trkfit.cc 43.7 KB
Newer Older
1 2 3 4 5 6
/*  PAON4 analysis software 
    classes and functions to read in and perform array geometry determination 
    using satellites and celestial sources tracks  
    R. Ansari, Fevrier 2019                                             */


7 8
#include <iomanip>

9 10 11
#include "pexceptions.h"
#include "trkfit.h"
#include "datacards.h"
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#include "array.h"

#include "acbeam.h"
#include "gacfit.h"
#include "gcxfit.h"
#include "gcxfitbaseline.h"

#include "p4autils.h"


//------------------- Print Level for this file --------------------------
static int _prtlevel_ =0;
void TrkFit_SetPrintLevel(int lev) 
{ 
  _prtlevel_=lev; 
  return;
}
29

30 31 32 33 34 35 36 37 38 39 40 41
void TrkFit_FitLibInfo() 
{
  cout << "============================================================================"<<endl;
#ifndef TKF_AVEC_MINUIT
  cout << "============ Classe TkF_Fitter : Fitting with Sophya GeneralFit ============"<<endl;
#else 
  cout << "============= Classe TkF_Fitter : Fitting with Minuit MnMigrad ============="<<endl;
#endif
  cout << "============================================================================"<<endl;
  return;
}

42 43
//------------------- TrkInputDataSet -------------------------------------

44 45

TrkInputDataSet::TrkInputDataSet(string dcfilename, string inp_path)
46 47
  : zenang(0.) , theta_0(0.) , phi_0(0.)
{
48
  setInputBasePath(inp_path);
49 50 51 52 53 54 55 56 57
  ReadDatacardFile(dcfilename);
}


static vector<string> * dataflnm_p_ = NULL;
static vector<double> * tstart_p_ = NULL;
static vector<double> * tend_p_ = NULL;
static vector<double> * v_freqs_p_ = NULL;
static vector<string> * trkflnm_p_ = NULL;
58 59
static vector<bool> * v_noAC_p_ = NULL;
static vector<bool> * v_noCx_p_ = NULL;
60 61 62 63 64 65 66 67 68 69 70 71 72
static size_t trk_cnt = 0;

static int decode_trkcard(string const& key, string const& toks)
{
  if (key != "trk") {  // CA NE DEVRAIT PAS ARRIVER 
    cout << "decode_trkcard/ERROR  BAD key = " << key << " ( <> trk"<<endl;
    return 1;
  }
  if (! dataflnm_p_ ) { // CA NE DEVRAIT PAS ARRIVER
    cout << "decode_trkcard/ERROR  dataflnm_p_ = NULL !"<<endl;
    return 1;
  }
  char flnmdata[256], flnmtrk[256];
73
  char sflags[64];
74
  double ts,te,freq;
75
  sscanf(toks.c_str(),"%s %lg,%lg %lg %s %s",flnmdata,&ts,&te,&freq,flnmtrk,sflags);
76 77 78 79 80 81

  dataflnm_p_->push_back(flnmdata);
  tstart_p_->push_back(ts*60.);
  tend_p_->push_back(te*60.);
  v_freqs_p_->push_back(freq);
  trkflnm_p_->push_back(flnmtrk);
82 83 84 85 86 87 88 89 90 91 92
  size_t ll=strlen(sflags);
  bool noAC=false;
  bool noCx=false;
  if (ll>0) {
    for(size_t l=0; l<ll; l++)  sflags[l]=toupper(sflags[l]);
    string sflg=sflags;
    if ((sflg == "NOAC")||(sflg=="NOACCX"))  noAC=true;
    if ((sflg == "NOCX")||(sflg=="NOACCX"))  noCx=true;
  }
  v_noAC_p_->push_back(noAC);
  v_noCx_p_->push_back(noCx);
93 94 95 96 97
  trk_cnt++;
  return 0;
}


98 99 100 101 102 103
void TrkInputDataSet::setInputBasePath(string inp_path)
{
  if (inp_path.length()>0)  input_base_path=inp_path;
  return;
}

104 105 106
size_t TrkInputDataSet::ReadDatacardFile(string dcfilename)
{
  DataCards dc;
107
  string match="trk";
108 109 110 111 112 113 114 115 116 117 118 119 120
  dc.AddProcF(decode_trkcard, match);

  zenang=0.; theta_0=0.;  phi_0=0.;
  dataflnm.clear();
  tstart.clear();
  tend.clear();
  v_freqs.clear();
  trkflnm.clear();
  dataflnm_p_ = &dataflnm;
  tstart_p_ = &tstart;
  tend_p_ = &tend;
  v_freqs_p_ = &v_freqs;
  trkflnm_p_ = &trkflnm;
121 122
  v_noAC_p_=&v_noAC;
  v_noCx_p_=&v_noCx;
123
  trk_cnt = 0;
124
  // @trk visiDataTableFile tstart,tend freq TrackFileName [FLAG]
125
  //  tstart , tend in minutes freq in MHz
126 127 128
  //  optional FLAG   = NOAC  NOCX   NOACCX   
  //  NOAC : don't use for Auto-correlation fit ;  NOCX : don't use for cross-cor fits 
  //  NOACCX : don't use for Auto-correlation or cross-cor fits 
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  dc.ReadFile(dcfilename);
  if (dc.HasKey("inpath"))   {   // @inpath  InputFilesDirectoryPath    
    input_base_path = dc.SParam("inpath",0,"");
  }
  if (dc.HasKey("zenang"))   {   // @zenang  Zenith Angle in degree   
    zenang = dc.DParam("zenang",0,0.);
    if (zenang<0.) {
      theta_0 = Angle(-zenang, Angle::Degree).ToRadian();  phi_0 = Angle::PioTwoCst()+Angle::OnePiCst();
    }
    else {
      theta_0 = Angle(+zenang, Angle::Degree).ToRadian();  phi_0 = Angle::PioTwoCst();
    }
  }

  dataflnm_p_ = NULL;
  tstart_p_ = NULL;
  tend_p_ = NULL;
  v_freqs_p_ = NULL;
  trkflnm_p_ = NULL;

  if (trk_cnt != trkflnm.size()) {  // ca ne devrait pas arriver
    cout << " TrkInputDataSet::ReadDatacardFile()/BUG  trk_cnt != trkflnm.size()"<<endl;
    throw PError("TrkInputDataSet::ReadDatacardFile() trk_cnt != trkflnm.size()");
  }
  trk_cnt=0;
  dcfilename_ = dcfilename;
  return trkflnm.size();
}

ostream & TrkInputDataSet::Print(ostream & os) const
{
  os << "TrkInputDataSet(dcfilename="<<dcfilename_<<")/Info:  dec-shift(zenithAngle)= "<<zenang<<" NbTrk="<<NbTrk()<<endl;
  os << "...InputBaseDirectoryPath="<<input_base_path<<endl;
  for(size_t i=0; i<NbTrk(); i++)  {
    os <<"["<<i<<"] data= "<< dataflnm[i]<<"  ts,te(min)= "<<tstart[i]/60.<<","<<tend[i]/60.<<" freg(MHz)= "<<v_freqs[i]
       <<" TrkFile="<<trkflnm[i]<<endl;
  }
  return os;
}


170 171 172 173 174 175 176 177 178 179 180 181

//------------------------ ACxDataSet -------------------------------------

AcxDataSet::AcxDataSet(TrkInputDataSet & tkds)
  : tot_npoints(0),zenang(0.),theta_0(0.),phi_0(0.)
{
  ReadData(tkds);
}

AcxDataSet::AcxDataSet(AcxDataSet const & a)
  : v_time_data(a.v_time_data), vv_data(a.vv_data), vv_err(a.vv_err), 
    v_min_data(a.v_min_data), v_max_data(a.v_max_data),
182 183
    vv_cxdata(a.vv_cxdata), vv_cxerr(a.vv_cxerr),
    v_min_cxdata(a.v_min_cxdata), v_max_cxdata(a.v_max_cxdata), 
184
    tot_npoints(a.tot_npoints), v_freqs(a.v_freqs), v_noAC(a.v_noAC), v_noCx(a.v_noCx), 
185 186
    zenang(a.zenang), theta_0(a.theta_0), phi_0(a.phi_0),
    v_acbeams(a.v_acbeams), v_cxbeams(a.v_cxbeams),
187
    v_phase(a.v_phase), v_phi_0(a.v_phi_0), v_a_phi(a.v_a_phi), v_Acx(a.v_Acx), v_Bcx(a.v_Bcx)
188 189 190 191 192 193 194
{
}

AcxDataSet & AcxDataSet::operator = (AcxDataSet const & a)
{
  v_time_data=a.v_time_data; vv_data=a.vv_data; vv_err=a.vv_err; 
  v_min_data=a.v_min_data;   v_max_data=a.v_max_data;
195 196
  vv_cxdata=a.vv_cxdata;   vv_cxerr=a.vv_cxerr;
  v_min_cxdata=a.v_min_cxdata;  v_max_cxdata=a.v_max_cxdata; 
197
  tot_npoints=a.tot_npoints; v_freqs=a.v_freqs;   v_noAC=a.v_noAC;  v_noCx=a.v_noCx;
198 199
  zenang=a.zenang;  theta_0=a.theta_0;  phi_0=a.phi_0;
  v_acbeams=a.v_acbeams;  v_cxbeams=a.v_cxbeams;
200
  v_phase=a.v_phase; v_phi_0=a.v_phi_0;  v_a_phi=a.v_a_phi;  v_Acx=a.v_Acx;  v_Bcx=a.v_Bcx;
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  return (*this);
}

size_t AcxDataSet::ReadData(TrkInputDataSet & tkds)    
{
  cout << "---- AcxDataSet::AcxDataSet() reading 4 PAON4 auto-correlation & 6 Cross-cor signals/DataTables for"
       <<tkds.NbTrk()<<" tracks ..."<<endl;

  if (tkds.NbTrk() != v_time_data.size()) {
    v_time_data.resize(tkds.NbTrk());
    vv_data.resize(tkds.NbTrk());
    vv_err.resize(tkds.NbTrk());
    v_min_data.resize(tkds.NbTrk());
    v_max_data.resize(tkds.NbTrk());
    vv_cxdata.resize(tkds.NbTrk());
    vv_cxerr.resize(tkds.NbTrk());
    v_min_cxdata.resize(tkds.NbTrk());
    v_max_cxdata.resize(tkds.NbTrk());    
  }
221
  v_freqs=tkds.v_freqs;  v_noAC=tkds.v_noAC;  v_noCx=tkds.v_noCx;
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
  zenang=tkds.zenang;   theta_0=tkds.theta_0;    phi_0=tkds.phi_0;
  size_t NB_ANTENNES=getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=getNbCrossCor();
  tot_npoints = 0;   // total number of points for fit 
  const char * acname[4]={"V11","V22","V33","V44"};
  const char * cxname[6]={"V12","V13","V14","V23","V24","V34"};
  
  for(size_t j=0; j<tkds.dataflnm.size(); j++) {
    string flnm = tkds.input_base_path+tkds.dataflnm[j]+".ppf";
    cout << "1."<<j+1<<" Extracting data from data file DataTable: " << flnm<<endl
	 << " ... For time interval (Trk"<<j+1<<") "<<tkds.tstart[j]<<" < t < "<<tkds.tend[j]<<endl;
    DataTable dt_data;
    PInPersist pin(flnm);
    pin >> dt_data;
    dt_data.SetShowMinMaxFlag(true);
    size_t ktime = dt_data.IndexNom("timesec");
    vector<double> vtm;
    dt_data.GetColumn(ktime, vtm);
    vector< vector<double> > v_vac(NB_ANTENNES);
    for(size_t ii=0; ii<NB_ANTENNES; ii++) {   // 4 auto-correlations
      size_t kac = dt_data.IndexNom(acname[ii]);
      dt_data.GetColumn(kac, v_vac[ii]);
      vector<double> vtmp, vetmp;
      vv_data[j].push_back(vtmp);
      vv_err[j].push_back(vetmp);
      v_min_data[j].push_back(9.e19);
      v_max_data[j].push_back(-9.e19);
    }
    vector< vector <complex<double> > > v_vcx(NB_CXCORS);
    for(size_t ii=0; ii<NB_CXCORS; ii++) {   // 6 cross-correlations
      size_t kac = dt_data.IndexNom(cxname[ii]);
      dt_data.GetColumn(kac, v_vcx[ii]);
      vector< complex<double> > vtmp;
      vector<double> vetmp;
      vv_cxdata[j].push_back(vtmp);
      vv_cxerr[j].push_back(vetmp);
      v_min_cxdata[j].push_back(9.e19);
      v_max_cxdata[j].push_back(-9.e19);
    }
    
    vector< vector<double> > & v_data = vv_data[j];
    vector< vector<double> > & v_err = vv_err[j];
    vector< vector< complex<double> > > & v_cxdata = vv_cxdata[j];
    vector< vector<double> > & v_cxerr = vv_cxerr[j];

    for(size_t k=0; k<vtm.size(); k++) {
      if ((vtm[k]<tkds.tstart[j])||(vtm[k]>tkds.tend[j]))  continue;
      v_time_data[j].push_back(vtm[k]);
      for(size_t ii=0; ii<NB_ANTENNES; ii++) {
	vector<double> & vac = v_vac[ii];
	v_data[ii].push_back(vac[k]);
	v_err[ii].push_back(0.1*sqrt(fabs(vac[k])));   // calcul d'erreur, a affiner 
	if (vac[k]<v_min_data[j][ii])  v_min_data[j][ii]=vac[k];
	if (vac[k]>v_max_data[j][ii])  v_max_data[j][ii]=vac[k];
      }
      for(size_t ii=0; ii<NB_CXCORS; ii++) {   // 6 cross-correlations
	vector< complex<double> > & vcx = v_vcx[ii];
	v_cxdata[ii].push_back(vcx[k]);
	double acx=std::abs(vcx[k]);
	v_cxerr[ii].push_back(0.1*sqrt(acx));
	if (acx<v_min_cxdata[j][ii])  v_min_cxdata[j][ii]=acx;
	if (acx>v_max_cxdata[j][ii])  v_max_cxdata[j][ii]=acx;
      }
    }
    
    tot_npoints += v_time_data[j].size();   // total number of points for fit 
    cout << " ... Done for " << j+1 << " data size="<<v_time_data[j].size()<<endl;
    cout << "  Data-AutoCor Min,Max[A1...A4]="; 
    for(size_t ii=0; ii<NB_ANTENNES; ii++)
      cout<<setw(10)<<v_min_data[j][ii]<<","<<setw(10)<<v_max_data[j][ii]<<" ; ";   cout << endl;
    cout << "  Data-CxCorr (abs) Min,Max[Cx1...Cx6]="; 
    for(size_t ii=0; ii<NB_ANTENNES; ii++)
      cout<<setw(10)<<v_min_cxdata[j][ii]<<","<<setw(10)<<v_max_cxdata[j][ii]<<" ; ";   cout << endl;

  }
  return tot_npoints;
}


//------------------------ TrackSet -------------------------------------
TrackSet::TrackSet(TrackSet const & a)
  : v_time_sat(a.v_time_sat), v_sat_elev(a.v_sat_elev), v_sat_azim(a.v_sat_azim),
    v_interp_elev(a.v_interp_elev), v_interp_sazim(a.v_interp_sazim)							   
{
}

TrackSet & TrackSet::operator = (TrackSet const & a)
{
  v_time_sat=a.v_time_sat;  v_sat_elev=a.v_sat_elev;  v_sat_azim=a.v_sat_azim;
  v_interp_elev=a.v_interp_elev;  v_interp_sazim=a.v_interp_sazim; 
  return *this;
}

TrackSet::TrackSet(TrkInputDataSet & tkds)
{
  ReadData(tkds);
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
size_t TrackSet::ReadTrackFile(string flnm, vector<double> & tims, vector<double> & elevs, vector<double> & azims, SLinInterp1D & li_elev, SLinInterp1D & li_sazim)
{
  cout <<"TrackSet::ReadTrackFile() Extracting data from source/satellite track DataTables: Filename= " << flnm << endl;
  DataTable dt_sat;
  PInPersist pin(flnm);
  pin >> dt_sat;
  dt_sat.SetShowMinMaxFlag(true);
  size_t ktime = dt_sat.IndexNom("timesec");
  dt_sat.GetColumn(ktime, tims);
  size_t kelev = dt_sat.IndexNom("elevation");
  dt_sat.GetColumn(kelev, elevs);
  size_t kazim = dt_sat.IndexNom("azimuth");
  dt_sat.GetColumn(kazim, azims);
  li_elev.DefinePoints(tims, elevs);
  double last_azim=azims[0];
  //    vector<double> cazim(v_sat_azim[j].size());
  // azimuth values, shifted possibly +360 +720 deg ... to avoid jumping from 360 deg to 0 deg  
  vector<double> shifted_azim(azims.size());   
  double azim_offset=0.;
  double min_azim_offset=0.;
  bool fgneg_azim_offset=false;
  for(size_t k=0; k<azims.size(); k++)  {
    double azim=azims[k];
    if ((k>0)&&(azim<last_azim)) {
      if ((last_azim>300.)&&(azim<60.))  {
	azim_offset += 360.;
	if (_prtlevel_>0) 
	  cout << "TrackSet::ReadTrackFile()/Info-Warning: 360 to 0 deg. Jump k="<<k<<" last_azim="<<last_azim<<" azimuth= "<<azim<<" Offset->"<<azim_offset<<endl;
      }
    }
    else if ((k>0)&&(azim>last_azim)) {
      if ((last_azim<60)&&(azim>300.))  {
	azim_offset -= 360.;
	if (_prtlevel_>0) 
	  cout << "TrackSet::ReadTrackFile()/Info-Warning: 0 to 360 deg. Jump: k="<<k<<" last_azim="<<last_azim<<" azimuth= "<<azim<<" Offset->"<<azim_offset<<endl;
      }
    }
    if (azim_offset<min_azim_offset)  min_azim_offset=azim_offset;
    last_azim = azim;
    shifted_azim[k]=azim+azim_offset;
    /*
      double phisrcdeg=90.-v_sat_azim[j][k];
      if (phisrcdeg<0.)  phisrcdeg+=360.;
      double phisrc=Angle(phisrcdeg,Angle::Degree).ToRadian();
      cazim[k]=cos(phisrc);
    */
  }
  if (min_azim_offset < -300.) {
    cout << "TrackSet::ReadTrackFile()/Info-Warning: - correcting for negative azim_offset -> Adding " << -min_azim_offset <<" deg."<<endl;
    for(size_t k=0; k<shifted_azim.size(); k++)   shifted_azim[k] -= min_azim_offset;
  }
  li_sazim.DefinePoints(tims, shifted_azim);
  return tims.size();
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388
size_t TrackSet::ReadData(TrkInputDataSet & tkds)
{
  cout << "---- TrackSet::ReadData() ; reading source (satellites, ..) for "
       <<tkds.NbTrk()<<" tracks ..."<<endl;
  if (tkds.NbTrk() != v_time_sat.size()) {
    v_time_sat.resize(tkds.NbTrk());
    v_sat_elev.resize(tkds.NbTrk());
    v_sat_azim.resize(tkds.NbTrk());
    v_interp_elev.resize(tkds.NbTrk());
    v_interp_sazim.resize(tkds.NbTrk());
  }

  for(size_t j=0; j<tkds.NbTrk(); j++) {
    string flnm = tkds.input_base_path+tkds.trkflnm[j]+".ppf";
389 390 391 392 393
    size_t npts=ReadTrackFile(flnm, v_time_sat[j], v_sat_elev[j], v_sat_azim[j], v_interp_elev[j], v_interp_sazim[j]);
    cout<<"["<<j+1<<"]  DONE timevec.size()="<<npts<<"  SLinInterp1D for elevation / azimuth created ..."<<endl;
    if (_prtlevel_>0) {
      cout << v_interp_elev[j];
      cout << v_interp_sazim[j];
394
    }
395 396 397 398 399
  }
  return 0;
}


400
//------------------------ ACxSetFitter -------------------------------------
401
ACxSetFitter::ACxSetFitter(AcxDataSet & data, TrackSet & tks)
402
  : fggaussbeam_(true), D_dish(5.), acxd_(data), tks_(tks), fit_ac_done(false), fit_cx_done(false), 
403 404 405 406 407
    v_RcFit_ac(tks.getNbAutoCor()), v_xi2red_ac(tks.getNbAutoCor()),
    v_Ddish(tks.getNbAutoCor()), v_thetaant(tks.getNbAutoCor()), 
    v_phiant(tks.getNbAutoCor()), v_A(tks.getNbAutoCor()), v_B(tks.getNbAutoCor()), 
    v_err_Ddish(tks.getNbAutoCor()), v_err_thetaant(tks.getNbAutoCor()), 
    v_err_phiant(tks.getNbAutoCor()), v_err_A(tks.getNbAutoCor()), v_err_B(tks.getNbAutoCor()), 
408
    v_acbeams(tks.getNbAutoCor()),
409
    v_RcFit_cx(tks.getNbCrossCor()), v_xi2red_cx(tks.getNbCrossCor()),
410 411 412 413
    v_phase(tks.getNbCrossCor()), v_phi_0(tks.getNbCrossCor()), v_a_phi(tks.getNbCrossCor()), 
    v_Acx(tks.getNbCrossCor()), v_Bcx(tks.getNbCrossCor()), 
    v_err_phi_0(tks.getNbCrossCor()), v_err_a_phi(tks.getNbCrossCor()), 
    v_err_Acx(tks.getNbCrossCor()), v_err_Bcx(tks.getNbCrossCor()),
414
    v_cxbeams(tks.getNbCrossCor())
415
{
416 417 418 419
  if (data.NbTrk() != tks.NbTrk())
    throw ParmError("ACxSetFitter(data, tks) NOT same number of tracks NbTrk() in data and tks");
  if (data.NbTrk() < 1)
    throw ParmError("ACxSetFitter(data, tks) 0 tracks in data data.NbTrk()<1 ");
420 421 422 423 424 425 426 427
}

int ACxSetFitter::doACfit(string outfilename)
{
  cout << "======================================================================================"<<endl;
  cout << "---- ACxSetFitter::doACfit() ; Performing antenna pointing fit ..."<<endl;
  ofstream ofr(outfilename.c_str());
  ofr << "#### Pointing/dish diameter fit on autocorrelation (ACxSetFitter::doACfit() "<<endl
428
      << "## NumAntenna RcFit Xi2red  Deff err_Deff  Elevation err_Elev  Azimuth err_Ezim  A0 err_A0 B0 err_B0 A1 err_A1 B1 err_B1 ..."<<endl;
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
  size_t NB_ANTENNES = acxd_.getNbAutoCor();
  size_t NTRK = acxd_.NbTrk();

  for(size_t ii=0; ii<NB_ANTENNES; ii++)  { 
    v_A[ii].resize(NTRK);     v_B[ii].resize(NTRK); 
    v_err_A[ii].resize(NTRK);     v_err_B[ii].resize(NTRK); 
  }
  int tot_npoints_fit = 0;
  for(size_t j=0; j<NTRK; j++) tot_npoints_fit += acxd_.v_time_data[j].size();
  for(size_t ii=0; ii<NB_ANTENNES; ii++) {
    cout << "-------- doACfit() 1."<<ii+1<<" Creating General Fit for AutoCor Antenna= " << ii+1 << endl;
    GeneralFitData gdata(1, tot_npoints_fit);
    for(size_t j=0; j<NTRK; j++) {
      vector< vector<double> > & v_data = acxd_.vv_data[j];
      vector< vector<double> > & v_err = acxd_.vv_err[j];
      for(size_t k=0; k<acxd_.v_time_data[j].size(); k++) {
	gdata.AddData1(acxd_.v_time_data[j][k],v_data[ii][k],v_err[ii][k]); // Fill x, y and error on y     
      }
    }
448 449 450 451
    TkF_ACXi2 gxi2( acxd_.v_time_data, acxd_.vv_data, acxd_.vv_err, acxd_.v_freqs, acxd_.v_noAC, 
		    tks_.v_interp_elev, tks_.v_interp_sazim, ii, fggaussbeam_);  // MyACGenXi2
    //    GeneralFit mFit(&gxi2);
    TkF_Fitter mFit(gxi2);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
    mFit.SetMaxStep(1000);
    // SetParam(int n,double value, double step,double min=1., double max=-1.);
    mFit.SetParam(0,"D_dish",D_dish,0.1,D_dish*0.8,D_dish*1.2);
    // mFit.SetFix(0, D_dish);
    
    double thetaAntenne=0., phiAntenne=0.;
    if (fabs(acxd_.zenang)>1.e-6) {
      if (acxd_.zenang<0)  {
	thetaAntenne=Angle(-acxd_.zenang,Angle::Degree).ToRadian();
	phiAntenne=Angle(270.,Angle::Degree).ToRadian();
      }
      else {
	thetaAntenne=Angle(acxd_.zenang,Angle::Degree).ToRadian();
	phiAntenne=Angle(90.,Angle::Degree).ToRadian();
      }
    }
469
    mFit.SetParam(1,"ThetaAntenne",thetaAntenne,M_PI/1440,0.,M_PI/3.);
470 471 472
    mFit.SetParam(2,"PhiAntenne",phiAntenne,M_PI/180.,0.,2.*M_PI);
    // mFit.SetFix(1, thetaAntenne);
    // mFit.SetFix(2, phiAntenne);
473 474

    size_t jj=0;
475
    for(size_t j=0; j<NTRK; j++) {
476
      if (acxd_.v_noAC[j])  continue;
477 478 479
      char pname[32];
      sprintf(pname,"A%d",(int)(j+1));
      double A = acxd_.v_max_data[j][ii];
480
      mFit.SetParam(2*jj+3,pname,A,A/10.,A/20,A*5);
481 482
      sprintf(pname,"B%d",(int)(j+1));
      double B = acxd_.v_min_data[j][ii];
483 484
      mFit.SetParam(2*jj+4,pname,B,B/10.,B/20,B*5);
      //      mFit.SetFix(2*jj+4, B);
485 486 487
    }
    //DBG mFit.PrintFit();
    //    cout << "do_p4_trkfit 2."<<ii+1<<" Performing the fit for AutoCor Antenna= " << ii+1 << endl;
488
    int rcfit = mFit.doFit();
489 490 491 492 493 494 495 496 497 498 499
    if (_prtlevel_>1) mFit.PrintFit();
    v_RcFit_ac[ii]=rcfit;  v_xi2red_ac[ii]=-9999.;
    if(rcfit>0) { 
      cout<< "------- Fit result for Antenna No="<<ii+1<<" Reduce_Chisquare = " << mFit.GetChi2Red()
	  << " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
    }
    else {
      cout << "---Fit failed for "<<ii+1<<"--- Fit_Error, rc = " << rcfit << "  nstep="<<mFit.GetNStep()<<endl;
      ofr <<setw(4)<<ii+1<<" ERROR FIT RC="<<rcfit<<"  nstep="<<mFit.GetNStep()<<endl;
      if (_prtlevel_>0) mFit.PrintFitErr(rcfit);
    } 
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

    ofr <<setw(4)<<ii+1<<" "<<setw(8)<<mFit.GetChi2Red()<<" "; 
    v_xi2red_ac[ii]=mFit.GetChi2Red();
    double Dfit=mFit.GetParm(0);   double err_Dfit=mFit.GetParmErr(0);
    cout <<setw(16)<<"DishDiameter= "<<setw(10)<<Dfit<<" +/- "<<setw(10)<<err_Dfit<<" m."<<endl;
    ofr <<setw(5)<<rcfit<<" "<<setw(8)<<Dfit<<" "<<setw(8)<<err_Dfit<<"  "; 
    v_Ddish[ii]=Dfit;
    v_err_Ddish[ii]=err_Dfit;
    double thetaant=mFit.GetParm(1);   double err_thetaant=mFit.GetParmErr(1);
    v_thetaant[ii]=thetaant;
    double elevdeg=90.-Angle(thetaant).ToDegree();
    double err_elevdeg=Angle(err_thetaant).ToDegree();
    cout <<setw(16)<<"ThetaAntenne= "<<setw(12)<<Angle(thetaant).ToDegree()<< " +/- "
	 <<setw(12)<<Angle(err_thetaant).ToDegree()<<" (elevation="
	 <<setw(8)<<elevdeg<<" +/- "<<setw(8)<<err_elevdeg<<") deg."<<endl;
    ofr <<setw(8)<<elevdeg<<" "<<setw(8)<<err_elevdeg<<"  "; 
    double phiant=mFit.GetParm(2);   double err_phiant=mFit.GetParmErr(2);
    double azimdeg=90.-Angle(phiant).ToDegree();
    if (azimdeg<0.)  azimdeg += 360.;
    double err_azimdeg=Angle(err_phiant).ToDegree();
    v_phiant[ii]=phiant;
    cout <<setw(16)<<"PhiAntenne= "<<setw(12)<<Angle(phiant).ToDegree()<< " +/- "
	 <<setw(12)<<Angle(err_phiant).ToDegree()<<" (azimuth  ="
	 <<setw(8)<<azimdeg<<" +/- "<<setw(8)<<err_azimdeg<<" ) deg."<<endl;
524 525
    ofr <<setw(8)<<azimdeg<<" "<<setw(8)<<err_azimdeg<<"  ";
    jj=0;
526
    for(size_t j=0; j<NTRK; j++) {
527 528 529 530 531 532 533 534 535 536 537 538 539 540
      double A = acxd_.v_max_data[j][ii];
      double B = acxd_.v_min_data[j][ii];
      double err_A = 0.;
      double err_B = 0.;
      if (!acxd_.v_noAC[j])  {
	A=mFit.GetParm(3+2*jj);    err_A=mFit.GetParmErr(3+2*jj);
	B=mFit.GetParm(4+2*jj);    err_B=mFit.GetParmErr(4+2*jj);
	jj++;
      }
      cout << "  Trk/Sat["<<j<<"] -> A= "<<A<<" +/- "<<err_A<<"  B= "<<B<<" +/- "<<err_B<<(acxd_.v_noAC[j]?" NOT Fitted":"")<<endl;
      if (acxd_.v_noAC[j])
	ofr <<setw(8)<<A<<" "<<setw(8)<<" NOFIT "<<" "<<setw(8)<<B<<" "<<setw(8)<<" NOFIT "<<" ";
      else 
	ofr <<setw(8)<<A<<" "<<setw(8)<<err_A<<" "<<setw(8)<<B<<" "<<setw(8)<<err_B<<" ";
541 542 543 544 545 546 547 548 549 550 551
    }
    ofr << endl;
    double clight = PhysQty::c().SIValue();
    double lambda = clight/(acxd_.v_freqs[0]*1.e6);
    ACBeam acb1(Dfit, thetaant, phiant, lambda);
    acb1.setGaussianLobe(fggaussbeam_);
    ACBeam acb2(Dfit, thetaant, phiant, lambda);
    acb2.setGaussianLobe(fggaussbeam_);
    Vector3d baseline0(0.,0.,0.);
    v_acbeams[ii]=CxBeam(acb1, acb2, baseline0);
    
552 553
  }
  
554 555
  fit_ac_done=true;
  acxd_.v_acbeams=v_acbeams;
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
  return 0;
}

int ACxSetFitter::saveExpectedAC(string outcheckfilename)
{
  if (outcheckfilename.length()<1)  return 1;
  cout << "-----ACxSetFitter::saveExpectedAC() : computing expected signal for fitted params , will be saved to file "
       <<outcheckfilename<<endl;
  POutPersist pos(outcheckfilename);
  size_t NB_ANTENNES = acxd_.getNbAutoCor();
  size_t NTRK = acxd_.NbTrk();

  for(size_t ii=0; ii<NB_ANTENNES; ii++)     {
    if (_prtlevel_>1) 
      cout << "... Computing DataSignal & Expected Signal for fitted params and dish "<<ii+1<<endl;
    
572
    MyACSignal macs(acxd_.v_time_data, acxd_.vv_data, acxd_.vv_err, acxd_.v_freqs, acxd_.v_noAC, 
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
		    tks_.v_interp_elev, tks_.v_interp_sazim, ii, fggaussbeam_);
      
    double Ddishfit=v_Ddish[ii];
    double thetafit=v_thetaant[ii];
    double phifit=v_phiant[ii];
    
    char oname[32];
    for(size_t j=0; j<NTRK; j++)  {
      double A = v_A[ii][j];
      double B = v_B[ii][j];
      Vector signal = macs.getDataSignal(j);
      sprintf(oname,"ac_%d_%d",(int)ii+1,(int)j+1);
      pos << PPFNameTag(oname)<<signal;
      Vector expsignal = macs.getExpectedSignal(j, Ddishfit, thetafit, phifit, A, B);
      sprintf(oname,"simac_%d_%d",(int)ii+1,(int)j+1);      
      pos << PPFNameTag(oname)<<expsignal;
589 590 591 592 593
      if (ii==0)  {
	Vector tmvec = macs.getTimeVec(j);
	sprintf(oname,"tim_%d",(int)j+1);
	pos << PPFNameTag(oname)<<tmvec;
      }
594 595 596 597 598 599
    }
  } 
  return 0;
}


600
int ACxSetFitter::doCxfit(string outfilenamecx, bool useAac, bool fgphi0only)
601 602 603 604 605 606
{
  size_t NB_ANTENNES=acxd_.getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=acxd_.getNbCrossCor();
  size_t NTRK = acxd_.NbTrk();

  cout << "======================================================================================"<<endl;
607
  cout << "---------- ACxSetFitter::doCxfit() ; Performing cross-cor phase fit for NTrk="<<NTRK<<endl;
608 609 610
  if (useAac) cout << " ... Using Amplitude from auto-correlations fit for initial fit parameter value..."<<endl; 
  ofstream ofr(outfilenamecx.c_str());
  ofr << "#### cross-cor phase fit (ACxSetFitter::doCxfit() ) "<<endl
611
      << "## NumCxCor RcFit Xi2red Phi0 err_Phi0 a_Phi err_a_Phi (deg) A0 err_A0 A1 err_A1  ..."<<endl;
612 613
  int tot_npoints_fit = 0;
  for(size_t j=0; j<NTRK; j++) tot_npoints_fit += 2*(acxd_.v_time_data[j].size());
614 615
  cout << " Total number of data points for fit="<< tot_npoints_fit<<endl;

616 617 618 619
  size_t Anum1[6]={0,0,0,1,1,2};
  size_t Anum2[6]={1,2,3,2,3,3};
  for(size_t ii=0; ii<NB_CXCORS; ii++) {
    v_Acx[ii].resize(NTRK);   
620 621 622
    v_Bcx[ii].resize(NTRK);  
    v_err_Acx[ii].resize(NTRK);   
    v_err_Bcx[ii].resize(NTRK);  
623 624
    for(size_t j=0; j<NTRK; j++) {
      v_Acx[ii][j]=1.;   v_Bcx[ii][j]=complex<double>(0.,0.);
625
      v_err_Acx[ii][j]=1.;   v_err_Bcx[ii][j]=complex<double>(0.,0.);
626
    }
627 628 629 630 631 632 633 634 635 636 637
    Vector3d baseline=P4Coords::getBaseline(Anum1[ii]+1,Anum2[ii]+1);
    cout << "--------- 1."<<ii+1<<" doCxfit() Doing fit for CrossCor= " << ii << " FxF= " 
	 << Anum1[ii]+1<<"x"<<Anum2[ii]+1<<" Baseline="<<baseline<<endl;
    GeneralFitData gdata(1, tot_npoints_fit);
    for(size_t j=0; j<NTRK; j++) {
      vector< vector< complex<double> > > & v_cxdata = acxd_.vv_cxdata[j];
      vector< vector<double> > & v_cxerr = acxd_.vv_cxerr[j];
      for(size_t k=0; k<acxd_.v_time_data[j].size(); k++) {
	gdata.AddData1(acxd_.v_time_data[j][k],v_cxdata[ii][k].real(),v_cxerr[ii][k]); // Fill x, y and error on y
	gdata.AddData1(acxd_.v_time_data[j][k],v_cxdata[ii][k].imag(),v_cxerr[ii][k]); // Fill x, y and error on y     
      }
638
    }
639 640 641 642 643 644 645
    double clight = PhysQty::c().SIValue();
    double lambda = clight/(acxd_.v_freqs[0]*1.e6);
    ACBeam acb1(v_Ddish[Anum1[ii]], v_thetaant[Anum1[ii]], v_phiant[Anum1[ii]], lambda);
    acb1.setGaussianLobe(fggaussbeam_);
    ACBeam acb2(v_Ddish[Anum2[ii]], v_thetaant[Anum2[ii]], v_phiant[Anum2[ii]], lambda);
    acb2.setGaussianLobe(fggaussbeam_);
    CxBeam cxbeam(acb1, acb2, baseline);
646
    v_cxbeams[ii]=cxbeam;
647

648 649 650 651
    TkF_CxXi2 gxi2( acxd_.v_time_data, acxd_.vv_cxdata, acxd_.vv_cxerr, acxd_.v_freqs, 
		    tks_.v_interp_elev, tks_.v_interp_sazim, cxbeam, ii);  // MyCxGenXi2
    //    GeneralFit mFit(&gxi2);
    TkF_Fitter mFit(gxi2);
652
    mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
653
    mFit.SetMaxStep(3000);
654
    // SetParam(int n,double value, double step,double min=1., double max=-1.);
655 656 657 658 659 660 661
    mFit.SetParam(0,"Phi_0",0.,M_PI/360.,0.,2.2*M_PI);
    mFit.SetParam(1,"a_phi",0.,0.05,-15.,15.);
    if (fgphi0only) {
      cout << " ACxSetFitter::doCxfit() Fitting Phi0 Only (frequency independent phase)"<<endl;
      mFit.SetFix(1,0.);
    }
    else cout << " ACxSetFitter::doCxfit() Fitting  Phase(freq) = Phi0 + a_Phi * (freq-1250.)/250. "<<endl;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

    char oname[32];
    vector<double> v_amp(NTRK);
    for(size_t j=0; j<NTRK; j++) {
      double A=1.; // v_max_cxdata[j][ii]; 
      TVector< complex<double> >  signal = gxi2.getDataSignal(j);
      Vector asig = SOPHYA::abs(signal);
      double mins, maxs;
      asig.MinMax(mins, maxs);
      TVector< complex<double> >  expsignal = gxi2.getExpectedSignal(j, 0., A);
      Vector aexpsig = SOPHYA::abs(expsignal);
      double mine, maxe;
      aexpsig.MinMax(mine, maxe);
      A=maxs/maxe;
      v_amp[j]=A; 
    }

679
    double fparm[500];  fparm[0]=0.;
680 681 682 683 684

    double bestxi2 = 9.e19;
    double bestphase=0.;
    int bestnpts,npts;
    int bestafact;
685
    double afact[12]={0.15,0.3,0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.4,2.8,3.2};
686 687 688
    for(int ia=0; ia<12; ia++) {
      for(size_t j=0; j<NTRK; j++) {
	double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
689 690
	fparm[2+3*j]=(useAac?Aac:v_amp[j]);
	fparm[2+3*j]*=afact[ia];   fparm[2+3*j]=fparm[3+3*j]=0.;
691 692 693
      }
      for(double ph=0.; ph<360.; ph += 1) {
	fparm[0]=Angle(ph, Angle::Degree).ToRadian();
694
	fparm[1]=0.;
695 696 697 698 699 700
	double xi2 = gxi2.getXi2(fparm, npts);
	if (xi2 < bestxi2) {
	  bestxi2 = xi2; bestphase=fparm[0]; bestnpts=npts;  bestafact=afact[ia];
	}
      }
    }
701
    mFit.SetParam(0,"Phi_0",bestphase,M_PI/720.,-0.5*M_PI,2.5*M_PI);
702 703
    cout << "2."<<ii+1<<" Scan param bestxi2_red="<<bestxi2/(double)(tot_npoints_fit-(1+NTRK))<<"  bestphase="
	 <<Angle(bestphase).ToDegree()<<" bestnpts="<<bestnpts<<" bestafact="<<bestafact<< " A= ";  
704
    v_phi_0[ii]=bestphase;
705 706
    for(size_t j=0; j<NTRK; j++)  {
      cout << v_amp[j] << " , ";  
707
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
708 709 710 711 712 713 714 715 716
      v_Acx[ii][j]=(useAac?Aac:v_amp[j]);
    }
    cout << endl;
    for(size_t j=0; j<NTRK; j++) {
      char pname[32];
      sprintf(pname,"A%d",(int)(j+1));
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
      double A=(useAac?Aac:v_amp[j]);
      //DBG      cout << "*DBG* j="<<j<<" Aac= "<<Aac<<" v_amp="<<v_amp[j]<<"  A= "<<A<<"  A1="<<v_A[Anum1[ii]][j]<<" A2="<<v_A[Anum2[ii]][j]<<endl;
717
      mFit.SetParam(2+3*j,pname,A,A/10.,A/4,A*4);
718 719
      sprintf(pname,"Bre%d",(int)(j+1));
      mFit.SetParam(3+3*j,pname,0.,A/25.,-A/5,A/5.);
720 721
      sprintf(pname,"Bim%d",(int)(j+1));
      mFit.SetParam(4+3*j,pname,0.,A/25.,-A/5,A/5.);
722
      mFit.SetFix(3+3*j,0.);
723
      mFit.SetFix(4+3*j,0.);
724 725 726 727
    }
    //DBG mFit.PrintFit();
    if (_prtlevel_>1)    
      cout << " 3."<<ii+1<<" Performing the fit for CrossCor " << ii << " FxF= " << Anum1[ii]+1<<"x"<<Anum2[ii]+1<<endl;
728
    int rcfit = mFit.doFit();
729 730 731 732 733
    v_RcFit_cx[ii]=rcfit;   v_xi2red_cx[ii]=-99999.;
    if (_prtlevel_>1) mFit.PrintFit();
    if(rcfit>0) { 
      v_xi2red_cx[ii]=mFit.GetChi2Red();
      //      cout<< "-------------------------- Result for Cross No " << ii << endl; 
734
      cout<< "------ Fit result for Cross No "<<ii+1<<" Reduce_Chisquare = " << mFit.GetChi2Red()
735 736 737 738 739 740 741
	  << " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
    }
    else {
      cout << "---Fit failed for "<<ii<<" Fit_Error, rc = " << rcfit << "  nstep="<<mFit.GetNStep()<<endl;
      ofr <<setw(4)<<ii+1<<" ERROR FIT RC="<<rcfit<<"  nstep="<<mFit.GetNStep()<<endl;
      if (_prtlevel_>0) mFit.PrintFitErr(rcfit);
    }
742 743

    ofr <<setw(4)<<ii+1<<" "<<setw(5)<<rcfit<<setw(8)<<mFit.GetChi2Red()<<" "; 
744 745 746 747 748 749 750 751 752 753 754 755
    double phi0=mFit.GetParm(0);   double err_phi0=mFit.GetParmErr(0);
    double aphi=mFit.GetParm(1);   double err_aphi=mFit.GetParmErr(1);
    // on calcule la phase ajustee pour la frequence de reference 1300 MHz 
    double phase=gxi2.getPhase4Freq(phi0,aphi,1300.);
    while (phase<0.) phase += 2.*M_PI;
    while (phase>2.*M_PI) phase -= 2.*M_PI;
    cout <<"Phase(@1300MHz)= "<<setw(10)<<Angle(phase).ToDegree()<<"  phi_0= "<<setw(10)
	 <<Angle(phi0).ToDegree()<<" +/- "<<setw(10)<<Angle(err_phi0).ToDegree()<<" deg."
	 <<" a_phi= "<<setw(8)<<Angle(aphi).ToDegree()<<" +/- "<<setw(10)
	 <<Angle(err_aphi).ToDegree()<<" deg/250 MHz"<<endl;
    ofr <<setw(8)<<Angle(phi0).ToDegree()<<" "<<setw(8)<<Angle(err_phi0).ToDegree()<<"  "
	<<setw(8)<<Angle(aphi).ToDegree()<<" "<<setw(8)<<Angle(err_aphi).ToDegree()<<"  ";
756
    v_phase[ii]=phase;
757 758 759 760
    v_phi_0[ii]=phi0;
    v_err_phi_0[ii]=err_phi0;
    v_a_phi[ii]=aphi;
    v_err_a_phi[ii]=err_aphi;
761 762 763
    for(size_t j=0; j<NTRK; j++) {
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
      double Ai=(useAac?Aac:v_amp[j]);
764
      double A=mFit.GetParm(2+3*j);   double err_A=mFit.GetParmErr(2+3*j);
765 766 767 768 769 770
      cout << "  Trk["<<j<<"]  A= "<<A<<" +/- "<<err_A<<"  (A/Ai="<<A/Ai<<")"<<endl;
      v_Acx[ii][j]=A;  
      v_Bcx[ii][j]=complex<double>(0.,0.);
      v_err_Acx[ii][j]=err_A; 
      ofr <<setw(8)<<A<<" "<<setw(8)<<err_A<<" "; 
    }
771
    ofr << endl; 
772
  }
773 774 775 776 777 778 779 780 781 782 783
  cout << " --- Fitted phases: ";
  for(size_t i=0; i<NB_CXCORS; i++) cout<<setw(6)<<Angle(v_phase[i]).ToDegree()<<" ; ";   cout<<endl;
  double dphi23=v_phase[1]-v_phase[0];   if (dphi23<0.) dphi23+=(2.*M_PI);
  double dphi24=v_phase[2]-v_phase[0];   if (dphi24<0.) dphi24+=(2.*M_PI);
  double dphi34=v_phase[2]-v_phase[1];   if (dphi34<0.) dphi34+=(2.*M_PI);
  cout<<" Cx-2x3: "<<setw(6)<<Angle(dphi23).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[3]).ToDegree()<<endl;
  cout<<" Cx-2x4: "<<setw(6)<<Angle(dphi24).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[4]).ToDegree()<<endl;
  cout<<" Cx-3x4: "<<setw(6)<<Angle(dphi34).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[5]).ToDegree()<<endl;
  ofr<<"# Cx-2x3: "<<setw(6)<<Angle(dphi23).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[3]).ToDegree()<<endl;
  ofr<<"# Cx-2x4: "<<setw(6)<<Angle(dphi24).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[4]).ToDegree()<<endl;
  ofr<<"# Cx-3x4: "<<setw(6)<<Angle(dphi34).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[5]).ToDegree()<<endl;
784 785
  fit_cx_done=true;
  acxd_.v_cxbeams=v_cxbeams;
786
  acxd_.v_phase=v_phase;
787 788
  acxd_.v_phi_0=v_phi_0;
  acxd_.v_a_phi=v_a_phi;
789 790
  acxd_.v_Acx=v_Acx;
  acxd_.v_Bcx=v_Bcx;
791 792
  return 0;
} 
793

794

795 796 797 798 799 800 801 802 803 804 805
int ACxSetFitter::saveExpectedCx(string outcheckfilename)
{
  cout << "ACxSetFitter::saveExpectedCx() saving expected cross-cor (and visi-data) to file "<<outcheckfilename<<endl;
  POutPersist pox(outcheckfilename);
  size_t NB_CXCORS=acxd_.getNbCrossCor();
  size_t NTRK = acxd_.NbTrk();

  char oname[32];

  for(size_t ii=0; ii<NB_CXCORS; ii++) {
    CxBeam cxbeam=v_cxbeams[ii];
806
    MyCxSignal cxsig( acxd_.v_time_data, acxd_.vv_cxdata, acxd_.vv_cxerr, acxd_.v_freqs, 
807 808 809 810 811
		      tks_.v_interp_elev, tks_.v_interp_sazim, cxbeam, ii);
    for(size_t j=0; j<NTRK; j++) {
      TVector< complex<double> >  signal = cxsig.getDataSignal(j);
      sprintf(oname,"cx_%d_%d",(int)ii+1,(int)j+1);
      pox << PPFNameTag(oname)<<signal;
812 813 814
      //DBG      cout << " *DBG* getPhase4Freq() phi0="<<acxd_.v_phi_0[ii]<<" a_phi="<<acxd_.v_a_phi[ii]<<" freq="<<acxd_.v_freqs[j]<<endl;
      double phase=cxsig.getPhase4Freq(acxd_.v_phi_0[ii],acxd_.v_a_phi[ii],acxd_.v_freqs[j]);
      TVector< complex<double> >  expsignal = cxsig.getExpectedSignal(j, phase, v_Acx[ii][j]);
815 816 817 818 819 820 821 822 823 824 825
      sprintf(oname,"simcx_%d_%d",(int)ii+1,(int)j+1);
      pox << PPFNameTag(oname)<<expsignal;
      if (ii==0)  {
	Vector tmvec = cxsig.getTimeVec(j);
	sprintf(oname,"tim_%d",(int)j+1);
	pox << PPFNameTag(oname)<<tmvec;
      }
    }
  }
  return 0;
}  
826 827 828

//------------------------ CxBaselineFitter -------------------------------------
CxBaselineFitter::CxBaselineFitter(vector<AcxDataSet> & v_data, vector<TrackSet> & v_tks)
829 830
  : v_acxd(v_data), v_trks(v_tks), tot_ntrks(0), fit_done(false), simplex_done(false), 
    xi2red(-9.e9), bestfitparam(NULL), err_bestfitparam(NULL)
831 832 833 834 835
{
  if (v_acxd.size() != v_trks.size())
    throw ParmError("CxBaselineFitter::CxBaselineFitter(v_data, v_tks) NOT same size v_data,v_tks ");
  if (v_acxd.size() < 1)
    throw ParmError("CxBaselineFitter::CxBaselineFitter(v_data, v_tks) v_data.size()<1 ");
836
  
837 838 839 840 841
  tot_ntrks=0;
  for(size_t i=0; i<v_acxd.size(); i++) tot_ntrks+=v_acxd[i].NbTrk();
  if (tot_ntrks<1)
    throw ParmError("CxBaselineFitter::CxBaselineFitter(v_data, v_tks) 0 tracks ! tot_ntrks<1 ");

842
  size_t nparam = 5*(v_acxd[0].getNbAutoCor()-1);  // 5 param / antenne , phi0, aphi, dX,dY,dZ
843 844
  bestfitparam = new double[nparam];
  err_bestfitparam = new double[nparam];
845 846

  initFitParams();
847 848
}

849 850 851 852 853
CxBaselineFitter::~CxBaselineFitter()
{
  if (bestfitparam) delete[] bestfitparam;
  if (err_bestfitparam) delete[] err_bestfitparam;
}
854

855 856
void CxBaselineFitter::initFitParams()
{
857
  //DBG  cout << " *DBG* CxBaselineFitter::initFitParams() v_acxd[0].v_phase.size()="<<v_acxd[0].v_phase.size()<<endl;
858 859 860 861
  size_t NB_ANTENNES=v_acxd[0].getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=v_acxd[0].getNbCrossCor();
  if (NB_ANTENNES != 4)
    throw PError("CxBaselineFitter::initFitParams() NB_ANTENNES != 4  Current version works only for 4 antenna");
862 863 864 865
  v_phi_0.resize(v_acxd[0].getNbAutoCor()-1);
  v_err_phi_0.resize(NB_ANTENNES-1);
  v_a_phi.resize(v_acxd[0].getNbAutoCor()-1);
  v_err_a_phi.resize(NB_ANTENNES-1);
866 867 868
  v_baselineshits.resize(NB_ANTENNES-1);
  v_err_baselineshits.resize(NB_ANTENNES-1);
  for(size_t i=0; i<(NB_ANTENNES-1); i++) {
869 870
    v_phi_0[i]=v_acxd[0].v_phi_0[i];   v_err_phi_0[i]=0.;
    v_a_phi[i]=v_acxd[0].v_a_phi[i];   v_err_a_phi[i]=0.;
871 872
    v_baselineshits[i]=Vector3d(0.,0.,0.);
    v_err_baselineshits[i]=Vector3d(0.,0.,0.);
873 874 875 876
    bestfitparam[2*i]=v_phi_0[i];
    err_bestfitparam[2*i]=0.;
    bestfitparam[2*i+1]=v_a_phi[i];
    err_bestfitparam[2*i]=0.;
877 878 879 880
    for(size_t j=0; j<3; j++) {
      bestfitparam[3*(i+1)+j]=err_bestfitparam[3*(i+1)+j]=0.;
    }
  }
881 882
  //DBG  cout << " *DBG* DONE **** CxBaselineFitter::initFitParams()"<<endl;

883 884
}

885
int CxBaselineFitter::dofit(string outfilename, bool fgfixbaseline, bool fgphi0only)
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
{
  size_t NB_ANTENNES=v_acxd[0].getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=v_acxd[0].getNbCrossCor();
  cout << "======================================================================================"<<endl;
  cout << "------- CxBaselineFitter::dofit()  Performing baseline/phase fit on the 6 cross-cors "<<" TotNbTracks="<<tot_ntrks<<endl;
  
  ofstream ofr(outfilename.c_str());
  ofr << "####  Fitted phases and baseline-shifts (CxBaselineFitter::dofit() ) "<<endl
      << "## NumAntenna  Phase BaselineShiftX  BaselineShiftY BaselineShiftZ  (Phase in degree, BaselineShift in meter) "<<endl;

  int tot_npoints_fit = 0;
  for(size_t i=0; i<v_acxd.size(); i++)
    for(size_t j=0; j<v_acxd[i].NbTrk(); j++)
      tot_npoints_fit += 2*(v_acxd[i].v_time_data[j].size())*NB_CXCORS;
  cout << " Total number of data points for fit="<< tot_npoints_fit<<endl;
  GeneralFitData gdata(1, tot_npoints_fit);
902
  int npoints2=0;
903 904 905 906 907
  for(size_t i=0; i<v_acxd.size(); i++)
    for(size_t kcx=0; kcx<NB_CXCORS; kcx++) {
      for(size_t j=0; j<v_acxd[i].NbTrk(); j++)  {
	vector< vector< complex<double> > > & v_cxdata = v_acxd[i].vv_cxdata[j];
	vector< vector<double> > & v_cxerr = v_acxd[i].vv_cxerr[j];
908
	for(size_t l=0; l<v_acxd[i].v_time_data[j].size(); l++) {
909
	  gdata.AddData1(v_acxd[i].v_time_data[j][l],v_cxdata[kcx][l].real(),v_cxerr[kcx][l]); // Fill x, y and error on y
910 911
	  gdata.AddData1(v_acxd[i].v_time_data[j][l],v_cxdata[kcx][l].imag(),v_cxerr[kcx][l]); // Fill x, y and error on y
	  npoints2+=2;
912 913 914 915
	}
      }
    }

916 917 918 919
  TkF_6CxXi2B gxi2(v_acxd, v_trks);   // My6CxGenXi2B
  //  GeneralFit mFit(&gxi2);
  TkF_Fitter mFit(gxi2);

920
  mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
921
  mFit.SetMaxStep(3000);
922 923 924 925
  
  // SetParam(int n,double value, double step,double min=1., double max=-1.);
  for(size_t i=0; i<(NB_ANTENNES-1); i++) {
    char pname[32];
926 927 928 929 930 931
    sprintf(pname,"Phi0_%d",(int)(i+2));
    mFit.SetParam(2*i,pname,v_phi_0[i],M_PI/180.,0.,2.5*M_PI);
    sprintf(pname,"a_Phi_%d",(int)(i+2));
    mFit.SetParam(2*i+1,pname,v_a_phi[i],0.1,-15.,15.);
    if (fgphi0only)  mFit.SetFix(2*i+1, 0.);
    v_err_phi_0[i]=0.;  v_err_a_phi[i]=0.;
932
    sprintf(pname,"BaselineShift_X_%d",(int)(i+2));
933
    mFit.SetParam(6+3*i,pname,v_baselineshits[i].X(),0.02,-0.25,0.25);
934
    sprintf(pname,"BaselineShift_Y_%d",(int)(i+2));
935
    mFit.SetParam(7+3*i,pname,v_baselineshits[i].Y(),0.02,-0.25,0.25);
936
    sprintf(pname,"BaselineShift_Z_%d",(int)(i+2));
937
    mFit.SetParam(8+3*i,pname,v_baselineshits[i].Z(),0.02,-0.25,0.25);
938 939
    if (fgfixbaseline) {
      cout << " ... fitting phases only, fixed baselines "<<endl;
940
      mFit.SetFix(6+3*i); mFit.SetFix(7+3*i);  mFit.SetFix(8+3*i);
941
    }
942
  }
943
  cout << " Performing the fit (tot_npoints_fit= "<<tot_npoints_fit<<" ?= (npoints2="<<npoints2<<") ..."<< endl;
944
  rcfit = mFit.doFit();  xi2red=-99999.;
945 946 947
  cout<< "------ Fit result Reduce_Chisquare = " << mFit.GetChi2Red()<< " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
  mFit.PrintFit();

948 949 950 951 952 953 954
  for(size_t j=0; j<4; j++) 
    for(size_t i=0; i<(NB_ANTENNES-1); i++) {
      bestfitparam[j*3+i]=mFit.GetParmErr(j*3+i);
      err_bestfitparam[j*3+i]=mFit.GetParmErr(j*3+i);
    }

  for(size_t i=0; i<(NB_ANTENNES-1); i++) {
955 956 957 958 959 960 961 962 963 964
    v_phi_0[i]=mFit.GetParm(2*i);      
    v_err_phi_0[i]=mFit.GetParmErr(2*i);
    v_a_phi[i]=mFit.GetParm(2*i+1);      
    v_err_a_phi[i]=mFit.GetParmErr(2*i+1);
    double xs=mFit.GetParm(i*3+6);  
    double exs=mFit.GetParmErr(i*3+6);  
    double ys=mFit.GetParm(i*3+7);  
    double eys=mFit.GetParmErr(i*3+7);  
    double zs=mFit.GetParm(i*3+8);  
    double ezs=mFit.GetParmErr(i*3+8);  
965 966 967 968
    v_baselineshits[i]=Vector3d(xs,ys,zs);
    v_err_baselineshits[i]=Vector3d(exs,eys,ezs);

  }
969 970 971
  fit_done=true;
  return 0;
}
972

973 974 975 976 977 978 979 980 981 982
int CxBaselineFitter::doSimplexMinimize()
{
  size_t NB_ANTENNES=v_acxd[0].getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=v_acxd[0].getNbCrossCor();
  cout << "======================================================================================"<<endl;
  cout << "------- CxBaselineFitter::doSimplexMinimize()  Performing baseline/phase determination using the 6 cross-cors "<<" TotNbTracks="<<tot_ntrks<<endl;

  if (NB_ANTENNES != 4)
    throw PError("CxBaselineFitter::doSimplexMinimize() NB_ANTENNES != 4  Current version works only for 4 antenna");

983
  My6CxMinZFunc mzfunc(v_acxd, v_trks, true); 
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
  MinZSimplex simplex(&mzfunc);
  // Guess the center and step for constructing the initial simplex
  size_t nparam = 4*(NB_ANTENNES-1);
  Vector P0(nparam); 
  Vector step(nparam);
  for(size_t i=0; i<(NB_ANTENNES-1); i++) {
    P0(i)=v_acxd[0].v_phase[i];
    step(i)=M_PI/6.;
    for(size_t j=0;j<3;j++) {
      P0((i+1)*3+j)=0.;
      step((i+1)*3+j)=0.05;
    }
  }
  cout << " Initial Point: "<<P0.Transpose()<<endl;
  cout << " Initial Step: "<<step.Transpose()<<endl;
  cout << "  Initial Xi2= " << mzfunc.Value(P0.Data())<<endl;

  simplex.SetInitialPoint(P0);
  simplex.SetInitialStep(step);
  simplex.SetPrtLevel(_prtlevel_);
  Vector oparm(nparam);
  int rc = simplex.Minimize(oparm);
  if (rc != 0) {
    string srt; 
    int sr = simplex.StopReason(srt);
    cout << " Convergence Pb, StopReason= " << sr << " : " << srt << endl;
  }
  else {
    cout << " Converged: NStep= " << simplex.NbIter() << " Best Xi2="<<  mzfunc.Value(oparm.Data()) << endl;
    simplex_done=true;
    for(size_t i=0; i<(NB_ANTENNES-1); i++) {
1015
      v_phi_0[i]=oparm(i);      
1016 1017 1018 1019
      double xs=oparm(i*3+3);  
      double ys=oparm(i*3+4);  
      double zs=oparm(i*3+5);  
      v_baselineshits[i]=Vector3d(xs,ys,zs);
1020
      cout << " ANTENNE["<<i+2<<"] : Phase="<<v_phi_0[i]<<" BaseLineShift="<<v_baselineshits[i]<<endl;
1021 1022 1023 1024 1025 1026
    }
  }

  return 0;
}

1027
int CxBaselineFitter::doCheck()
1028 1029 1030 1031 1032 1033 1034 1035 1036
{
  size_t NB_ANTENNES=v_acxd[0].getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=v_acxd[0].getNbCrossCor();
  cout << "======================================================================================"<<endl;
  cout << "------- CxBaselineFitter::doCheck()  Performing baseline/phase determination using the 6 cross-cors "<<" TotNbTracks="<<tot_ntrks<<endl;

  if (NB_ANTENNES != 4)
    throw PError("CxBaselineFitter::doCheck() NB_ANTENNES != 4  Current version works only for 4 antenna");

1037
  My6CxMinZFunc mzfunc(v_acxd, v_trks, true);   // true : Pas de aphi ds les tableaux param 
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
  mzfunc.SetPrintLevel(_prtlevel_);
  // Guess the center and step for constructing the initial simplex
  size_t nparam = 4*(NB_ANTENNES-1);
  Vector P0(nparam), PC(nparam); 
  Vector step(nparam);
  for(size_t i=0; i<(NB_ANTENNES-1); i++) {
    P0(i)=v_acxd[0].v_phase[i];
    step(i)=M_PI;
    for(size_t j=0;j<3;j++) {
      P0((i+1)*3+j)=0.;
      step((i+1)*3+j)=0.20;
    }
  }
  cout << " ---- Initial Point: "<<P0.Transpose()<<endl;
  cout << "  Initial Xi2= " << mzfunc.Value(P0.Data())<<endl;

  double pstep=M_PI/20.;
  double zstep=0.05;

  double bestxi2=9.e19;
  Vector oparm(nparam);
  size_t cnt=0;

  for(int i1=-1; i1<=1; i1++) {
    PC(0)=P0(0)+(double)i1*pstep;
    for(int i2=-1; i2<=1; i2++) {
      PC(1)=P0(1)+(double)i2*pstep;
      for(int i3=-1; i3<=1; i3++) {
	PC(2)=P0(2)+(double)i3*pstep;
	for(int j1=-1; j1<=1; j1++) {   
	  PC(5)=P0(5)+(double)j1*zstep;
	  for(int j2=-1; j2<=1; j2++) {
	    PC(8)=P0(8)+(double)j2*zstep;
	    for(int j3=-1; j3<=0; j3++) {
	      PC(11)=P0(11)+(double)j3*zstep;
	      double xi2=mzfunc.Value(PC.Data());
	      if (xi2<bestxi2) { bestxi2=xi2;  oparm=PC; }
	      cnt++;
	    }
	  }
	}
      }
    }
  }

  cout << "End of Check-Loop Count= " << cnt << " Best Xi2="<<  mzfunc.Value(oparm.Data()) << " for :"<<endl;
  cout << oparm.Transpose();

  return 0;
}

1089 1090 1091 1092 1093 1094 1095 1096 1097

int CxBaselineFitter::saveExpectedCx(string outcheckfilename)
{
  cout << "CxBaselineFitter::saveExpectedCx() saving expected cross-cor (and visi-data) to file "<<outcheckfilename<<endl;
  POutPersist pox(outcheckfilename);
  size_t NB_CXCORS=v_acxd[0].getNbCrossCor();
  char oname[48];

  My6CxSignalsB  cxsigb(v_acxd, v_trks);
1098 1099
  cxsigb.SetPrintLevel(_