(8)<<mFit.GetChi2Red()<<" "; 
861 862 863 864 865 866 867 868 869 870 871 872
    double phi0=mFit.GetParm(0);   double err_phi0=mFit.GetParmErr(0);
    double aphi=mFit.GetParm(1);   double err_aphi=mFit.GetParmErr(1);
    // on calcule la phase ajustee pour la frequence de reference 1300 MHz 
    double phase=gxi2.getPhase4Freq(phi0,aphi,1300.);
    while (phase<0.) phase += 2.*M_PI;
    while (phase>2.*M_PI) phase -= 2.*M_PI;
    cout <<"Phase(@1300MHz)= "<<setw(10)<<Angle(phase).ToDegree()<<"  phi_0= "<<setw(10)
	 <<Angle(phi0).ToDegree()<<" +/- "<<setw(10)<<Angle(err_phi0).ToDegree()<<" deg."
	 <<" a_phi= "<<setw(8)<<Angle(aphi).ToDegree()<<" +/- "<<setw(10)
	 <<Angle(err_aphi).ToDegree()<<" deg/250 MHz"<<endl;
    ofr <<setw(8)<<Angle(phi0).ToDegree()<<" "<<setw(8)<<Angle(err_phi0).ToDegree()<<"  "
	<<setw(8)<<Angle(aphi).ToDegree()<<" "<<setw(8)<<Angle(err_aphi).ToDegree()<<"  ";
873
    v_phase[ii]=phase;
874 875 876 877
    v_phi_0[ii]=phi0;
    v_err_phi_0[ii]=err_phi0;
    v_a_phi[ii]=aphi;
    v_err_a_phi[ii]=err_aphi;
878 879 880
    for(size_t j=0; j<NTRK; j++) {
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
      double Ai=(useAac?Aac:v_amp[j]);
881
      double A=mFit.GetParm(2+3*j);   double err_A=mFit.GetParmErr(2+3*j);
882 883 884 885
      complex<double> B(mFit.GetParm(3+3*j), mFit.GetParm(4+3*j));
      complex<double> err_B(mFit.GetParmErr(3+3*j), mFit.GetParmErr(4+3*j));
      cout << "  Trk["<<j<<"]  A= "<<A<<" +/- "<<err_A<<"  (A/Ai="<<A/Ai<<")"<<
	" B= "<<B<<" +/- "<<err_B<<(acxd_.v_noCx[j]?" NoFIT":" ")<<endl; 
886
      v_Acx[ii][j]=A;  
887
      v_Bcx[ii][j]=B;
888
      v_err_Acx[ii][j]=err_A; 
889
      ofr <<setw(8)<<A<<" "<<setw(8)<<err_A<<" "<<setw(14)<<B<<" "<<setw(12)<<err_B<<" ";
890
    }
891
    ofr << endl; 
892
  }
893 894 895 896 897 898 899 900 901 902 903
  cout << " --- Fitted phases: ";
  for(size_t i=0; i<NB_CXCORS; i++) cout<<setw(6)<<Angle(v_phase[i]).ToDegree()<<" ; ";   cout<<endl;
  double dphi23=v_phase[1]-v_phase[0];   if (dphi23<0.) dphi23+=(2.*M_PI);
  double dphi24=v_phase[2]-v_phase[0];   if (dphi24<0.) dphi24+=(2.*M_PI);
  double dphi34=v_phase[2]-v_phase[1];   if (dphi34<0.) dphi34+=(2.*M_PI);
  cout<<" Cx-2x3: "<<setw(6)<<Angle(dphi23).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[3]).ToDegree()<<endl;
  cout<<" Cx-2x4: "<<setw(6)<<Angle(dphi24).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[4]).ToDegree()<<endl;
  cout<<" Cx-3x4: "<<setw(6)<<Angle(dphi34).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[5]).ToDegree()<<endl;
  ofr<<"# Cx-2x3: "<<setw(6)<<Angle(dphi23).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[3]).ToDegree()<<endl;
  ofr<<"# Cx-2x4: "<<setw(6)<<Angle(dphi24).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[4]).ToDegree()<<endl;
  ofr<<"# Cx-3x4: "<<setw(6)<<Angle(dphi34).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[5]).ToDegree()<<endl;
904 905
  fit_cx_done=true;
  acxd_.v_cxbeams=v_cxbeams;
906 907
  acxd_.v_RcFit_cx=v_RcFit_cx;
  acxd_.v_xi2red_cx=v_xi2red_cx;
908
  acxd_.v_phase=v_phase;
909 910
  acxd_.v_phi_0=v_phi_0;
  acxd_.v_a_phi=v_a_phi;
911 912
  acxd_.v_err_phi_0=v_err_phi_0;
  acxd_.v_err_a_phi=v_err_a_phi;
913 914
  acxd_.v_Acx=v_Acx;
  acxd_.v_Bcx=v_Bcx;
915 916
  return 0;
} 
917

918

919 920 921 922 923 924 925 926 927 928 929
int ACxSetFitter::saveExpectedCx(string outcheckfilename)
{
  cout << "ACxSetFitter::saveExpectedCx() saving expected cross-cor (and visi-data) to file "<<outcheckfilename<<endl;
  POutPersist pox(outcheckfilename);
  size_t NB_CXCORS=acxd_.getNbCrossCor();
  size_t NTRK = acxd_.NbTrk();

  char oname[32];

  for(size_t ii=0; ii<NB_CXCORS; ii++) {
    CxBeam cxbeam=v_cxbeams[ii];
930
    MyCxSignal cxsig( acxd_.v_time_data, acxd_.vv_cxdata, acxd_.vv_cxerr, acxd_.v_freqs, acxd_.v_noCx, 
931 932 933 934 935
		      tks_.v_interp_elev, tks_.v_interp_sazim, cxbeam, ii);
    for(size_t j=0; j<NTRK; j++) {
      TVector< complex<double> >  signal = cxsig.getDataSignal(j);
      sprintf(oname,"cx_%d_%d",(int)ii+1,(int)j+1);
      pox << PPFNameTag(oname)<<signal;
936 937 938
      //DBG      cout << " *DBG* getPhase4Freq() phi0="<<acxd_.v_phi_0[ii]<<" a_phi="<<acxd_.v_a_phi[ii]<<" freq="<<acxd_.v_freqs[j]<<endl;
      double phase=cxsig.getPhase4Freq(acxd_.v_phi_0[ii],acxd_.v_a_phi[ii],acxd_.v_freqs[j]);
      TVector< complex<double> >  expsignal = cxsig.getExpectedSignal(j, phase, v_Acx[ii][j]);
939 940 941 942 943 944 945 946 947 948 949
      sprintf(oname,"simcx_%d_%d",(int)ii+1,(int)j+1);
      pox << PPFNameTag(oname)<<expsignal;
      if (ii==0)  {
	Vector tmvec = cxsig.getTimeVec(j);
	sprintf(oname,"tim_%d",(int)j+1);
	pox << PPFNameTag(oname)<<tmvec;
      }
    }
  }
  return 0;
}  
950 951 952

//------------------------ CxBaselineFitter -------------------------------------
CxBaselineFitter::CxBaselineFitter(vector<AcxDataSet> & v_data, vector<TrackSet> & v_tks)
953 954
  : v_acxd(v_data), v_trks(v_tks), tot_ntrks(0), fit_done(false), simplex_done(false), 
    xi2red(-9.e9), bestfitparam(NULL), err_bestfitparam(NULL)
955 956 957 958 959
{
  if (v_acxd.size() != v_trks.size())
    throw ParmError("CxBaselineFitter::CxBaselineFitter(v_data, v_tks) NOT same size v_data,v_tks ");
  if (v_acxd.size() < 1)
    throw ParmError("CxBaselineFitter::CxBaselineFitter(v_data, v_tks) v_data.size()<1 ");
960
  
961 962 963 964 965
  tot_ntrks=0;
  for(size_t i=0; i<v_acxd.size(); i++) tot_ntrks+=v_acxd[i].NbTrk();
  if (tot_ntrks<1)
    throw ParmError("CxBaselineFitter::CxBaselineFitter(v_data, v_tks) 0 tracks ! tot_ntrks<1 ");

966
  size_t nparam = 5*(v_acxd[0].getNbAutoCor()-1);  // 5 param / antenne , phi0, aphi, dX,dY,dZ
967 968
  bestfitparam = new double[nparam];
  err_bestfitparam = new double[nparam];
969

970 971 972 973
  if (v_acxd[0].v_phase.size()<1) {
    cout << " CxBaselineFitter::CxBaselineFitter(v_data, v_tks) /Warning : .v_phase.size()=0 , CxFit not done, cant call initFitParams()"<<endl; 
  }
  else initFitParams();
974 975
}

976 977 978 979 980
CxBaselineFitter::~CxBaselineFitter()
{
  if (bestfitparam) delete[] bestfitparam;
  if (err_bestfitparam) delete[] err_bestfitparam;
}
981

982 983
void CxBaselineFitter::initFitParams()
{
984
  //DBG  cout << " *DBG* CxBaselineFitter::initFitParams() v_acxd[0].v_phase.size()="<<v_acxd[0].v_phase.size()<<endl;
985 986 987 988
  size_t NB_ANTENNES=v_acxd[0].getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=v_acxd[0].getNbCrossCor();
  if (NB_ANTENNES != 4)
    throw PError("CxBaselineFitter::initFitParams() NB_ANTENNES != 4  Current version works only for 4 antenna");
989
  v_phase.resize(v_acxd[0].getNbAutoCor()-1);
990 991 992 993
  v_phi_0.resize(v_acxd[0].getNbAutoCor()-1);
  v_err_phi_0.resize(NB_ANTENNES-1);
  v_a_phi.resize(v_acxd[0].getNbAutoCor()-1);
  v_err_a_phi.resize(NB_ANTENNES-1);
994 995 996
  v_baselineshits.resize(NB_ANTENNES-1);
  v_err_baselineshits.resize(NB_ANTENNES-1);
  for(size_t i=0; i<(NB_ANTENNES-1); i++) {
997 998
    v_phi_0[i]=v_acxd[0].v_phi_0[i];   v_err_phi_0[i]=0.;
    v_a_phi[i]=v_acxd[0].v_a_phi[i];   v_err_a_phi[i]=0.;
999
    v_baselineshits[i]=Vector3d(0.,0.,0.);
1000
    if (z_coord_shift.size()>0) v_baselineshits[i]=Vector3d(0.,0.,z_coord_shift[i+1]-z_coord_shift[0]);
1001
    v_err_baselineshits[i]=Vector3d(0.,0.,0.);
Reza  ANSARI's avatar