trkfit.cc 57 KB
Newer Older
1 2 3 4 5 6
/*  PAON4 analysis software 
    classes and functions to read in and perform array geometry determination 
    using satellites and celestial sources tracks  
    R. Ansari, Fevrier 2019                                             */


7 8
#include <iomanip>

9
#include "pexceptions.h"
10 11


12 13
#include "trkfit.h"
#include "datacards.h"
14 15 16 17 18 19 20 21
#include "array.h"

#include "acbeam.h"
#include "gacfit.h"
#include "gcxfit.h"
#include "gcxfitbaseline.h"

#include "p4autils.h"
22 23 24
#include "fitsioserver.h" 
using namespace std;
using namespace SOPHYA;
25 26 27 28 29 30 31 32 33


//------------------- Print Level for this file --------------------------
static int _prtlevel_ =0;
void TrkFit_SetPrintLevel(int lev) 
{ 
  _prtlevel_=lev; 
  return;
}
34

35 36 37 38

//--- shift de position en Z pour les 4 antennes 
static vector<double> z_coord_shift; 

39 40 41 42 43 44 45 46
void TrkFit_FitLibInfo() 
{
  cout << "============================================================================"<<endl;
#ifndef TKF_AVEC_MINUIT
  cout << "============ Classe TkF_Fitter : Fitting with Sophya GeneralFit ============"<<endl;
#else 
  cout << "============= Classe TkF_Fitter : Fitting with Minuit MnMigrad ============="<<endl;
#endif
47 48 49 50 51
  if (z_coord_shift.size()>0) {
    cout << " Antenna-Z-coord shift= ";
    for(size_t i=0; i<z_coord_shift.size(); i++) cout<<z_coord_shift[i]<<" ; ";
    cout<<endl;
  }
52 53 54 55
  cout << "============================================================================"<<endl;
  return;
}

56 57 58 59 60 61 62 63 64
//--- On definit la coordonnees z pour les antennes 
void TrkFit_SetZcoordShift(vector<double> & leszs)
{
  if (leszs.size()==0)   return;
  if (leszs.size() != 4) throw ParmError("TrkFit_SetZcoordShift()/ERROR leszs.size() != 4");
  z_coord_shift=leszs;
}


65 66
//------------------- TrkInputDataSet -------------------------------------

67 68

TrkInputDataSet::TrkInputDataSet(string dcfilename, string inp_path)
69 70
  : zenang(0.) , theta_0(0.) , phi_0(0.)
{
71
  setInputBasePath(inp_path);
72 73 74 75 76 77 78 79 80
  ReadDatacardFile(dcfilename);
}


static vector<string> * dataflnm_p_ = NULL;
static vector<double> * tstart_p_ = NULL;
static vector<double> * tend_p_ = NULL;
static vector<double> * v_freqs_p_ = NULL;
static vector<string> * trkflnm_p_ = NULL;
81 82
static vector<bool> * v_noAC_p_ = NULL;
static vector<bool> * v_noCx_p_ = NULL;
83 84 85 86 87 88 89 90 91 92 93 94 95
static size_t trk_cnt = 0;

static int decode_trkcard(string const& key, string const& toks)
{
  if (key != "trk") {  // CA NE DEVRAIT PAS ARRIVER 
    cout << "decode_trkcard/ERROR  BAD key = " << key << " ( <> trk"<<endl;
    return 1;
  }
  if (! dataflnm_p_ ) { // CA NE DEVRAIT PAS ARRIVER
    cout << "decode_trkcard/ERROR  dataflnm_p_ = NULL !"<<endl;
    return 1;
  }
  char flnmdata[256], flnmtrk[256];
96
  char sflags[64];
97
  double ts,te,freq;
98 99 100 101
  flnmdata[0]='\0';
  flnmtrk[0] ='\0';
  sflags[0] ='\0';
  ts=te=freq=-9999.;
102
  sscanf(toks.c_str(),"%s %lg,%lg %lg %s %s",flnmdata,&ts,&te,&freq,flnmtrk,sflags);
103 104 105 106 107 108

  dataflnm_p_->push_back(flnmdata);
  tstart_p_->push_back(ts*60.);
  tend_p_->push_back(te*60.);
  v_freqs_p_->push_back(freq);
  trkflnm_p_->push_back(flnmtrk);
109 110 111 112 113 114 115 116 117 118 119
  size_t ll=strlen(sflags);
  bool noAC=false;
  bool noCx=false;
  if (ll>0) {
    for(size_t l=0; l<ll; l++)  sflags[l]=toupper(sflags[l]);
    string sflg=sflags;
    if ((sflg == "NOAC")||(sflg=="NOACCX"))  noAC=true;
    if ((sflg == "NOCX")||(sflg=="NOACCX"))  noCx=true;
  }
  v_noAC_p_->push_back(noAC);
  v_noCx_p_->push_back(noCx);
120 121 122 123 124
  trk_cnt++;
  return 0;
}


125 126 127 128 129 130
void TrkInputDataSet::setInputBasePath(string inp_path)
{
  if (inp_path.length()>0)  input_base_path=inp_path;
  return;
}

131 132 133
size_t TrkInputDataSet::ReadDatacardFile(string dcfilename)
{
  DataCards dc;
134
  string match="trk";
135 136 137 138 139 140 141 142 143 144 145 146 147
  dc.AddProcF(decode_trkcard, match);

  zenang=0.; theta_0=0.;  phi_0=0.;
  dataflnm.clear();
  tstart.clear();
  tend.clear();
  v_freqs.clear();
  trkflnm.clear();
  dataflnm_p_ = &dataflnm;
  tstart_p_ = &tstart;
  tend_p_ = &tend;
  v_freqs_p_ = &v_freqs;
  trkflnm_p_ = &trkflnm;
148 149
  v_noAC_p_=&v_noAC;
  v_noCx_p_=&v_noCx;
150
  trk_cnt = 0;
151
  // @trk visiDataTableFile tstart,tend freq TrackFileName [FLAG]
152
  //  tstart , tend in minutes freq in MHz
153 154 155
  //  optional FLAG   = NOAC  NOCX   NOACCX   
  //  NOAC : don't use for Auto-correlation fit ;  NOCX : don't use for cross-cor fits 
  //  NOACCX : don't use for Auto-correlation or cross-cor fits 
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  dc.ReadFile(dcfilename);
  if (dc.HasKey("inpath"))   {   // @inpath  InputFilesDirectoryPath    
    input_base_path = dc.SParam("inpath",0,"");
  }
  if (dc.HasKey("zenang"))   {   // @zenang  Zenith Angle in degree   
    zenang = dc.DParam("zenang",0,0.);
    if (zenang<0.) {
      theta_0 = Angle(-zenang, Angle::Degree).ToRadian();  phi_0 = Angle::PioTwoCst()+Angle::OnePiCst();
    }
    else {
      theta_0 = Angle(+zenang, Angle::Degree).ToRadian();  phi_0 = Angle::PioTwoCst();
    }
  }

  dataflnm_p_ = NULL;
  tstart_p_ = NULL;
  tend_p_ = NULL;
  v_freqs_p_ = NULL;
  trkflnm_p_ = NULL;

  if (trk_cnt != trkflnm.size()) {  // ca ne devrait pas arriver
    cout << " TrkInputDataSet::ReadDatacardFile()/BUG  trk_cnt != trkflnm.size()"<<endl;
    throw PError("TrkInputDataSet::ReadDatacardFile() trk_cnt != trkflnm.size()");
  }
  trk_cnt=0;
  dcfilename_ = dcfilename;
  return trkflnm.size();
}

ostream & TrkInputDataSet::Print(ostream & os) const
{
  os << "TrkInputDataSet(dcfilename="<<dcfilename_<<")/Info:  dec-shift(zenithAngle)= "<<zenang<<" NbTrk="<<NbTrk()<<endl;
  os << "...InputBaseDirectoryPath="<<input_base_path<<endl;
  for(size_t i=0; i<NbTrk(); i++)  {
    os <<"["<<i<<"] data= "<< dataflnm[i]<<"  ts,te(min)= "<<tstart[i]/60.<<","<<tend[i]/60.<<" freg(MHz)= "<<v_freqs[i]
       <<" TrkFile="<<trkflnm[i]<<endl;
  }
  return os;
}


197 198 199 200 201 202 203 204 205 206 207 208

//------------------------ ACxDataSet -------------------------------------

AcxDataSet::AcxDataSet(TrkInputDataSet & tkds)
  : tot_npoints(0),zenang(0.),theta_0(0.),phi_0(0.)
{
  ReadData(tkds);
}

AcxDataSet::AcxDataSet(AcxDataSet const & a)
  : v_time_data(a.v_time_data), vv_data(a.vv_data), vv_err(a.vv_err), 
    v_min_data(a.v_min_data), v_max_data(a.v_max_data),
209 210
    vv_cxdata(a.vv_cxdata), vv_cxerr(a.vv_cxerr),
    v_min_cxdata(a.v_min_cxdata), v_max_cxdata(a.v_max_cxdata), 
211
    tot_npoints(a.tot_npoints), v_freqs(a.v_freqs), v_noAC(a.v_noAC), v_noCx(a.v_noCx), 
212 213
    zenang(a.zenang), theta_0(a.theta_0), phi_0(a.phi_0),
    v_acbeams(a.v_acbeams), v_cxbeams(a.v_cxbeams),
214 215 216 217 218 219 220
    v_RcFit_ac(a.v_RcFit_ac), v_xi2red_ac(a.v_xi2red_ac),
    v_Ddish(a.v_Ddish), v_thetaant(a.v_thetaant), v_phiant(a.v_phiant),
    v_err_Ddish(a.v_err_Ddish), v_err_thetaant(a.v_err_thetaant), v_err_phiant(a.v_err_phiant),
    v_RcFit_cx(a.v_RcFit_cx), v_xi2red_cx(a.v_xi2red_cx),
    v_phase(a.v_phase), v_phi_0(a.v_phi_0), v_a_phi(a.v_a_phi),
    v_err_phi_0(a.v_err_phi_0), v_err_a_phi(a.v_err_a_phi),
    v_Acx(a.v_Acx), v_Bcx(a.v_Bcx)
221 222 223 224 225 226 227
{
}

AcxDataSet & AcxDataSet::operator = (AcxDataSet const & a)
{
  v_time_data=a.v_time_data; vv_data=a.vv_data; vv_err=a.vv_err; 
  v_min_data=a.v_min_data;   v_max_data=a.v_max_data;
228 229
  vv_cxdata=a.vv_cxdata;   vv_cxerr=a.vv_cxerr;
  v_min_cxdata=a.v_min_cxdata;  v_max_cxdata=a.v_max_cxdata; 
230
  tot_npoints=a.tot_npoints; v_freqs=a.v_freqs;   v_noAC=a.v_noAC;  v_noCx=a.v_noCx;
231 232
  zenang=a.zenang;  theta_0=a.theta_0;  phi_0=a.phi_0;
  v_acbeams=a.v_acbeams;  v_cxbeams=a.v_cxbeams;
233 234
  v_RcFit_ac=a.v_RcFit_ac;  v_xi2red_ac=a.v_xi2red_ac;
  v_Ddish=a.v_Ddish;  v_thetaant=a.v_thetaant;  v_phiant=a.v_phiant;
235
  v_err_Ddish=a.v_err_Ddish;  v_err_thetaant=a.v_err_thetaant;  v_err_phiant=a.v_err_phiant;
236 237 238 239
  v_RcFit_cx=a.v_RcFit_cx; v_xi2red_cx=a.v_xi2red_cx;
  v_phase=a.v_phase; v_phi_0=a.v_phi_0;  v_a_phi=a.v_a_phi;
  v_err_phi_0=a.v_err_phi_0; v_err_a_phi=a.v_err_a_phi; 
  v_Acx=a.v_Acx;  v_Bcx=a.v_Bcx;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  return (*this);
}

size_t AcxDataSet::ReadData(TrkInputDataSet & tkds)    
{
  cout << "---- AcxDataSet::AcxDataSet() reading 4 PAON4 auto-correlation & 6 Cross-cor signals/DataTables for"
       <<tkds.NbTrk()<<" tracks ..."<<endl;

  if (tkds.NbTrk() != v_time_data.size()) {
    v_time_data.resize(tkds.NbTrk());
    vv_data.resize(tkds.NbTrk());
    vv_err.resize(tkds.NbTrk());
    v_min_data.resize(tkds.NbTrk());
    v_max_data.resize(tkds.NbTrk());
    vv_cxdata.resize(tkds.NbTrk());
    vv_cxerr.resize(tkds.NbTrk());
    v_min_cxdata.resize(tkds.NbTrk());
    v_max_cxdata.resize(tkds.NbTrk());    
  }
259
  v_freqs=tkds.v_freqs;  v_noAC=tkds.v_noAC;  v_noCx=tkds.v_noCx;
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
  zenang=tkds.zenang;   theta_0=tkds.theta_0;    phi_0=tkds.phi_0;
  size_t NB_ANTENNES=getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=getNbCrossCor();
  tot_npoints = 0;   // total number of points for fit 
  const char * acname[4]={"V11","V22","V33","V44"};
  const char * cxname[6]={"V12","V13","V14","V23","V24","V34"};
  
  for(size_t j=0; j<tkds.dataflnm.size(); j++) {
    string flnm = tkds.input_base_path+tkds.dataflnm[j]+".ppf";
    cout << "1."<<j+1<<" Extracting data from data file DataTable: " << flnm<<endl
	 << " ... For time interval (Trk"<<j+1<<") "<<tkds.tstart[j]<<" < t < "<<tkds.tend[j]<<endl;
    DataTable dt_data;
    PInPersist pin(flnm);
    pin >> dt_data;
    dt_data.SetShowMinMaxFlag(true);
    size_t ktime = dt_data.IndexNom("timesec");
    vector<double> vtm;
    dt_data.GetColumn(ktime, vtm);
    vector< vector<double> > v_vac(NB_ANTENNES);
    for(size_t ii=0; ii<NB_ANTENNES; ii++) {   // 4 auto-correlations
      size_t kac = dt_data.IndexNom(acname[ii]);
      dt_data.GetColumn(kac, v_vac[ii]);
      vector<double> vtmp, vetmp;
      vv_data[j].push_back(vtmp);
      vv_err[j].push_back(vetmp);
      v_min_data[j].push_back(9.e19);
      v_max_data[j].push_back(-9.e19);
    }
    vector< vector <complex<double> > > v_vcx(NB_CXCORS);
    for(size_t ii=0; ii<NB_CXCORS; ii++) {   // 6 cross-correlations
      size_t kac = dt_data.IndexNom(cxname[ii]);
      dt_data.GetColumn(kac, v_vcx[ii]);
      vector< complex<double> > vtmp;
      vector<double> vetmp;
      vv_cxdata[j].push_back(vtmp);
      vv_cxerr[j].push_back(vetmp);
      v_min_cxdata[j].push_back(9.e19);
      v_max_cxdata[j].push_back(-9.e19);
    }
    
    vector< vector<double> > & v_data = vv_data[j];
    vector< vector<double> > & v_err = vv_err[j];
    vector< vector< complex<double> > > & v_cxdata = vv_cxdata[j];
    vector< vector<double> > & v_cxerr = vv_cxerr[j];

    for(size_t k=0; k<vtm.size(); k++) {
      if ((vtm[k]<tkds.tstart[j])||(vtm[k]>tkds.tend[j]))  continue;
      v_time_data[j].push_back(vtm[k]);
      for(size_t ii=0; ii<NB_ANTENNES; ii++) {
	vector<double> & vac = v_vac[ii];
	v_data[ii].push_back(vac[k]);
	v_err[ii].push_back(0.1*sqrt(fabs(vac[k])));   // calcul d'erreur, a affiner 
	if (vac[k]<v_min_data[j][ii])  v_min_data[j][ii]=vac[k];
	if (vac[k]>v_max_data[j][ii])  v_max_data[j][ii]=vac[k];
      }
      for(size_t ii=0; ii<NB_CXCORS; ii++) {   // 6 cross-correlations
	vector< complex<double> > & vcx = v_vcx[ii];
	v_cxdata[ii].push_back(vcx[k]);
	double acx=std::abs(vcx[k]);
319
	v_cxerr[ii].push_back(0.1*sqrt(acx)); // calcul d'erreur, a affiner 
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	if (acx<v_min_cxdata[j][ii])  v_min_cxdata[j][ii]=acx;
	if (acx>v_max_cxdata[j][ii])  v_max_cxdata[j][ii]=acx;
      }
    }
    
    tot_npoints += v_time_data[j].size();   // total number of points for fit 
    cout << " ... Done for " << j+1 << " data size="<<v_time_data[j].size()<<endl;
    cout << "  Data-AutoCor Min,Max[A1...A4]="; 
    for(size_t ii=0; ii<NB_ANTENNES; ii++)
      cout<<setw(10)<<v_min_data[j][ii]<<","<<setw(10)<<v_max_data[j][ii]<<" ; ";   cout << endl;
    cout << "  Data-CxCorr (abs) Min,Max[Cx1...Cx6]="; 
    for(size_t ii=0; ii<NB_ANTENNES; ii++)
      cout<<setw(10)<<v_min_cxdata[j][ii]<<","<<setw(10)<<v_max_cxdata[j][ii]<<" ; ";   cout << endl;

  }
  return tot_npoints;
}

338 339 340 341 342 343 344 345 346 347 348 349
ostream & AcxDataSet::PrintACFitSummary(ostream & os)
{
  const char* acnames[4]={"AC-1","AC-2","AC-3","AC-4"}; 
  os << "--------- Fitted Parameters and errors from AutoCorrelations (D-dish, Theta,Phi Antennes) "<<endl;
  for(size_t i=0; i<getNbAutoCor(); i++) {
    double thetaant=v_thetaant[i];  double err_thetaant=v_err_thetaant[i];
    double phiant=v_phiant[i];  double err_phiant=v_err_phiant[i];
    double elevdeg=90.-Angle(thetaant).ToDegree();
    double err_elevdeg=Angle(err_thetaant).ToDegree();
    double azimdeg=90.-Angle(phiant).ToDegree();
    if (azimdeg<0.)  azimdeg += 360.;
    double err_azimdeg=Angle(err_phiant).ToDegree();
350
    os<<acnames[i]<<" D(m)= "<<setw(8)<<v_Ddish[i]<<" +/- "<<setw(8)<<v_err_Ddish[i];
351 352
    os<<" Elev(deg)= "<<setw(8)<<elevdeg<<" +/- "<<setw(8)<<err_elevdeg;
    os<<" Azim(deg)= "<<setw(8)<<azimdeg<<" +/- "<<setw(8)<<err_azimdeg;
353
    os<<"  RcFit="<<setw(6)<<v_RcFit_ac[i]<<" Xi2Red="<<setw(8)<<v_xi2red_ac[i]<<endl;
354 355 356 357
  }
  return os;
}

358 359 360
ostream & AcxDataSet::PrintCxPhaseFitSummary(ostream & os)
{
  const char* cxnames[6]={"Cx-1x2","Cx-1x3","Cx-1x4","Cx-2x3","Cx-2x4","Cx-3x4"};
361
  os << "--------- Cx-Fitted phases @1300 MHz ";
362 363 364 365 366 367 368 369
  for(size_t i=0; i<getNbCrossCor(); i++) os<<setw(8)<<Angle(v_phase[i]).ToDegree()<<" ; ";   cout<<endl;
  double dphi23=v_phase[1]-v_phase[0];   if (dphi23<0.) dphi23+=(2.*M_PI);
  double dphi24=v_phase[2]-v_phase[0];   if (dphi24<0.) dphi24+=(2.*M_PI);
  double dphi34=v_phase[2]-v_phase[1];   if (dphi34<0.) dphi34+=(2.*M_PI);
  os << "--- Compatibility of fitted phases (@1300 MHz) among the six Baselines "<<endl;
  os<<" Cx-2x3: Phi3-Phi2= "<<setw(6)<<Angle(dphi23).ToDegree()<<" EqualTo? Phi23= "<<setw(6)<<Angle(v_phase[3]).ToDegree()<<endl;
  os<<" Cx-2x4: Phi4-Phi2= "<<setw(6)<<Angle(dphi24).ToDegree()<<" EqualTo? Phi24= "<<setw(6)<<Angle(v_phase[4]).ToDegree()<<endl;
  os<<" Cx-3x4: Phi4-Phi3= "<<setw(6)<<Angle(dphi34).ToDegree()<<" EqualTo? Phi34= "<<setw(6)<<Angle(v_phase[5]).ToDegree()<<endl;
370
  os << "--------- Cx-Fitted Phase(freq) parameters and errors  Phi(freq)=phi0+a_phi*(freq-1250.)/250. "<<endl;
371 372
  for(size_t i=0; i<getNbCrossCor(); i++) {
    os<<cxnames[i]<<" phi0= "<<setw(8)<<Angle(v_phi_0[i]).ToDegree()<<" +/- "<<setw(8)<<Angle(v_err_phi_0[i]).ToDegree()
373
      <<" a_phi= "<<setw(8)<<Angle(v_a_phi[i]).ToDegree()<<" +/- "<<setw(8)<<Angle(v_err_a_phi[i]).ToDegree()
374
      <<"  RcFit="<<setw(6)<<v_RcFit_cx[i]<<" Xi2Red="<<setw(8)<<v_xi2red_cx[i]<<endl;
375 376 377 378
  }
  return os;
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

//------------------------ TrackSet -------------------------------------
TrackSet::TrackSet(TrackSet const & a)
  : v_time_sat(a.v_time_sat), v_sat_elev(a.v_sat_elev), v_sat_azim(a.v_sat_azim),
    v_interp_elev(a.v_interp_elev), v_interp_sazim(a.v_interp_sazim)							   
{
}

TrackSet & TrackSet::operator = (TrackSet const & a)
{
  v_time_sat=a.v_time_sat;  v_sat_elev=a.v_sat_elev;  v_sat_azim=a.v_sat_azim;
  v_interp_elev=a.v_interp_elev;  v_interp_sazim=a.v_interp_sazim; 
  return *this;
}

TrackSet::TrackSet(TrkInputDataSet & tkds)
{
  ReadData(tkds);
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
size_t TrackSet::ReadTrackFile(string flnm, vector<double> & tims, vector<double> & elevs, vector<double> & azims, SLinInterp1D & li_elev, SLinInterp1D & li_sazim)
{
  cout <<"TrackSet::ReadTrackFile() Extracting data from source/satellite track DataTables: Filename= " << flnm << endl;
  DataTable dt_sat;
  PInPersist pin(flnm);
  pin >> dt_sat;
  dt_sat.SetShowMinMaxFlag(true);
  size_t ktime = dt_sat.IndexNom("timesec");
  dt_sat.GetColumn(ktime, tims);
  size_t kelev = dt_sat.IndexNom("elevation");
  dt_sat.GetColumn(kelev, elevs);
  size_t kazim = dt_sat.IndexNom("azimuth");
  dt_sat.GetColumn(kazim, azims);
  li_elev.DefinePoints(tims, elevs);
  double last_azim=azims[0];
  //    vector<double> cazim(v_sat_azim[j].size());
  // azimuth values, shifted possibly +360 +720 deg ... to avoid jumping from 360 deg to 0 deg  
  vector<double> shifted_azim(azims.size());   
  double azim_offset=0.;
  double min_azim_offset=0.;
  bool fgneg_azim_offset=false;
  for(size_t k=0; k<azims.size(); k++)  {
    double azim=azims[k];
    if ((k>0)&&(azim<last_azim)) {
      if ((last_azim>300.)&&(azim<60.))  {
	azim_offset += 360.;
	if (_prtlevel_>0) 
	  cout << "TrackSet::ReadTrackFile()/Info-Warning: 360 to 0 deg. Jump k="<<k<<" last_azim="<<last_azim<<" azimuth= "<<azim<<" Offset->"<<azim_offset<<endl;
      }
    }
    else if ((k>0)&&(azim>last_azim)) {
      if ((last_azim<60)&&(azim>300.))  {
	azim_offset -= 360.;
	if (_prtlevel_>0) 
	  cout << "TrackSet::ReadTrackFile()/Info-Warning: 0 to 360 deg. Jump: k="<<k<<" last_azim="<<last_azim<<" azimuth= "<<azim<<" Offset->"<<azim_offset<<endl;
      }
    }
    if (azim_offset<min_azim_offset)  min_azim_offset=azim_offset;
    last_azim = azim;
    shifted_azim[k]=azim+azim_offset;
    /*
      double phisrcdeg=90.-v_sat_azim[j][k];
      if (phisrcdeg<0.)  phisrcdeg+=360.;
      double phisrc=Angle(phisrcdeg,Angle::Degree).ToRadian();
      cazim[k]=cos(phisrc);
    */
  }
  if (min_azim_offset < -300.) {
    cout << "TrackSet::ReadTrackFile()/Info-Warning: - correcting for negative azim_offset -> Adding " << -min_azim_offset <<" deg."<<endl;
    for(size_t k=0; k<shifted_azim.size(); k++)   shifted_azim[k] -= min_azim_offset;
  }
  li_sazim.DefinePoints(tims, shifted_azim);
  return tims.size();
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467
size_t TrackSet::ReadData(TrkInputDataSet & tkds)
{
  cout << "---- TrackSet::ReadData() ; reading source (satellites, ..) for "
       <<tkds.NbTrk()<<" tracks ..."<<endl;
  if (tkds.NbTrk() != v_time_sat.size()) {
    v_time_sat.resize(tkds.NbTrk());
    v_sat_elev.resize(tkds.NbTrk());
    v_sat_azim.resize(tkds.NbTrk());
    v_interp_elev.resize(tkds.NbTrk());
    v_interp_sazim.resize(tkds.NbTrk());
  }

  for(size_t j=0; j<tkds.NbTrk(); j++) {
    string flnm = tkds.input_base_path+tkds.trkflnm[j]+".ppf";
468 469 470 471 472
    size_t npts=ReadTrackFile(flnm, v_time_sat[j], v_sat_elev[j], v_sat_azim[j], v_interp_elev[j], v_interp_sazim[j]);
    cout<<"["<<j+1<<"]  DONE timevec.size()="<<npts<<"  SLinInterp1D for elevation / azimuth created ..."<<endl;
    if (_prtlevel_>0) {
      cout << v_interp_elev[j];
      cout << v_interp_sazim[j];
473
    }
474 475 476 477 478
  }
  return 0;
}


479
//------------------------ ACxSetFitter -------------------------------------
480
ACxSetFitter::ACxSetFitter(AcxDataSet & data, TrackSet & tks)
481
  : fggaussbeam_(true), D_dish(5.), acxd_(data), tks_(tks), fit_ac_done(false), fit_cx_done(false), 
482 483 484 485 486
    v_RcFit_ac(tks.getNbAutoCor()), v_xi2red_ac(tks.getNbAutoCor()),
    v_Ddish(tks.getNbAutoCor()), v_thetaant(tks.getNbAutoCor()), 
    v_phiant(tks.getNbAutoCor()), v_A(tks.getNbAutoCor()), v_B(tks.getNbAutoCor()), 
    v_err_Ddish(tks.getNbAutoCor()), v_err_thetaant(tks.getNbAutoCor()), 
    v_err_phiant(tks.getNbAutoCor()), v_err_A(tks.getNbAutoCor()), v_err_B(tks.getNbAutoCor()), 
487
    v_acbeams(tks.getNbAutoCor()),
488
    v_RcFit_cx(tks.getNbCrossCor()), v_xi2red_cx(tks.getNbCrossCor()),
489 490 491 492
    v_phase(tks.getNbCrossCor()), v_phi_0(tks.getNbCrossCor()), v_a_phi(tks.getNbCrossCor()), 
    v_Acx(tks.getNbCrossCor()), v_Bcx(tks.getNbCrossCor()), 
    v_err_phi_0(tks.getNbCrossCor()), v_err_a_phi(tks.getNbCrossCor()), 
    v_err_Acx(tks.getNbCrossCor()), v_err_Bcx(tks.getNbCrossCor()),
493
    v_cxbeams(tks.getNbCrossCor())
494
{
495 496 497 498
  if (data.NbTrk() != tks.NbTrk())
    throw ParmError("ACxSetFitter(data, tks) NOT same number of tracks NbTrk() in data and tks");
  if (data.NbTrk() < 1)
    throw ParmError("ACxSetFitter(data, tks) 0 tracks in data data.NbTrk()<1 ");
499 500 501 502 503 504 505 506
}

int ACxSetFitter::doACfit(string outfilename)
{
  cout << "======================================================================================"<<endl;
  cout << "---- ACxSetFitter::doACfit() ; Performing antenna pointing fit ..."<<endl;
  ofstream ofr(outfilename.c_str());
  ofr << "#### Pointing/dish diameter fit on autocorrelation (ACxSetFitter::doACfit() "<<endl
507
      << "## NumAntenna RcFit Xi2red  Deff err_Deff  Elevation err_Elev  Azimuth err_Ezim  A0 err_A0 B0 err_B0 A1 err_A1 B1 err_B1 ..."<<endl;
508 509 510 511 512 513 514 515
  size_t NB_ANTENNES = acxd_.getNbAutoCor();
  size_t NTRK = acxd_.NbTrk();

  for(size_t ii=0; ii<NB_ANTENNES; ii++)  { 
    v_A[ii].resize(NTRK);     v_B[ii].resize(NTRK); 
    v_err_A[ii].resize(NTRK);     v_err_B[ii].resize(NTRK); 
  }
  int tot_npoints_fit = 0;
516 517 518 519
  for(size_t j=0; j<NTRK; j++) {
    if (acxd_.v_noAC[j])  continue;
    tot_npoints_fit += acxd_.v_time_data[j].size();
  }
520 521 522 523
  for(size_t ii=0; ii<NB_ANTENNES; ii++) {
    cout << "-------- doACfit() 1."<<ii+1<<" Creating General Fit for AutoCor Antenna= " << ii+1 << endl;
    GeneralFitData gdata(1, tot_npoints_fit);
    for(size_t j=0; j<NTRK; j++) {
524
      if (acxd_.v_noAC[j])  continue;
525 526 527 528 529 530
      vector< vector<double> > & v_data = acxd_.vv_data[j];
      vector< vector<double> > & v_err = acxd_.vv_err[j];
      for(size_t k=0; k<acxd_.v_time_data[j].size(); k++) {
	gdata.AddData1(acxd_.v_time_data[j][k],v_data[ii][k],v_err[ii][k]); // Fill x, y and error on y     
      }
    }
531 532 533 534
    TkF_ACXi2 gxi2( acxd_.v_time_data, acxd_.vv_data, acxd_.vv_err, acxd_.v_freqs, acxd_.v_noAC, 
		    tks_.v_interp_elev, tks_.v_interp_sazim, ii, fggaussbeam_);  // MyACGenXi2
    //    GeneralFit mFit(&gxi2);
    TkF_Fitter mFit(gxi2);
535
    mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
536
    mFit.SetMaxStep(5000);
537
    // SetParam(int n,double value, double step,double min=1., double max=-1.);
538
    mFit.SetParam(0,"D_dish",D_dish,0.1,D_dish*0.7,D_dish*1.4);
539 540 541 542 543 544 545 546 547 548 549 550 551
    // mFit.SetFix(0, D_dish);
    
    double thetaAntenne=0., phiAntenne=0.;
    if (fabs(acxd_.zenang)>1.e-6) {
      if (acxd_.zenang<0)  {
	thetaAntenne=Angle(-acxd_.zenang,Angle::Degree).ToRadian();
	phiAntenne=Angle(270.,Angle::Degree).ToRadian();
      }
      else {
	thetaAntenne=Angle(acxd_.zenang,Angle::Degree).ToRadian();
	phiAntenne=Angle(90.,Angle::Degree).ToRadian();
      }
    }
552
    mFit.SetParam(1,"ThetaAntenne",thetaAntenne,M_PI/1440,0.,M_PI/4.); // thetaAntenne+M_PI/30.); // 
553 554 555
    mFit.SetParam(2,"PhiAntenne",phiAntenne,M_PI/180.,0.,2.*M_PI);
    // mFit.SetFix(1, thetaAntenne);
    // mFit.SetFix(2, phiAntenne);
556

557
    //DEL    size_t jj=0;
558
    for(size_t j=0; j<NTRK; j++) {
559 560
      double A = acxd_.v_max_data[j][ii];
      double B = acxd_.v_min_data[j][ii];
561 562 563 564 565
      A -= B;   
      if (A<1.e-9)  { 
	cout << " doACfit()/Warning NumAnt/ii="<<ii<<" NumTrk/j="<<j<<" Negative A , A="<<A<<" B="<<B<<" A->"<<0.1*B<<endl;
	A=0.1*B;
      }
566 567
      v_A[ii][j]=A;   v_err_A[ii][j]=0.;
      v_B[ii][j]=B;   v_err_B[ii][j]=0.;
568
      //DEL if (acxd_.v_noAC[j])  continue;
569 570
      char pname[32];
      sprintf(pname,"A%d",(int)(j+1));
571
      mFit.SetParam(2*j+3,pname,A,A/10.,A/20,A*5);
572
      sprintf(pname,"B%d",(int)(j+1));
573 574 575 576 577 578 579
      mFit.SetParam(2*j+4,pname,B,B/10.,B/20,B*5);
      // mFit.SetFix(2*jj+4, B);
      if (acxd_.v_noAC[j]) {
	mFit.SetFix(2*j+3, A);
	mFit.SetFix(2*j+4, B);
      }
      //DEL      jj++;
580 581 582
    }
    //DBG mFit.PrintFit();
    //    cout << "do_p4_trkfit 2."<<ii+1<<" Performing the fit for AutoCor Antenna= " << ii+1 << endl;
583
    int rcfit = mFit.doFit();
584
    double xi2red=mFit.GetChi2Red();
585
    if (_prtlevel_>1) mFit.PrintFit();
586
    v_RcFit_ac[ii]=rcfit;  v_xi2red_ac[ii]=xi2red;
587 588 589 590 591 592 593 594 595
    if(rcfit>0) { 
      cout<< "------- Fit result for Antenna No="<<ii+1<<" Reduce_Chisquare = " << mFit.GetChi2Red()
	  << " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
    }
    else {
      cout << "---Fit failed for "<<ii+1<<"--- Fit_Error, rc = " << rcfit << "  nstep="<<mFit.GetNStep()<<endl;
      ofr <<setw(4)<<ii+1<<" ERROR FIT RC="<<rcfit<<"  nstep="<<mFit.GetNStep()<<endl;
      if (_prtlevel_>0) mFit.PrintFitErr(rcfit);
    } 
596 597 598 599 600 601 602 603 604

    ofr <<setw(4)<<ii+1<<" "<<setw(8)<<mFit.GetChi2Red()<<" "; 
    double Dfit=mFit.GetParm(0);   double err_Dfit=mFit.GetParmErr(0);
    cout <<setw(16)<<"DishDiameter= "<<setw(10)<<Dfit<<" +/- "<<setw(10)<<err_Dfit<<" m."<<endl;
    ofr <<setw(5)<<rcfit<<" "<<setw(8)<<Dfit<<" "<<setw(8)<<err_Dfit<<"  "; 
    v_Ddish[ii]=Dfit;
    v_err_Ddish[ii]=err_Dfit;
    double thetaant=mFit.GetParm(1);   double err_thetaant=mFit.GetParmErr(1);
    v_thetaant[ii]=thetaant;
605
    v_err_thetaant[ii]=err_thetaant;
606 607 608 609 610 611 612 613 614 615 616
    double elevdeg=90.-Angle(thetaant).ToDegree();
    double err_elevdeg=Angle(err_thetaant).ToDegree();
    cout <<setw(16)<<"ThetaAntenne= "<<setw(12)<<Angle(thetaant).ToDegree()<< " +/- "
	 <<setw(12)<<Angle(err_thetaant).ToDegree()<<" (elevation="
	 <<setw(8)<<elevdeg<<" +/- "<<setw(8)<<err_elevdeg<<") deg."<<endl;
    ofr <<setw(8)<<elevdeg<<" "<<setw(8)<<err_elevdeg<<"  "; 
    double phiant=mFit.GetParm(2);   double err_phiant=mFit.GetParmErr(2);
    double azimdeg=90.-Angle(phiant).ToDegree();
    if (azimdeg<0.)  azimdeg += 360.;
    double err_azimdeg=Angle(err_phiant).ToDegree();
    v_phiant[ii]=phiant;
617
    v_err_phiant[ii]=err_phiant;
618 619 620
    cout <<setw(16)<<"PhiAntenne= "<<setw(12)<<Angle(phiant).ToDegree()<< " +/- "
	 <<setw(12)<<Angle(err_phiant).ToDegree()<<" (azimuth  ="
	 <<setw(8)<<azimdeg<<" +/- "<<setw(8)<<err_azimdeg<<" ) deg."<<endl;
621
    ofr <<setw(8)<<azimdeg<<" "<<setw(8)<<err_azimdeg<<"  ";
622
    //DEL    jj=0;
623
    for(size_t j=0; j<NTRK; j++) {
624 625 626
      double A=1.,B=0.,err_A=0.,err_B=0.;
      A=mFit.GetParm(3+2*j);    err_A=mFit.GetParmErr(3+2*j);
      B=mFit.GetParm(4+2*j);    err_B=mFit.GetParmErr(4+2*j);
627
      v_A[ii][j]=A;  v_err_A[ii][j]=err_A;  v_B[ii][j]=B;  v_err_B[ii][j]=err_B;
628
      cout << "  Trk/Sat["<<j<<"] -> A= "<<A<<" +/- "<<err_A<<"  B= "<<B<<" +/- "<<err_B<<(acxd_.v_noAC[j]?" FIXED":"")<<endl;
629
      if (acxd_.v_noAC[j])
630
	ofr <<setw(8)<<A<<" "<<setw(8)<<" NOFIT "<<" "<<setw(8)<<B<<" "<<setw(8)<<" FIXED "<<" ";
631 632
      else 
	ofr <<setw(8)<<A<<" "<<setw(8)<<err_A<<" "<<setw(8)<<B<<" "<<setw(8)<<err_B<<" ";
633 634 635 636 637 638 639 640 641 642 643
    }
    ofr << endl;
    double clight = PhysQty::c().SIValue();
    double lambda = clight/(acxd_.v_freqs[0]*1.e6);
    ACBeam acb1(Dfit, thetaant, phiant, lambda);
    acb1.setGaussianLobe(fggaussbeam_);
    ACBeam acb2(Dfit, thetaant, phiant, lambda);
    acb2.setGaussianLobe(fggaussbeam_);
    Vector3d baseline0(0.,0.,0.);
    v_acbeams[ii]=CxBeam(acb1, acb2, baseline0);
    
644 645
  }
  
646 647
  fit_ac_done=true;
  acxd_.v_acbeams=v_acbeams;
648 649 650 651
  acxd_.v_RcFit_ac=v_RcFit_ac;
  acxd_.v_xi2red_ac=v_xi2red_ac;
  acxd_.v_Ddish=v_Ddish;
  acxd_.v_thetaant=v_thetaant;
652
  acxd_.v_phiant=v_phiant;
653 654 655
  acxd_.v_err_Ddish=v_err_Ddish;
  acxd_.v_err_thetaant=v_err_thetaant;
  acxd_.v_err_phiant=v_err_phiant;
656 657 658 659 660
  return 0;
}

int ACxSetFitter::saveExpectedAC(string outcheckfilename)
{
661

662 663 664
  if (outcheckfilename.length()<1)  return 1;
  cout << "-----ACxSetFitter::saveExpectedAC() : computing expected signal for fitted params , will be saved to file "
       <<outcheckfilename<<endl;
665 666 667 668 669 670 671 672 673 674 675
  vector <string> data_names;
  FitsInOutFile *fos=NULL;
  POutPersist *pos=NULL;
  size_t ll = outcheckfilename.length();
  size_t pp = outcheckfilename.rfind('.');
  if ((pp<ll)&&(outcheckfilename.substr(pp)==".fits"))  {
    cout << "----- ACxSetFitter::saveExpectedAC : Saving  to FITS file "<<outcheckfilename<<endl;
    fos=new FitsInOutFile (outcheckfilename,FitsInOutFile::Fits_Create);
  } else {
    pos = new POutPersist (outcheckfilename);
  }
676 677 678 679 680 681 682
  size_t NB_ANTENNES = acxd_.getNbAutoCor();
  size_t NTRK = acxd_.NbTrk();

  for(size_t ii=0; ii<NB_ANTENNES; ii++)     {
    if (_prtlevel_>1) 
      cout << "... Computing DataSignal & Expected Signal for fitted params and dish "<<ii+1<<endl;
    
683
    MyACSignal macs(acxd_.v_time_data, acxd_.vv_data, acxd_.vv_err, acxd_.v_freqs, acxd_.v_noAC, 
684 685 686 687 688 689 690 691 692 693
		    tks_.v_interp_elev, tks_.v_interp_sazim, ii, fggaussbeam_);
      
    double Ddishfit=v_Ddish[ii];
    double thetafit=v_thetaant[ii];
    double phifit=v_phiant[ii];
    
    char oname[32];
    for(size_t j=0; j<NTRK; j++)  {
      double A = v_A[ii][j];
      double B = v_B[ii][j];
694

695 696 697
      if (ii==0)  {
	Vector tmvec = macs.getTimeVec(j);
	sprintf(oname,"tim_%d",(int)j+1);
698 699 700 701 702 703 704 705 706 707 708 709 710 711
	if (pos!=NULL) {
	  *pos << PPFNameTag(oname)<<tmvec;
	}
	if (fos!=NULL) {
	  data_names.push_back(oname);
	  tmvec.Info()["NOM_OBJET"]=oname;
	  *fos<<tmvec;
	}
      }

      Vector signal = macs.getDataSignal(j);
      sprintf(oname,"ac_%d_%d",(int)ii+1,(int)j+1);
      if (pos!=NULL) {
	*pos << PPFNameTag(oname)<<signal;
712
      }
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
      if (fos!=NULL) {
	data_names.push_back(oname);
	signal.Info()["NOM_OBJET"]=oname;
	*fos<<signal;
      }

      Vector expsignal = macs.getExpectedSignal(j, Ddishfit, thetafit, phifit, A, B);
      sprintf(oname,"simac_%d_%d",(int)ii+1,(int)j+1);  
      if (pos!=NULL) {
	*pos << PPFNameTag(oname)<<expsignal;
      }
      if (fos!=NULL) {
        expsignal.Info()["NOM_OBJET"]=oname;
	data_names.push_back(oname);
	*fos<<expsignal;
      }      
729 730
    }
  } 
731 732 733 734 735 736 737 738 739 740 741 742 743
  if (pos!=NULL) delete(pos);
  if (fos!=NULL) {
    //*fos<<data_names;
    //TVector <string> tata(data_names);
    //*fos<<tata ;
    
    cout<<" number of extenstions "<<data_names.size()<<endl;
    for (int k=0 ; k<data_names.size() ; k++){
      cout<<" no "<<k<<" ->"<<data_names[k]<<endl;
    }

    delete(fos);
  }
744 745 746 747
  return 0;
}


748
int ACxSetFitter::doCxfit(string outfilenamecx, bool useAac, bool fg_B0, bool fgphi0only)
749 750 751 752 753
{
  size_t NB_ANTENNES=acxd_.getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=acxd_.getNbCrossCor();
  size_t NTRK = acxd_.NbTrk();

754

755
  //------ Valeurs de phases et pente de Phi(freq) = Phi0 + aPhi * (freq-1250.)/250.   (en degres) 
756 757 758
  double phi0deg_I[6] = {250. , 110, 60., 220., 170., 310.};
  double aphideg_I[6] = {-71. , 383., 449., 454., 520., 66.};

759
  cout << "======================================================================================"<<endl;
760
  cout << "---------- ACxSetFitter::doCxfit() ; Performing cross-cor phase fit for NTrk="<<NTRK<<endl;
761 762 763
  if (useAac) cout << " ... Using Amplitude from auto-correlations fit for initial fit parameter value..."<<endl; 
  ofstream ofr(outfilenamecx.c_str());
  ofr << "#### cross-cor phase fit (ACxSetFitter::doCxfit() ) "<<endl
764
      << "## NumCxCor RcFit Xi2red Phi0 err_Phi0 a_Phi err_a_Phi (deg) A0 err_A0 B0 errB0 A1 err_A1  ..."<<endl;
765 766
  int tot_npoints_fit = 0;
  for(size_t j=0; j<NTRK; j++) tot_npoints_fit += 2*(acxd_.v_time_data[j].size());
767 768
  cout << " Total number of data points for fit="<< tot_npoints_fit<<endl;

769 770 771 772
  size_t Anum1[6]={0,0,0,1,1,2};
  size_t Anum2[6]={1,2,3,2,3,3};
  for(size_t ii=0; ii<NB_CXCORS; ii++) {
    v_Acx[ii].resize(NTRK);   
773 774 775
    v_Bcx[ii].resize(NTRK);  
    v_err_Acx[ii].resize(NTRK);   
    v_err_Bcx[ii].resize(NTRK);  
776 777
    for(size_t j=0; j<NTRK; j++) {
      v_Acx[ii][j]=1.;   v_Bcx[ii][j]=complex<double>(0.,0.);
778
      v_err_Acx[ii][j]=1.;   v_err_Bcx[ii][j]=complex<double>(0.,0.);
779
    }
780
    Vector3d baseline=P4Coords::getBaseline(Anum1[ii]+1,Anum2[ii]+1);
781 782 783
    if (z_coord_shift.size() > 0) {   // Si on a definit un shift des coordonnees z des antennes   
      baseline += Vector3d(0.,0.,z_coord_shift[Anum2[ii]]-z_coord_shift[Anum1[ii]]);
    }
784 785 786 787 788 789 790 791 792 793
    cout << "--------- 1."<<ii+1<<" doCxfit() Doing fit for CrossCor= " << ii << " FxF= " 
	 << Anum1[ii]+1<<"x"<<Anum2[ii]+1<<" Baseline="<<baseline<<endl;
    GeneralFitData gdata(1, tot_npoints_fit);
    for(size_t j=0; j<NTRK; j++) {
      vector< vector< complex<double> > > & v_cxdata = acxd_.vv_cxdata[j];
      vector< vector<double> > & v_cxerr = acxd_.vv_cxerr[j];
      for(size_t k=0; k<acxd_.v_time_data[j].size(); k++) {
	gdata.AddData1(acxd_.v_time_data[j][k],v_cxdata[ii][k].real(),v_cxerr[ii][k]); // Fill x, y and error on y
	gdata.AddData1(acxd_.v_time_data[j][k],v_cxdata[ii][k].imag(),v_cxerr[ii][k]); // Fill x, y and error on y     
      }
794
    }
795 796 797 798 799 800 801
    double clight = PhysQty::c().SIValue();
    double lambda = clight/(acxd_.v_freqs[0]*1.e6);
    ACBeam acb1(v_Ddish[Anum1[ii]], v_thetaant[Anum1[ii]], v_phiant[Anum1[ii]], lambda);
    acb1.setGaussianLobe(fggaussbeam_);
    ACBeam acb2(v_Ddish[Anum2[ii]], v_thetaant[Anum2[ii]], v_phiant[Anum2[ii]], lambda);
    acb2.setGaussianLobe(fggaussbeam_);
    CxBeam cxbeam(acb1, acb2, baseline);
802
    v_cxbeams[ii]=cxbeam;
803

804
    TkF_CxXi2 gxi2( acxd_.v_time_data, acxd_.vv_cxdata, acxd_.vv_cxerr, acxd_.v_freqs, acxd_.v_noCx, 
805 806 807
		    tks_.v_interp_elev, tks_.v_interp_sazim, cxbeam, ii);  // MyCxGenXi2
    //    GeneralFit mFit(&gxi2);
    TkF_Fitter mFit(gxi2);
808
    mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
809
    mFit.SetMaxStep(3000);
810
    // SetParam(int n,double value, double step,double min=1., double max=-1.);
811 812
    mFit.SetParam(0,"Phi_0",Angle(phi0deg_I[ii],Angle::Degree).ToRadian(),M_PI/180.,-0.5*M_PI,3*M_PI);
    mFit.SetParam(1,"a_phi",Angle(aphideg_I[ii],Angle::Degree).ToRadian(),0.05,-15.,15.);
813 814 815 816 817
    if (fgphi0only) {
      cout << " ACxSetFitter::doCxfit() Fitting Phi0 Only (frequency independent phase)"<<endl;
      mFit.SetFix(1,0.);
    }
    else cout << " ACxSetFitter::doCxfit() Fitting  Phase(freq) = Phi0 + a_Phi * (freq-1250.)/250. "<<endl;
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834

    char oname[32];
    vector<double> v_amp(NTRK);
    for(size_t j=0; j<NTRK; j++) {
      double A=1.; // v_max_cxdata[j][ii]; 
      TVector< complex<double> >  signal = gxi2.getDataSignal(j);
      Vector asig = SOPHYA::abs(signal);
      double mins, maxs;
      asig.MinMax(mins, maxs);
      TVector< complex<double> >  expsignal = gxi2.getExpectedSignal(j, 0., A);
      Vector aexpsig = SOPHYA::abs(expsignal);
      double mine, maxe;
      aexpsig.MinMax(mine, maxe);
      A=maxs/maxe;
      v_amp[j]=A; 
    }

835
    double fparm[100];  fparm[0]=0.;
836 837
    fparm[0]=Angle(phi0deg_I[ii], Angle::Degree).ToRadian();  // Angle(phi0deg_I[ii],Angle::Degree).ToRadian()
    if (fgphi0only)  fparm[1]=0.;
838
    else  fparm[1]=Angle(aphideg_I[ii], Angle::Degree).ToRadian();;
839
    
840 841 842 843
    double bestxi2 = 9.e19;
    double bestphase=0.;
    int bestnpts,npts;
    int bestafact;
844
    double afact[12]={0.15,0.3,0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.4,2.8,3.2};
845
    bool fg_ph_I=false;   // if true , phase value from phi0deg_I aphideg_I 
846 847 848
    for(int ia=0; ia<12; ia++) {
      for(size_t j=0; j<NTRK; j++) {
	double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
849 850
	//DBG	cout << " *DBG* j="<<j<<" ia="<<ia<<" vA="<<v_A[Anum1[ii]][j]<<" x "<<v_A[Anum2[ii]][j]
	//     <<"  -> "<<Aac<<endl;
851
	fparm[2+3*j]=(useAac?Aac:v_amp[j]);
852
	fparm[2+3*j]*=afact[ia];   fparm[3+3*j]=fparm[4+3*j]=0.;
853
      }
854 855 856 857
      for(int jp=-1; jp<180; jp++) {
	double ph = jp*2.;
	if (jp==-1) fparm[0]=Angle(phi0deg_I[ii], Angle::Degree).ToRadian(); 
	else  fparm[0]=Angle(ph, Angle::Degree).ToRadian();
858
	double xi2 = gxi2.getXi2(fparm, npts);
859
	//DBG	cout << " *DBG* ia="<<ia<<" afact="<<afact[ia]<<" ph="<<ph<<" xi2="<<xi2<<endl;
860
	if (xi2 < bestxi2) {
861
	  if (jp==-1) fg_ph_I=true;  else fg_ph_I=false; 
862 863 864 865
	  bestxi2 = xi2; bestphase=fparm[0]; bestnpts=npts;  bestafact=afact[ia];
	}
      }
    }
866
    mFit.SetParam(0,"Phi_0",bestphase,M_PI/720.,-0.5*M_PI,2.5*M_PI);
867 868 869
    cout << "2."<<ii+1<<" Scan param bestxi2_red="<<bestxi2/(double)(tot_npoints_fit-(2+NTRK))
	 <<" bestphase="<<Angle(bestphase).ToDegree()<<(fg_ph_I?" (Phase from phi0deg_I)":" ")
	 <<" bestnpts="<<bestnpts<<" bestafact="<<bestafact<< " A= ";  
870
    v_phi_0[ii]=bestphase;
871 872
    for(size_t j=0; j<NTRK; j++)  {
      cout << v_amp[j] << " , ";  
873
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
874 875 876 877 878 879 880 881 882
      v_Acx[ii][j]=(useAac?Aac:v_amp[j]);
    }
    cout << endl;
    for(size_t j=0; j<NTRK; j++) {
      char pname[32];
      sprintf(pname,"A%d",(int)(j+1));
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
      double A=(useAac?Aac:v_amp[j]);
      //DBG      cout << "*DBG* j="<<j<<" Aac= "<<Aac<<" v_amp="<<v_amp[j]<<"  A= "<<A<<"  A1="<<v_A[Anum1[ii]][j]<<" A2="<<v_A[Anum2[ii]][j]<<endl;
883
      mFit.SetParam(2+3*j,pname,A,A/10.,A/4,A*4);
884 885
      sprintf(pname,"Bre%d",(int)(j+1));
      mFit.SetParam(3+3*j,pname,0.,A/25.,-A/5,A/5.);
886 887
      sprintf(pname,"Bim%d",(int)(j+1));
      mFit.SetParam(4+3*j,pname,0.,A/25.,-A/5,A/5.);
888 889
      if (acxd_.v_noCx[j]) {
	mFit.SetFix(2+3*j,A);
890 891 892
	mFit.SetFix(3+3*j,0.);
	mFit.SetFix(4+3*j,0.);
      }
893 894 895 896 897 898
      else {
	if (fg_B0) {
	  mFit.SetFix(3+3*j,0.);
	  mFit.SetFix(4+3*j,0.);
	}
      }
899 900 901 902
    }
    //DBG mFit.PrintFit();
    if (_prtlevel_>1)    
      cout << " 3."<<ii+1<<" Performing the fit for CrossCor " << ii << " FxF= " << Anum1[ii]+1<<"x"<<Anum2[ii]+1<<endl;
903
    int rcfit = mFit.doFit();
904
    v_RcFit_cx[ii]=rcfit;   v_xi2red_cx[ii]=mFit.GetChi2Red();
905 906 907
    if (_prtlevel_>1) mFit.PrintFit();
    if(rcfit>0) { 
      //      cout<< "-------------------------- Result for Cross No " << ii << endl; 
908
      cout<< "------ Fit result for Cross No "<<ii+1<<" Reduce_Chisquare = " << mFit.GetChi2Red()
909 910 911 912 913 914 915
	  << " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
    }
    else {
      cout << "---Fit failed for "<<ii<<" Fit_Error, rc = " << rcfit << "  nstep="<<mFit.GetNStep()<<endl;
      ofr <<setw(4)<<ii+1<<" ERROR FIT RC="<<rcfit<<"  nstep="<<mFit.GetNStep()<<endl;
      if (_prtlevel_>0) mFit.PrintFitErr(rcfit);
    }
916 917

    ofr <<setw(4)<<ii+1<<" "<<setw(5)<<rcfit<<setw(8)<<mFit.GetChi2Red()<<" "; 
918 919 920 921 922 923 924 925 926 927 928 929
    double phi0=mFit.GetParm(0);   double err_phi0=mFit.GetParmErr(0);
    double aphi=mFit.GetParm(1);   double err_aphi=mFit.GetParmErr(1);
    // on calcule la phase ajustee pour la frequence de reference 1300 MHz 
    double phase=gxi2.getPhase4Freq(phi0,aphi,1300.);
    while (phase<0.) phase += 2.*M_PI;
    while (phase>2.*M_PI) phase -= 2.*M_PI;
    cout <<"Phase(@1300MHz)= "<<setw(10)<<Angle(phase).ToDegree()<<"  phi_0= "<<setw(10)
	 <<Angle(phi0).ToDegree()<<" +/- "<<setw(10)<<Angle(err_phi0).ToDegree()<<" deg."
	 <<" a_phi= "<<setw(8)<<Angle(aphi).ToDegree()<<" +/- "<<setw(10)
	 <<Angle(err_aphi).ToDegree()<<" deg/250 MHz"<<endl;
    ofr <<setw(8)<<Angle(phi0).ToDegree()<<" "<<setw(8)<<Angle(err_phi0).ToDegree()<<"  "
	<<setw(8)<<Angle(aphi).ToDegree()<<" "<<setw(8)<<Angle(err_aphi).ToDegree()<<"  ";
930
    v_phase[ii]=phase;
931 932 933 934
    v_phi_0[ii]=phi0;
    v_err_phi_0[ii]=err_phi0;
    v_a_phi[ii]=aphi;
    v_err_a_phi[ii]=err_aphi;
935 936 937
    for(size_t j=0; j<NTRK; j++) {
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
      double Ai=(useAac?Aac:v_amp[j]);
938
      double A=mFit.GetParm(2+3*j);   double err_A=mFit.GetParmErr(2+3*j);
939 940 941 942
      complex<double> B(mFit.GetParm(3+3*j), mFit.GetParm(4+3*j));
      complex<double> err_B(mFit.GetParmErr(3+3*j), mFit.GetParmErr(4+3*j));
      cout << "  Trk["<<j<<"]  A= "<<A<<" +/- "<<err_A<<"  (A/Ai="<<A/Ai<<")"<<
	" B= "<<B<<" +/- "<<err_B<<(acxd_.v_noCx[j]?" NoFIT":" ")<<endl; 
943
      v_Acx[ii][j]=A;  
944
      v_Bcx[ii][j]=B;
945
      v_err_Acx[ii][j]=err_A; 
946
      ofr <<setw(8)<<A<<" "<<setw(8)<<err_A<<" "<<setw(14)<<B<<" "<<setw(12)<<err_B<<" ";
947
    }
948
    ofr << endl; 
949
  }
950 951 952 953 954 955 956 957 958 959 960
  cout << " --- Fitted phases: ";
  for(size_t i=0; i<NB_CXCORS; i++) cout<<setw(6)<<Angle(v_phase[i]).ToDegree()<<" ; ";   cout<<endl;
  double dphi23=v_phase[1]-v_phase[0];   if (dphi23<0.) dphi23+=(2.*M_PI);
  double dphi24=v_phase[2]-v_phase[0];   if (dphi24<0.) dphi24+=(2.*M_PI);
  double dphi34=v_phase[2]-v_phase[1];   if (dphi34<0.) dphi34+=(2.*M_PI);
  cout<<" Cx-2x3: "<<setw(6)<<Angle(dphi23).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[3]).ToDegree()<<endl;
  cout<<" Cx-2x4: "<<setw(6)<<Angle(dphi24).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[4]).ToDegree()<<endl;
  cout<<" Cx-3x4: "<<setw(6)<<Angle(dphi34).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[5]).ToDegree()<<endl;
  ofr<<"# Cx-2x3: "<<setw(6)<<Angle(dphi23).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[3]).ToDegree()<<endl;
  ofr<<"# Cx-2x4: "<<setw(6)<<Angle(dphi24).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[4]).ToDegree()<<endl;
  ofr<<"# Cx-3x4: "<<setw(6)<<Angle(dphi34).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[5]).ToDegree()<<endl;
961 962
  fit_cx_done=true;
  acxd_.v_cxbeams=v_cxbeams;
963 964
  acxd_.v_RcFit_cx=v_RcFit_cx;
  acxd_.v_xi2red_cx=v_xi2red_cx;
965
  acxd_.v_phase=v_phase;
966 967
  acxd_.v_phi_0=v_phi_0;
  acxd_.v_a_phi=v_a_phi;
968 969
  acxd_.v_err_phi_0=v_err_phi_0;
  acxd_.v_err_a_phi=v_err_a_phi;
970 971
  acxd_.v_Acx=v_Acx;
  acxd_.v_Bcx=v_Bcx;
972 973
  return 0;
} 
974

975

976 977 978
int ACxSetFitter::saveExpectedCx(string outcheckfilename)
{
  cout << "ACxSetFitter::saveExpectedCx() saving expected cross-cor (and visi-data) to file "<<outcheckfilename<<endl;
979 980 981 982 983 984 985 986 987 988 989 990 991
  size_t ll = outcheckfilename.length();
  size_t pp = outcheckfilename.rfind('.');
  FitsInOutFile *fox=NULL;
  POutPersist *pox=NULL;
  vector <string> data_names;
  
  if ((pp<ll)&&(outcheckfilename.substr(pp)==".fits"))  {
    cout << "----- ACxSetFitter::saveExpectedCx : Saving  to FITS file "<<outcheckfilename<<endl;
    fox=new FitsInOutFile (outcheckfilename,FitsInOutFile::Fits_Create);
  } else {
    pox = new POutPersist (outcheckfilename);
  }

992 993 994 995 996 997 998
  size_t NB_CXCORS=acxd_.getNbCrossCor();
  size_t NTRK = acxd_.NbTrk();

  char oname[32];

  for(size_t ii=0; ii<NB_CXCORS; ii++) {
    CxBeam cxbeam=v_cxbeams[ii];
999
    MyCxSignal cxsig( acxd_.v_time_data, acxd_.vv_cxdata, acxd_.vv_cxerr, acxd_.v_freqs, acxd_.v_noCx, 
1000 1001
		      tks_.v_interp_elev, tks_.v_interp_sazim, cxbeam, ii);
    for(size_t j=0; j<NTRK; j++) {
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

      if (ii==0)  {
	Vector tmvec = cxsig.getTimeVec(j);
	sprintf(oname,"tim_%d",(int)j+1);
	if (pox!=NULL)
	  *pox << PPFNameTag(oname)<<tmvec;
	if (fox!=NULL){
	  data_names.push_back(oname);
	  tmvec.Info()["NOM_OBJET"]=oname;
	  *fox << tmvec;
	}
      }

      TVector < complex<double> >  signal = cxsig.getDataSignal(j);
1016
      sprintf(oname,"cx_%d_%d",(int)ii+1,(int)j+1);
1017 1018 1019 1020 1021 1022 1023 1024