trkfit.cc 42.8 KB
Newer Older
1 2 3 4 5 6
/*  PAON4 analysis software 
    classes and functions to read in and perform array geometry determination 
    using satellites and celestial sources tracks  
    R. Ansari, Fevrier 2019                                             */


7 8
#include <iomanip>

9 10 11
#include "pexceptions.h"
#include "trkfit.h"
#include "datacards.h"
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#include "array.h"

#include "acbeam.h"
#include "gacfit.h"
#include "gcxfit.h"
#include "gcxfitbaseline.h"

#include "p4autils.h"


//------------------- Print Level for this file --------------------------
static int _prtlevel_ =0;
void TrkFit_SetPrintLevel(int lev) 
{ 
  _prtlevel_=lev; 
  return;
}
29 30 31

//------------------- TrkInputDataSet -------------------------------------

32 33

TrkInputDataSet::TrkInputDataSet(string dcfilename, string inp_path)
34 35
  : zenang(0.) , theta_0(0.) , phi_0(0.)
{
36
  setInputBasePath(inp_path);
37 38 39 40 41 42 43 44 45
  ReadDatacardFile(dcfilename);
}


static vector<string> * dataflnm_p_ = NULL;
static vector<double> * tstart_p_ = NULL;
static vector<double> * tend_p_ = NULL;
static vector<double> * v_freqs_p_ = NULL;
static vector<string> * trkflnm_p_ = NULL;
46 47
static vector<bool> * v_noAC_p_ = NULL;
static vector<bool> * v_noCx_p_ = NULL;
48 49 50 51 52 53 54 55 56 57 58 59 60
static size_t trk_cnt = 0;

static int decode_trkcard(string const& key, string const& toks)
{
  if (key != "trk") {  // CA NE DEVRAIT PAS ARRIVER 
    cout << "decode_trkcard/ERROR  BAD key = " << key << " ( <> trk"<<endl;
    return 1;
  }
  if (! dataflnm_p_ ) { // CA NE DEVRAIT PAS ARRIVER
    cout << "decode_trkcard/ERROR  dataflnm_p_ = NULL !"<<endl;
    return 1;
  }
  char flnmdata[256], flnmtrk[256];
61
  char sflags[64];
62
  double ts,te,freq;
63
  sscanf(toks.c_str(),"%s %lg,%lg %lg %s %s",flnmdata,&ts,&te,&freq,flnmtrk,sflags);
64 65 66 67 68 69

  dataflnm_p_->push_back(flnmdata);
  tstart_p_->push_back(ts*60.);
  tend_p_->push_back(te*60.);
  v_freqs_p_->push_back(freq);
  trkflnm_p_->push_back(flnmtrk);
70 71 72 73 74 75 76 77 78 79 80
  size_t ll=strlen(sflags);
  bool noAC=false;
  bool noCx=false;
  if (ll>0) {
    for(size_t l=0; l<ll; l++)  sflags[l]=toupper(sflags[l]);
    string sflg=sflags;
    if ((sflg == "NOAC")||(sflg=="NOACCX"))  noAC=true;
    if ((sflg == "NOCX")||(sflg=="NOACCX"))  noCx=true;
  }
  v_noAC_p_->push_back(noAC);
  v_noCx_p_->push_back(noCx);
81 82 83 84 85
  trk_cnt++;
  return 0;
}


86 87 88 89 90 91
void TrkInputDataSet::setInputBasePath(string inp_path)
{
  if (inp_path.length()>0)  input_base_path=inp_path;
  return;
}

92 93 94
size_t TrkInputDataSet::ReadDatacardFile(string dcfilename)
{
  DataCards dc;
95
  string match="trk";
96 97 98 99 100 101 102 103 104 105 106 107 108
  dc.AddProcF(decode_trkcard, match);

  zenang=0.; theta_0=0.;  phi_0=0.;
  dataflnm.clear();
  tstart.clear();
  tend.clear();
  v_freqs.clear();
  trkflnm.clear();
  dataflnm_p_ = &dataflnm;
  tstart_p_ = &tstart;
  tend_p_ = &tend;
  v_freqs_p_ = &v_freqs;
  trkflnm_p_ = &trkflnm;
109 110
  v_noAC_p_=&v_noAC;
  v_noCx_p_=&v_noCx;
111
  trk_cnt = 0;
112
  // @trk visiDataTableFile tstart,tend freq TrackFileName [FLAG]
113
  //  tstart , tend in minutes freq in MHz
114 115 116
  //  optional FLAG   = NOAC  NOCX   NOACCX   
  //  NOAC : don't use for Auto-correlation fit ;  NOCX : don't use for cross-cor fits 
  //  NOACCX : don't use for Auto-correlation or cross-cor fits 
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
  dc.ReadFile(dcfilename);
  if (dc.HasKey("inpath"))   {   // @inpath  InputFilesDirectoryPath    
    input_base_path = dc.SParam("inpath",0,"");
  }
  if (dc.HasKey("zenang"))   {   // @zenang  Zenith Angle in degree   
    zenang = dc.DParam("zenang",0,0.);
    if (zenang<0.) {
      theta_0 = Angle(-zenang, Angle::Degree).ToRadian();  phi_0 = Angle::PioTwoCst()+Angle::OnePiCst();
    }
    else {
      theta_0 = Angle(+zenang, Angle::Degree).ToRadian();  phi_0 = Angle::PioTwoCst();
    }
  }

  dataflnm_p_ = NULL;
  tstart_p_ = NULL;
  tend_p_ = NULL;
  v_freqs_p_ = NULL;
  trkflnm_p_ = NULL;

  if (trk_cnt != trkflnm.size()) {  // ca ne devrait pas arriver
    cout << " TrkInputDataSet::ReadDatacardFile()/BUG  trk_cnt != trkflnm.size()"<<endl;
    throw PError("TrkInputDataSet::ReadDatacardFile() trk_cnt != trkflnm.size()");
  }
  trk_cnt=0;
  dcfilename_ = dcfilename;
  return trkflnm.size();
}

ostream & TrkInputDataSet::Print(ostream & os) const
{
  os << "TrkInputDataSet(dcfilename="<<dcfilename_<<")/Info:  dec-shift(zenithAngle)= "<<zenang<<" NbTrk="<<NbTrk()<<endl;
  os << "...InputBaseDirectoryPath="<<input_base_path<<endl;
  for(size_t i=0; i<NbTrk(); i++)  {
    os <<"["<<i<<"] data= "<< dataflnm[i]<<"  ts,te(min)= "<<tstart[i]/60.<<","<<tend[i]/60.<<" freg(MHz)= "<<v_freqs[i]
       <<" TrkFile="<<trkflnm[i]<<endl;
  }
  return os;
}


158 159 160 161 162 163 164 165 166 167 168 169

//------------------------ ACxDataSet -------------------------------------

AcxDataSet::AcxDataSet(TrkInputDataSet & tkds)
  : tot_npoints(0),zenang(0.),theta_0(0.),phi_0(0.)
{
  ReadData(tkds);
}

AcxDataSet::AcxDataSet(AcxDataSet const & a)
  : v_time_data(a.v_time_data), vv_data(a.vv_data), vv_err(a.vv_err), 
    v_min_data(a.v_min_data), v_max_data(a.v_max_data),
170 171
    vv_cxdata(a.vv_cxdata), vv_cxerr(a.vv_cxerr),
    v_min_cxdata(a.v_min_cxdata), v_max_cxdata(a.v_max_cxdata), 
172
    tot_npoints(a.tot_npoints), v_freqs(a.v_freqs), v_noAC(a.v_noAC), v_noCx(a.v_noCx), 
173 174
    zenang(a.zenang), theta_0(a.theta_0), phi_0(a.phi_0),
    v_acbeams(a.v_acbeams), v_cxbeams(a.v_cxbeams),
175
    v_phase(a.v_phase), v_phi_0(a.v_phi_0), v_a_phi(a.v_a_phi), v_Acx(a.v_Acx), v_Bcx(a.v_Bcx)
176 177 178 179 180 181 182
{
}

AcxDataSet & AcxDataSet::operator = (AcxDataSet const & a)
{
  v_time_data=a.v_time_data; vv_data=a.vv_data; vv_err=a.vv_err; 
  v_min_data=a.v_min_data;   v_max_data=a.v_max_data;
183 184
  vv_cxdata=a.vv_cxdata;   vv_cxerr=a.vv_cxerr;
  v_min_cxdata=a.v_min_cxdata;  v_max_cxdata=a.v_max_cxdata; 
185
  tot_npoints=a.tot_npoints; v_freqs=a.v_freqs;   v_noAC=a.v_noAC;  v_noCx=a.v_noCx;
186 187
  zenang=a.zenang;  theta_0=a.theta_0;  phi_0=a.phi_0;
  v_acbeams=a.v_acbeams;  v_cxbeams=a.v_cxbeams;
188
  v_phase=a.v_phase; v_phi_0=a.v_phi_0;  v_a_phi=a.v_a_phi;  v_Acx=a.v_Acx;  v_Bcx=a.v_Bcx;
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  return (*this);
}

size_t AcxDataSet::ReadData(TrkInputDataSet & tkds)    
{
  cout << "---- AcxDataSet::AcxDataSet() reading 4 PAON4 auto-correlation & 6 Cross-cor signals/DataTables for"
       <<tkds.NbTrk()<<" tracks ..."<<endl;

  if (tkds.NbTrk() != v_time_data.size()) {
    v_time_data.resize(tkds.NbTrk());
    vv_data.resize(tkds.NbTrk());
    vv_err.resize(tkds.NbTrk());
    v_min_data.resize(tkds.NbTrk());
    v_max_data.resize(tkds.NbTrk());
    vv_cxdata.resize(tkds.NbTrk());
    vv_cxerr.resize(tkds.NbTrk());
    v_min_cxdata.resize(tkds.NbTrk());
    v_max_cxdata.resize(tkds.NbTrk());    
  }
209
  v_freqs=tkds.v_freqs;  v_noAC=tkds.v_noAC;  v_noCx=tkds.v_noCx;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  zenang=tkds.zenang;   theta_0=tkds.theta_0;    phi_0=tkds.phi_0;
  size_t NB_ANTENNES=getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=getNbCrossCor();
  tot_npoints = 0;   // total number of points for fit 
  const char * acname[4]={"V11","V22","V33","V44"};
  const char * cxname[6]={"V12","V13","V14","V23","V24","V34"};
  
  for(size_t j=0; j<tkds.dataflnm.size(); j++) {
    string flnm = tkds.input_base_path+tkds.dataflnm[j]+".ppf";
    cout << "1."<<j+1<<" Extracting data from data file DataTable: " << flnm<<endl
	 << " ... For time interval (Trk"<<j+1<<") "<<tkds.tstart[j]<<" < t < "<<tkds.tend[j]<<endl;
    DataTable dt_data;
    PInPersist pin(flnm);
    pin >> dt_data;
    dt_data.SetShowMinMaxFlag(true);
    size_t ktime = dt_data.IndexNom("timesec");
    vector<double> vtm;
    dt_data.GetColumn(ktime, vtm);
    vector< vector<double> > v_vac(NB_ANTENNES);
    for(size_t ii=0; ii<NB_ANTENNES; ii++) {   // 4 auto-correlations
      size_t kac = dt_data.IndexNom(acname[ii]);
      dt_data.GetColumn(kac, v_vac[ii]);
      vector<double> vtmp, vetmp;
      vv_data[j].push_back(vtmp);
      vv_err[j].push_back(vetmp);
      v_min_data[j].push_back(9.e19);
      v_max_data[j].push_back(-9.e19);
    }
    vector< vector <complex<double> > > v_vcx(NB_CXCORS);
    for(size_t ii=0; ii<NB_CXCORS; ii++) {   // 6 cross-correlations
      size_t kac = dt_data.IndexNom(cxname[ii]);
      dt_data.GetColumn(kac, v_vcx[ii]);
      vector< complex<double> > vtmp;
      vector<double> vetmp;
      vv_cxdata[j].push_back(vtmp);
      vv_cxerr[j].push_back(vetmp);
      v_min_cxdata[j].push_back(9.e19);
      v_max_cxdata[j].push_back(-9.e19);
    }
    
    vector< vector<double> > & v_data = vv_data[j];
    vector< vector<double> > & v_err = vv_err[j];
    vector< vector< complex<double> > > & v_cxdata = vv_cxdata[j];
    vector< vector<double> > & v_cxerr = vv_cxerr[j];

    for(size_t k=0; k<vtm.size(); k++) {
      if ((vtm[k]<tkds.tstart[j])||(vtm[k]>tkds.tend[j]))  continue;
      v_time_data[j].push_back(vtm[k]);
      for(size_t ii=0; ii<NB_ANTENNES; ii++) {
	vector<double> & vac = v_vac[ii];
	v_data[ii].push_back(vac[k]);
	v_err[ii].push_back(0.1*sqrt(fabs(vac[k])));   // calcul d'erreur, a affiner 
	if (vac[k]<v_min_data[j][ii])  v_min_data[j][ii]=vac[k];
	if (vac[k]>v_max_data[j][ii])  v_max_data[j][ii]=vac[k];
      }
      for(size_t ii=0; ii<NB_CXCORS; ii++) {   // 6 cross-correlations
	vector< complex<double> > & vcx = v_vcx[ii];
	v_cxdata[ii].push_back(vcx[k]);
	double acx=std::abs(vcx[k]);
	v_cxerr[ii].push_back(0.1*sqrt(acx));
	if (acx<v_min_cxdata[j][ii])  v_min_cxdata[j][ii]=acx;
	if (acx>v_max_cxdata[j][ii])  v_max_cxdata[j][ii]=acx;
      }
    }
    
    tot_npoints += v_time_data[j].size();   // total number of points for fit 
    cout << " ... Done for " << j+1 << " data size="<<v_time_data[j].size()<<endl;
    cout << "  Data-AutoCor Min,Max[A1...A4]="; 
    for(size_t ii=0; ii<NB_ANTENNES; ii++)
      cout<<setw(10)<<v_min_data[j][ii]<<","<<setw(10)<<v_max_data[j][ii]<<" ; ";   cout << endl;
    cout << "  Data-CxCorr (abs) Min,Max[Cx1...Cx6]="; 
    for(size_t ii=0; ii<NB_ANTENNES; ii++)
      cout<<setw(10)<<v_min_cxdata[j][ii]<<","<<setw(10)<<v_max_cxdata[j][ii]<<" ; ";   cout << endl;

  }
  return tot_npoints;
}


//------------------------ TrackSet -------------------------------------
TrackSet::TrackSet(TrackSet const & a)
  : v_time_sat(a.v_time_sat), v_sat_elev(a.v_sat_elev), v_sat_azim(a.v_sat_azim),
    v_interp_elev(a.v_interp_elev), v_interp_sazim(a.v_interp_sazim)							   
{
}

TrackSet & TrackSet::operator = (TrackSet const & a)
{
  v_time_sat=a.v_time_sat;  v_sat_elev=a.v_sat_elev;  v_sat_azim=a.v_sat_azim;
  v_interp_elev=a.v_interp_elev;  v_interp_sazim=a.v_interp_sazim; 
  return *this;
}

TrackSet::TrackSet(TrkInputDataSet & tkds)
{
  ReadData(tkds);
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
size_t TrackSet::ReadTrackFile(string flnm, vector<double> & tims, vector<double> & elevs, vector<double> & azims, SLinInterp1D & li_elev, SLinInterp1D & li_sazim)
{
  cout <<"TrackSet::ReadTrackFile() Extracting data from source/satellite track DataTables: Filename= " << flnm << endl;
  DataTable dt_sat;
  PInPersist pin(flnm);
  pin >> dt_sat;
  dt_sat.SetShowMinMaxFlag(true);
  size_t ktime = dt_sat.IndexNom("timesec");
  dt_sat.GetColumn(ktime, tims);
  size_t kelev = dt_sat.IndexNom("elevation");
  dt_sat.GetColumn(kelev, elevs);
  size_t kazim = dt_sat.IndexNom("azimuth");
  dt_sat.GetColumn(kazim, azims);
  li_elev.DefinePoints(tims, elevs);
  double last_azim=azims[0];
  //    vector<double> cazim(v_sat_azim[j].size());
  // azimuth values, shifted possibly +360 +720 deg ... to avoid jumping from 360 deg to 0 deg  
  vector<double> shifted_azim(azims.size());   
  double azim_offset=0.;
  double min_azim_offset=0.;
  bool fgneg_azim_offset=false;
  for(size_t k=0; k<azims.size(); k++)  {
    double azim=azims[k];
    if ((k>0)&&(azim<last_azim)) {
      if ((last_azim>300.)&&(azim<60.))  {
	azim_offset += 360.;
	if (_prtlevel_>0) 
	  cout << "TrackSet::ReadTrackFile()/Info-Warning: 360 to 0 deg. Jump k="<<k<<" last_azim="<<last_azim<<" azimuth= "<<azim<<" Offset->"<<azim_offset<<endl;
      }
    }
    else if ((k>0)&&(azim>last_azim)) {
      if ((last_azim<60)&&(azim>300.))  {
	azim_offset -= 360.;
	if (_prtlevel_>0) 
	  cout << "TrackSet::ReadTrackFile()/Info-Warning: 0 to 360 deg. Jump: k="<<k<<" last_azim="<<last_azim<<" azimuth= "<<azim<<" Offset->"<<azim_offset<<endl;
      }
    }
    if (azim_offset<min_azim_offset)  min_azim_offset=azim_offset;
    last_azim = azim;
    shifted_azim[k]=azim+azim_offset;
    /*
      double phisrcdeg=90.-v_sat_azim[j][k];
      if (phisrcdeg<0.)  phisrcdeg+=360.;
      double phisrc=Angle(phisrcdeg,Angle::Degree).ToRadian();
      cazim[k]=cos(phisrc);
    */
  }
  if (min_azim_offset < -300.) {
    cout << "TrackSet::ReadTrackFile()/Info-Warning: - correcting for negative azim_offset -> Adding " << -min_azim_offset <<" deg."<<endl;
    for(size_t k=0; k<shifted_azim.size(); k++)   shifted_azim[k] -= min_azim_offset;
  }
  li_sazim.DefinePoints(tims, shifted_azim);
  return tims.size();
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376
size_t TrackSet::ReadData(TrkInputDataSet & tkds)
{
  cout << "---- TrackSet::ReadData() ; reading source (satellites, ..) for "
       <<tkds.NbTrk()<<" tracks ..."<<endl;
  if (tkds.NbTrk() != v_time_sat.size()) {
    v_time_sat.resize(tkds.NbTrk());
    v_sat_elev.resize(tkds.NbTrk());
    v_sat_azim.resize(tkds.NbTrk());
    v_interp_elev.resize(tkds.NbTrk());
    v_interp_sazim.resize(tkds.NbTrk());
  }

  for(size_t j=0; j<tkds.NbTrk(); j++) {
    string flnm = tkds.input_base_path+tkds.trkflnm[j]+".ppf";
377 378 379 380 381
    size_t npts=ReadTrackFile(flnm, v_time_sat[j], v_sat_elev[j], v_sat_azim[j], v_interp_elev[j], v_interp_sazim[j]);
    cout<<"["<<j+1<<"]  DONE timevec.size()="<<npts<<"  SLinInterp1D for elevation / azimuth created ..."<<endl;
    if (_prtlevel_>0) {
      cout << v_interp_elev[j];
      cout << v_interp_sazim[j];
382
    }
383 384 385 386 387
  }
  return 0;
}


388
//------------------------ ACxSetFitter -------------------------------------
389
ACxSetFitter::ACxSetFitter(AcxDataSet & data, TrackSet & tks)
390
  : fggaussbeam_(true), D_dish(5.), acxd_(data), tks_(tks), fit_ac_done(false), fit_cx_done(false), 
391 392 393 394 395
    v_RcFit_ac(tks.getNbAutoCor()), v_xi2red_ac(tks.getNbAutoCor()),
    v_Ddish(tks.getNbAutoCor()), v_thetaant(tks.getNbAutoCor()), 
    v_phiant(tks.getNbAutoCor()), v_A(tks.getNbAutoCor()), v_B(tks.getNbAutoCor()), 
    v_err_Ddish(tks.getNbAutoCor()), v_err_thetaant(tks.getNbAutoCor()), 
    v_err_phiant(tks.getNbAutoCor()), v_err_A(tks.getNbAutoCor()), v_err_B(tks.getNbAutoCor()), 
396
    v_acbeams(tks.getNbAutoCor()),
397
    v_RcFit_cx(tks.getNbCrossCor()), v_xi2red_cx(tks.getNbCrossCor()),
398 399 400 401
    v_phase(tks.getNbCrossCor()), v_phi_0(tks.getNbCrossCor()), v_a_phi(tks.getNbCrossCor()), 
    v_Acx(tks.getNbCrossCor()), v_Bcx(tks.getNbCrossCor()), 
    v_err_phi_0(tks.getNbCrossCor()), v_err_a_phi(tks.getNbCrossCor()), 
    v_err_Acx(tks.getNbCrossCor()), v_err_Bcx(tks.getNbCrossCor()),
402
    v_cxbeams(tks.getNbCrossCor())
403
{
404 405 406 407
  if (data.NbTrk() != tks.NbTrk())
    throw ParmError("ACxSetFitter(data, tks) NOT same number of tracks NbTrk() in data and tks");
  if (data.NbTrk() < 1)
    throw ParmError("ACxSetFitter(data, tks) 0 tracks in data data.NbTrk()<1 ");
408 409 410 411 412 413 414 415
}

int ACxSetFitter::doACfit(string outfilename)
{
  cout << "======================================================================================"<<endl;
  cout << "---- ACxSetFitter::doACfit() ; Performing antenna pointing fit ..."<<endl;
  ofstream ofr(outfilename.c_str());
  ofr << "#### Pointing/dish diameter fit on autocorrelation (ACxSetFitter::doACfit() "<<endl
416
      << "## NumAntenna RcFit Xi2red  Deff err_Deff  Elevation err_Elev  Azimuth err_Ezim  A0 err_A0 B0 err_B0 A1 err_A1 B1 err_B1 ..."<<endl;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  size_t NB_ANTENNES = acxd_.getNbAutoCor();
  size_t NTRK = acxd_.NbTrk();

  for(size_t ii=0; ii<NB_ANTENNES; ii++)  { 
    v_A[ii].resize(NTRK);     v_B[ii].resize(NTRK); 
    v_err_A[ii].resize(NTRK);     v_err_B[ii].resize(NTRK); 
  }
  int tot_npoints_fit = 0;
  for(size_t j=0; j<NTRK; j++) tot_npoints_fit += acxd_.v_time_data[j].size();
  for(size_t ii=0; ii<NB_ANTENNES; ii++) {
    cout << "-------- doACfit() 1."<<ii+1<<" Creating General Fit for AutoCor Antenna= " << ii+1 << endl;
    GeneralFitData gdata(1, tot_npoints_fit);
    for(size_t j=0; j<NTRK; j++) {
      vector< vector<double> > & v_data = acxd_.vv_data[j];
      vector< vector<double> > & v_err = acxd_.vv_err[j];
      for(size_t k=0; k<acxd_.v_time_data[j].size(); k++) {
	gdata.AddData1(acxd_.v_time_data[j][k],v_data[ii][k],v_err[ii][k]); // Fill x, y and error on y     
      }
    }
436
    MyACGenXi2 gxi2( acxd_.v_time_data, acxd_.vv_data, acxd_.vv_err, acxd_.v_freqs, acxd_.v_noAC, 
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
		     tks_.v_interp_elev, tks_.v_interp_sazim, ii, fggaussbeam_);
    GeneralFit mFit(&gxi2);
    mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
    mFit.SetMaxStep(1000);
    // SetParam(int n,double value, double step,double min=1., double max=-1.);
    mFit.SetParam(0,"D_dish",D_dish,0.1,D_dish*0.8,D_dish*1.2);
    // mFit.SetFix(0, D_dish);
    
    double thetaAntenne=0., phiAntenne=0.;
    if (fabs(acxd_.zenang)>1.e-6) {
      if (acxd_.zenang<0)  {
	thetaAntenne=Angle(-acxd_.zenang,Angle::Degree).ToRadian();
	phiAntenne=Angle(270.,Angle::Degree).ToRadian();
      }
      else {
	thetaAntenne=Angle(acxd_.zenang,Angle::Degree).ToRadian();
	phiAntenne=Angle(90.,Angle::Degree).ToRadian();
      }
    }
    mFit.SetParam(1,"ThetaAntenne",thetaAntenne,M_PI/1440,0.,thetaAntenne+M_PI/36.);
    mFit.SetParam(2,"PhiAntenne",phiAntenne,M_PI/180.,0.,2.*M_PI);
    // mFit.SetFix(1, thetaAntenne);
    // mFit.SetFix(2, phiAntenne);
    
    for(size_t j=0; j<NTRK; j++) {
      char pname[32];
      sprintf(pname,"A%d",(int)(j+1));
      double A = acxd_.v_max_data[j][ii];
      mFit.SetParam(2*j+3,pname,A,A/10.,A/20,A*5);
      sprintf(pname,"B%d",(int)(j+1));
      double B = acxd_.v_min_data[j][ii];
      mFit.SetParam(2*j+4,pname,B,B/10.,B/20,B*5);
      mFit.SetFix(2*j+4, B);
      
    }
    //DBG mFit.PrintFit();
    //    cout << "do_p4_trkfit 2."<<ii+1<<" Performing the fit for AutoCor Antenna= " << ii+1 << endl;
    int rcfit = mFit.Fit();
    if (_prtlevel_>1) mFit.PrintFit();
    v_RcFit_ac[ii]=rcfit;  v_xi2red_ac[ii]=-9999.;
    if(rcfit>0) { 
      cout<< "------- Fit result for Antenna No="<<ii+1<<" Reduce_Chisquare = " << mFit.GetChi2Red()
	  << " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
    }
    else {
      cout << "---Fit failed for "<<ii+1<<"--- Fit_Error, rc = " << rcfit << "  nstep="<<mFit.GetNStep()<<endl;
      ofr <<setw(4)<<ii+1<<" ERROR FIT RC="<<rcfit<<"  nstep="<<mFit.GetNStep()<<endl;
      if (_prtlevel_>0) mFit.PrintFitErr(rcfit);
    } 
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

    ofr <<setw(4)<<ii+1<<" "<<setw(8)<<mFit.GetChi2Red()<<" "; 
    v_xi2red_ac[ii]=mFit.GetChi2Red();
    double Dfit=mFit.GetParm(0);   double err_Dfit=mFit.GetParmErr(0);
    cout <<setw(16)<<"DishDiameter= "<<setw(10)<<Dfit<<" +/- "<<setw(10)<<err_Dfit<<" m."<<endl;
    ofr <<setw(5)<<rcfit<<" "<<setw(8)<<Dfit<<" "<<setw(8)<<err_Dfit<<"  "; 
    v_Ddish[ii]=Dfit;
    v_err_Ddish[ii]=err_Dfit;
    double thetaant=mFit.GetParm(1);   double err_thetaant=mFit.GetParmErr(1);
    v_thetaant[ii]=thetaant;
    double elevdeg=90.-Angle(thetaant).ToDegree();
    double err_elevdeg=Angle(err_thetaant).ToDegree();
    cout <<setw(16)<<"ThetaAntenne= "<<setw(12)<<Angle(thetaant).ToDegree()<< " +/- "
	 <<setw(12)<<Angle(err_thetaant).ToDegree()<<" (elevation="
	 <<setw(8)<<elevdeg<<" +/- "<<setw(8)<<err_elevdeg<<") deg."<<endl;
    ofr <<setw(8)<<elevdeg<<" "<<setw(8)<<err_elevdeg<<"  "; 
    double phiant=mFit.GetParm(2);   double err_phiant=mFit.GetParmErr(2);
    double azimdeg=90.-Angle(phiant).ToDegree();
    if (azimdeg<0.)  azimdeg += 360.;
    double err_azimdeg=Angle(err_phiant).ToDegree();
    v_phiant[ii]=phiant;
    cout <<setw(16)<<"PhiAntenne= "<<setw(12)<<Angle(phiant).ToDegree()<< " +/- "
	 <<setw(12)<<Angle(err_phiant).ToDegree()<<" (azimuth  ="
	 <<setw(8)<<azimdeg<<" +/- "<<setw(8)<<err_azimdeg<<" ) deg."<<endl;
    ofr <<setw(8)<<azimdeg<<" "<<setw(8)<<err_azimdeg<<"  "; 
    for(size_t j=0; j<NTRK; j++) {
      double A=mFit.GetParm(3+2*j);   double err_A=mFit.GetParmErr(3+2*j);
      double B=mFit.GetParm(4+2*j);   double err_B=mFit.GetParmErr(4+2*j);
      cout << "  Trk/Sat["<<j<<"] -> A= "<<A<<" +/- "<<err_A<<"  B= "<<B<<" +/- "<<err_B<<endl;
      v_A[ii][j]=A;  v_B[ii][j]=B;
      v_err_A[ii][j]=err_A;  v_err_B[ii][j]=err_B;
      ofr <<setw(8)<<A<<" "<<setw(8)<<err_A<<" "<<setw(8)<<B<<" "<<setw(8)<<err_B<<" ";
    }
    ofr << endl;
    double clight = PhysQty::c().SIValue();
    double lambda = clight/(acxd_.v_freqs[0]*1.e6);
    ACBeam acb1(Dfit, thetaant, phiant, lambda);
    acb1.setGaussianLobe(fggaussbeam_);
    ACBeam acb2(Dfit, thetaant, phiant, lambda);
    acb2.setGaussianLobe(fggaussbeam_);
    Vector3d baseline0(0.,0.,0.);
    v_acbeams[ii]=CxBeam(acb1, acb2, baseline0);
    
529 530
  }
  
531 532
  fit_ac_done=true;
  acxd_.v_acbeams=v_acbeams;
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
  return 0;
}

int ACxSetFitter::saveExpectedAC(string outcheckfilename)
{
  if (outcheckfilename.length()<1)  return 1;
  cout << "-----ACxSetFitter::saveExpectedAC() : computing expected signal for fitted params , will be saved to file "
       <<outcheckfilename<<endl;
  POutPersist pos(outcheckfilename);
  size_t NB_ANTENNES = acxd_.getNbAutoCor();
  size_t NTRK = acxd_.NbTrk();

  for(size_t ii=0; ii<NB_ANTENNES; ii++)     {
    if (_prtlevel_>1) 
      cout << "... Computing DataSignal & Expected Signal for fitted params and dish "<<ii+1<<endl;
    
549
    MyACSignal macs(acxd_.v_time_data, acxd_.vv_data, acxd_.vv_err, acxd_.v_freqs, acxd_.v_noAC, 
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		    tks_.v_interp_elev, tks_.v_interp_sazim, ii, fggaussbeam_);
      
    double Ddishfit=v_Ddish[ii];
    double thetafit=v_thetaant[ii];
    double phifit=v_phiant[ii];
    
    char oname[32];
    for(size_t j=0; j<NTRK; j++)  {
      double A = v_A[ii][j];
      double B = v_B[ii][j];
      Vector signal = macs.getDataSignal(j);
      sprintf(oname,"ac_%d_%d",(int)ii+1,(int)j+1);
      pos << PPFNameTag(oname)<<signal;
      Vector expsignal = macs.getExpectedSignal(j, Ddishfit, thetafit, phifit, A, B);
      sprintf(oname,"simac_%d_%d",(int)ii+1,(int)j+1);      
      pos << PPFNameTag(oname)<<expsignal;
566 567 568 569 570
      if (ii==0)  {
	Vector tmvec = macs.getTimeVec(j);
	sprintf(oname,"tim_%d",(int)j+1);
	pos << PPFNameTag(oname)<<tmvec;
      }
571 572 573 574 575 576
    }
  } 
  return 0;
}


577
int ACxSetFitter::doCxfit(string outfilenamecx, bool useAac, bool fgphi0only)
578 579 580 581 582 583
{
  size_t NB_ANTENNES=acxd_.getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=acxd_.getNbCrossCor();
  size_t NTRK = acxd_.NbTrk();

  cout << "======================================================================================"<<endl;
584
  cout << "---------- ACxSetFitter::doCxfit() ; Performing cross-cor phase fit for NTrk="<<NTRK<<endl;
585 586 587
  if (useAac) cout << " ... Using Amplitude from auto-correlations fit for initial fit parameter value..."<<endl; 
  ofstream ofr(outfilenamecx.c_str());
  ofr << "#### cross-cor phase fit (ACxSetFitter::doCxfit() ) "<<endl
588
      << "## NumCxCor RcFit Xi2red Phi0 err_Phi0 a_Phi err_a_Phi (deg) A0 err_A0 A1 err_A1  ..."<<endl;
589 590
  int tot_npoints_fit = 0;
  for(size_t j=0; j<NTRK; j++) tot_npoints_fit += 2*(acxd_.v_time_data[j].size());
591 592
  cout << " Total number of data points for fit="<< tot_npoints_fit<<endl;

593 594 595 596
  size_t Anum1[6]={0,0,0,1,1,2};
  size_t Anum2[6]={1,2,3,2,3,3};
  for(size_t ii=0; ii<NB_CXCORS; ii++) {
    v_Acx[ii].resize(NTRK);   
597 598 599
    v_Bcx[ii].resize(NTRK);  
    v_err_Acx[ii].resize(NTRK);   
    v_err_Bcx[ii].resize(NTRK);  
600 601
    for(size_t j=0; j<NTRK; j++) {
      v_Acx[ii][j]=1.;   v_Bcx[ii][j]=complex<double>(0.,0.);
602
      v_err_Acx[ii][j]=1.;   v_err_Bcx[ii][j]=complex<double>(0.,0.);
603
    }
604 605 606 607 608 609 610 611 612 613 614
    Vector3d baseline=P4Coords::getBaseline(Anum1[ii]+1,Anum2[ii]+1);
    cout << "--------- 1."<<ii+1<<" doCxfit() Doing fit for CrossCor= " << ii << " FxF= " 
	 << Anum1[ii]+1<<"x"<<Anum2[ii]+1<<" Baseline="<<baseline<<endl;
    GeneralFitData gdata(1, tot_npoints_fit);
    for(size_t j=0; j<NTRK; j++) {
      vector< vector< complex<double> > > & v_cxdata = acxd_.vv_cxdata[j];
      vector< vector<double> > & v_cxerr = acxd_.vv_cxerr[j];
      for(size_t k=0; k<acxd_.v_time_data[j].size(); k++) {
	gdata.AddData1(acxd_.v_time_data[j][k],v_cxdata[ii][k].real(),v_cxerr[ii][k]); // Fill x, y and error on y
	gdata.AddData1(acxd_.v_time_data[j][k],v_cxdata[ii][k].imag(),v_cxerr[ii][k]); // Fill x, y and error on y     
      }
615
    }
616 617 618 619 620 621 622
    double clight = PhysQty::c().SIValue();
    double lambda = clight/(acxd_.v_freqs[0]*1.e6);
    ACBeam acb1(v_Ddish[Anum1[ii]], v_thetaant[Anum1[ii]], v_phiant[Anum1[ii]], lambda);
    acb1.setGaussianLobe(fggaussbeam_);
    ACBeam acb2(v_Ddish[Anum2[ii]], v_thetaant[Anum2[ii]], v_phiant[Anum2[ii]], lambda);
    acb2.setGaussianLobe(fggaussbeam_);
    CxBeam cxbeam(acb1, acb2, baseline);
623
    v_cxbeams[ii]=cxbeam;
624

625
    MyCxGenXi2 gxi2( acxd_.v_time_data, acxd_.vv_cxdata, acxd_.vv_cxerr, acxd_.v_freqs, 
626 627 628
		     tks_.v_interp_elev, tks_.v_interp_sazim, cxbeam, ii);
    GeneralFit mFit(&gxi2);
    mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
629
    mFit.SetMaxStep(3000);
630
    // SetParam(int n,double value, double step,double min=1., double max=-1.);
631 632 633 634 635 636 637
    mFit.SetParam(0,"Phi_0",0.,M_PI/360.,0.,2.2*M_PI);
    mFit.SetParam(1,"a_phi",0.,0.05,-15.,15.);
    if (fgphi0only) {
      cout << " ACxSetFitter::doCxfit() Fitting Phi0 Only (frequency independent phase)"<<endl;
      mFit.SetFix(1,0.);
    }
    else cout << " ACxSetFitter::doCxfit() Fitting  Phase(freq) = Phi0 + a_Phi * (freq-1250.)/250. "<<endl;
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

    char oname[32];
    vector<double> v_amp(NTRK);
    for(size_t j=0; j<NTRK; j++) {
      double A=1.; // v_max_cxdata[j][ii]; 
      TVector< complex<double> >  signal = gxi2.getDataSignal(j);
      Vector asig = SOPHYA::abs(signal);
      double mins, maxs;
      asig.MinMax(mins, maxs);
      TVector< complex<double> >  expsignal = gxi2.getExpectedSignal(j, 0., A);
      Vector aexpsig = SOPHYA::abs(expsignal);
      double mine, maxe;
      aexpsig.MinMax(mine, maxe);
      A=maxs/maxe;
      v_amp[j]=A; 
    }

655
    double fparm[500];  fparm[0]=0.;
656 657 658 659 660

    double bestxi2 = 9.e19;
    double bestphase=0.;
    int bestnpts,npts;
    int bestafact;
661
    double afact[12]={0.15,0.3,0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.4,2.8,3.2};
662 663 664
    for(int ia=0; ia<12; ia++) {
      for(size_t j=0; j<NTRK; j++) {
	double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
665 666
	fparm[2+3*j]=(useAac?Aac:v_amp[j]);
	fparm[2+3*j]*=afact[ia];   fparm[2+3*j]=fparm[3+3*j]=0.;
667 668 669
      }
      for(double ph=0.; ph<360.; ph += 1) {
	fparm[0]=Angle(ph, Angle::Degree).ToRadian();
670
	fparm[1]=0.;
671 672 673 674 675 676
	double xi2 = gxi2.getXi2(fparm, npts);
	if (xi2 < bestxi2) {
	  bestxi2 = xi2; bestphase=fparm[0]; bestnpts=npts;  bestafact=afact[ia];
	}
      }
    }
677
    mFit.SetParam(0,"Phi_0",bestphase,M_PI/720.,-0.5*M_PI,2.5*M_PI);
678 679
    cout << "2."<<ii+1<<" Scan param bestxi2_red="<<bestxi2/(double)(tot_npoints_fit-(1+NTRK))<<"  bestphase="
	 <<Angle(bestphase).ToDegree()<<" bestnpts="<<bestnpts<<" bestafact="<<bestafact<< " A= ";  
680
    v_phi_0[ii]=bestphase;
681 682
    for(size_t j=0; j<NTRK; j++)  {
      cout << v_amp[j] << " , ";  
683
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
684 685 686 687 688 689 690 691 692
      v_Acx[ii][j]=(useAac?Aac:v_amp[j]);
    }
    cout << endl;
    for(size_t j=0; j<NTRK; j++) {
      char pname[32];
      sprintf(pname,"A%d",(int)(j+1));
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
      double A=(useAac?Aac:v_amp[j]);
      //DBG      cout << "*DBG* j="<<j<<" Aac= "<<Aac<<" v_amp="<<v_amp[j]<<"  A= "<<A<<"  A1="<<v_A[Anum1[ii]][j]<<" A2="<<v_A[Anum2[ii]][j]<<endl;
693
      mFit.SetParam(2+3*j,pname,A,A/10.,A/4,A*4);
694 695
      sprintf(pname,"Bre%d",(int)(j+1));
      mFit.SetParam(3+3*j,pname,0.,A/25.,-A/5,A/5.);
696 697
      sprintf(pname,"Bim%d",(int)(j+1));
      mFit.SetParam(4+3*j,pname,0.,A/25.,-A/5,A/5.);
698
      mFit.SetFix(3+3*j,0.);
699
      mFit.SetFix(4+3*j,0.);
700 701 702 703 704 705 706 707 708 709
    }
    //DBG mFit.PrintFit();
    if (_prtlevel_>1)    
      cout << " 3."<<ii+1<<" Performing the fit for CrossCor " << ii << " FxF= " << Anum1[ii]+1<<"x"<<Anum2[ii]+1<<endl;
    int rcfit = mFit.Fit();
    v_RcFit_cx[ii]=rcfit;   v_xi2red_cx[ii]=-99999.;
    if (_prtlevel_>1) mFit.PrintFit();
    if(rcfit>0) { 
      v_xi2red_cx[ii]=mFit.GetChi2Red();
      //      cout<< "-------------------------- Result for Cross No " << ii << endl; 
710
      cout<< "------ Fit result for Cross No "<<ii+1<<" Reduce_Chisquare = " << mFit.GetChi2Red()
711 712 713 714 715 716 717
	  << " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
    }
    else {
      cout << "---Fit failed for "<<ii<<" Fit_Error, rc = " << rcfit << "  nstep="<<mFit.GetNStep()<<endl;
      ofr <<setw(4)<<ii+1<<" ERROR FIT RC="<<rcfit<<"  nstep="<<mFit.GetNStep()<<endl;
      if (_prtlevel_>0) mFit.PrintFitErr(rcfit);
    }
718 719

    ofr <<setw(4)<<ii+1<<" "<<setw(5)<<rcfit<<setw(8)<<mFit.GetChi2Red()<<" "; 
720 721 722 723 724 725 726 727 728 729 730 731
    double phi0=mFit.GetParm(0);   double err_phi0=mFit.GetParmErr(0);
    double aphi=mFit.GetParm(1);   double err_aphi=mFit.GetParmErr(1);
    // on calcule la phase ajustee pour la frequence de reference 1300 MHz 
    double phase=gxi2.getPhase4Freq(phi0,aphi,1300.);
    while (phase<0.) phase += 2.*M_PI;
    while (phase>2.*M_PI) phase -= 2.*M_PI;
    cout <<"Phase(@1300MHz)= "<<setw(10)<<Angle(phase).ToDegree()<<"  phi_0= "<<setw(10)
	 <<Angle(phi0).ToDegree()<<" +/- "<<setw(10)<<Angle(err_phi0).ToDegree()<<" deg."
	 <<" a_phi= "<<setw(8)<<Angle(aphi).ToDegree()<<" +/- "<<setw(10)
	 <<Angle(err_aphi).ToDegree()<<" deg/250 MHz"<<endl;
    ofr <<setw(8)<<Angle(phi0).ToDegree()<<" "<<setw(8)<<Angle(err_phi0).ToDegree()<<"  "
	<<setw(8)<<Angle(aphi).ToDegree()<<" "<<setw(8)<<Angle(err_aphi).ToDegree()<<"  ";
732
    v_phase[ii]=phase;
733 734 735 736
    v_phi_0[ii]=phi0;
    v_err_phi_0[ii]=err_phi0;
    v_a_phi[ii]=aphi;
    v_err_a_phi[ii]=err_aphi;
737 738 739
    for(size_t j=0; j<NTRK; j++) {
      double Aac=sqrt(v_A[Anum1[ii]][j] * v_A[Anum2[ii]][j]);
      double Ai=(useAac?Aac:v_amp[j]);
740
      double A=mFit.GetParm(2+3*j);   double err_A=mFit.GetParmErr(2+3*j);
741 742 743 744 745 746
      cout << "  Trk["<<j<<"]  A= "<<A<<" +/- "<<err_A<<"  (A/Ai="<<A/Ai<<")"<<endl;
      v_Acx[ii][j]=A;  
      v_Bcx[ii][j]=complex<double>(0.,0.);
      v_err_Acx[ii][j]=err_A; 
      ofr <<setw(8)<<A<<" "<<setw(8)<<err_A<<" "; 
    }
747
    ofr << endl; 
748
  }
749 750 751 752 753 754 755 756 757 758 759
  cout << " --- Fitted phases: ";
  for(size_t i=0; i<NB_CXCORS; i++) cout<<setw(6)<<Angle(v_phase[i]).ToDegree()<<" ; ";   cout<<endl;
  double dphi23=v_phase[1]-v_phase[0];   if (dphi23<0.) dphi23+=(2.*M_PI);
  double dphi24=v_phase[2]-v_phase[0];   if (dphi24<0.) dphi24+=(2.*M_PI);
  double dphi34=v_phase[2]-v_phase[1];   if (dphi34<0.) dphi34+=(2.*M_PI);
  cout<<" Cx-2x3: "<<setw(6)<<Angle(dphi23).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[3]).ToDegree()<<endl;
  cout<<" Cx-2x4: "<<setw(6)<<Angle(dphi24).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[4]).ToDegree()<<endl;
  cout<<" Cx-3x4: "<<setw(6)<<Angle(dphi34).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[5]).ToDegree()<<endl;
  ofr<<"# Cx-2x3: "<<setw(6)<<Angle(dphi23).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[3]).ToDegree()<<endl;
  ofr<<"# Cx-2x4: "<<setw(6)<<Angle(dphi24).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[4]).ToDegree()<<endl;
  ofr<<"# Cx-3x4: "<<setw(6)<<Angle(dphi34).ToDegree()<<" ==? "<<setw(6)<<Angle(v_phase[5]).ToDegree()<<endl;
760 761
  fit_cx_done=true;
  acxd_.v_cxbeams=v_cxbeams;
762
  acxd_.v_phase=v_phase;
763 764
  acxd_.v_phi_0=v_phi_0;
  acxd_.v_a_phi=v_a_phi;
765 766
  acxd_.v_Acx=v_Acx;
  acxd_.v_Bcx=v_Bcx;
767 768
  return 0;
} 
769

770

771 772 773 774 775 776 777 778 779 780 781
int ACxSetFitter::saveExpectedCx(string outcheckfilename)
{
  cout << "ACxSetFitter::saveExpectedCx() saving expected cross-cor (and visi-data) to file "<<outcheckfilename<<endl;
  POutPersist pox(outcheckfilename);
  size_t NB_CXCORS=acxd_.getNbCrossCor();
  size_t NTRK = acxd_.NbTrk();

  char oname[32];

  for(size_t ii=0; ii<NB_CXCORS; ii++) {
    CxBeam cxbeam=v_cxbeams[ii];
782
    MyCxSignal cxsig( acxd_.v_time_data, acxd_.vv_cxdata, acxd_.vv_cxerr, acxd_.v_freqs, 
783 784 785 786 787
		      tks_.v_interp_elev, tks_.v_interp_sazim, cxbeam, ii);
    for(size_t j=0; j<NTRK; j++) {
      TVector< complex<double> >  signal = cxsig.getDataSignal(j);
      sprintf(oname,"cx_%d_%d",(int)ii+1,(int)j+1);
      pox << PPFNameTag(oname)<<signal;
788 789 790
      //DBG      cout << " *DBG* getPhase4Freq() phi0="<<acxd_.v_phi_0[ii]<<" a_phi="<<acxd_.v_a_phi[ii]<<" freq="<<acxd_.v_freqs[j]<<endl;
      double phase=cxsig.getPhase4Freq(acxd_.v_phi_0[ii],acxd_.v_a_phi[ii],acxd_.v_freqs[j]);
      TVector< complex<double> >  expsignal = cxsig.getExpectedSignal(j, phase, v_Acx[ii][j]);
791 792 793 794 795 796 797 798 799 800 801
      sprintf(oname,"simcx_%d_%d",(int)ii+1,(int)j+1);
      pox << PPFNameTag(oname)<<expsignal;
      if (ii==0)  {
	Vector tmvec = cxsig.getTimeVec(j);
	sprintf(oname,"tim_%d",(int)j+1);
	pox << PPFNameTag(oname)<<tmvec;
      }
    }
  }
  return 0;
}  
802 803 804

//------------------------ CxBaselineFitter -------------------------------------
CxBaselineFitter::CxBaselineFitter(vector<AcxDataSet> & v_data, vector<TrackSet> & v_tks)
805 806
  : v_acxd(v_data), v_trks(v_tks), tot_ntrks(0), fit_done(false), simplex_done(false), 
    xi2red(-9.e9), bestfitparam(NULL), err_bestfitparam(NULL)
807 808 809 810 811
{
  if (v_acxd.size() != v_trks.size())
    throw ParmError("CxBaselineFitter::CxBaselineFitter(v_data, v_tks) NOT same size v_data,v_tks ");
  if (v_acxd.size() < 1)
    throw ParmError("CxBaselineFitter::CxBaselineFitter(v_data, v_tks) v_data.size()<1 ");
812
  
813 814 815 816 817
  tot_ntrks=0;
  for(size_t i=0; i<v_acxd.size(); i++) tot_ntrks+=v_acxd[i].NbTrk();
  if (tot_ntrks<1)
    throw ParmError("CxBaselineFitter::CxBaselineFitter(v_data, v_tks) 0 tracks ! tot_ntrks<1 ");

818
  size_t nparam = 5*(v_acxd[0].getNbAutoCor()-1);  // 5 param / antenne , phi0, aphi, dX,dY,dZ
819 820
  bestfitparam = new double[nparam];
  err_bestfitparam = new double[nparam];
821 822

  initFitParams();
823 824
}

825 826 827 828 829
CxBaselineFitter::~CxBaselineFitter()
{
  if (bestfitparam) delete[] bestfitparam;
  if (err_bestfitparam) delete[] err_bestfitparam;
}
830

831 832
void CxBaselineFitter::initFitParams()
{
833
  //DBG  cout << " *DBG* CxBaselineFitter::initFitParams() v_acxd[0].v_phase.size()="<<v_acxd[0].v_phase.size()<<endl;
834 835 836 837
  size_t NB_ANTENNES=v_acxd[0].getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=v_acxd[0].getNbCrossCor();
  if (NB_ANTENNES != 4)
    throw PError("CxBaselineFitter::initFitParams() NB_ANTENNES != 4  Current version works only for 4 antenna");
838 839 840 841
  v_phi_0.resize(v_acxd[0].getNbAutoCor()-1);
  v_err_phi_0.resize(NB_ANTENNES-1);
  v_a_phi.resize(v_acxd[0].getNbAutoCor()-1);
  v_err_a_phi.resize(NB_ANTENNES-1);
842 843 844
  v_baselineshits.resize(NB_ANTENNES-1);
  v_err_baselineshits.resize(NB_ANTENNES-1);
  for(size_t i=0; i<(NB_ANTENNES-1); i++) {
845 846
    v_phi_0[i]=v_acxd[0].v_phi_0[i];   v_err_phi_0[i]=0.;
    v_a_phi[i]=v_acxd[0].v_a_phi[i];   v_err_a_phi[i]=0.;
847 848
    v_baselineshits[i]=Vector3d(0.,0.,0.);
    v_err_baselineshits[i]=Vector3d(0.,0.,0.);
849 850 851 852
    bestfitparam[2*i]=v_phi_0[i];
    err_bestfitparam[2*i]=0.;
    bestfitparam[2*i+1]=v_a_phi[i];
    err_bestfitparam[2*i]=0.;
853 854 855 856
    for(size_t j=0; j<3; j++) {
      bestfitparam[3*(i+1)+j]=err_bestfitparam[3*(i+1)+j]=0.;
    }
  }
857 858
  //DBG  cout << " *DBG* DONE **** CxBaselineFitter::initFitParams()"<<endl;

859 860
}

861
int CxBaselineFitter::dofit(string outfilename, bool fgfixbaseline, bool fgphi0only)
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
{
  size_t NB_ANTENNES=v_acxd[0].getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=v_acxd[0].getNbCrossCor();
  cout << "======================================================================================"<<endl;
  cout << "------- CxBaselineFitter::dofit()  Performing baseline/phase fit on the 6 cross-cors "<<" TotNbTracks="<<tot_ntrks<<endl;
  
  ofstream ofr(outfilename.c_str());
  ofr << "####  Fitted phases and baseline-shifts (CxBaselineFitter::dofit() ) "<<endl
      << "## NumAntenna  Phase BaselineShiftX  BaselineShiftY BaselineShiftZ  (Phase in degree, BaselineShift in meter) "<<endl;

  int tot_npoints_fit = 0;
  for(size_t i=0; i<v_acxd.size(); i++)
    for(size_t j=0; j<v_acxd[i].NbTrk(); j++)
      tot_npoints_fit += 2*(v_acxd[i].v_time_data[j].size())*NB_CXCORS;
  cout << " Total number of data points for fit="<< tot_npoints_fit<<endl;
  GeneralFitData gdata(1, tot_npoints_fit);
878
  int npoints2=0;
879 880 881 882 883
  for(size_t i=0; i<v_acxd.size(); i++)
    for(size_t kcx=0; kcx<NB_CXCORS; kcx++) {
      for(size_t j=0; j<v_acxd[i].NbTrk(); j++)  {
	vector< vector< complex<double> > > & v_cxdata = v_acxd[i].vv_cxdata[j];
	vector< vector<double> > & v_cxerr = v_acxd[i].vv_cxerr[j];
884
	for(size_t l=0; l<v_acxd[i].v_time_data[j].size(); l++) {
885
	  gdata.AddData1(v_acxd[i].v_time_data[j][l],v_cxdata[kcx][l].real(),v_cxerr[kcx][l]); // Fill x, y and error on y
886 887
	  gdata.AddData1(v_acxd[i].v_time_data[j][l],v_cxdata[kcx][l].imag(),v_cxerr[kcx][l]); // Fill x, y and error on y
	  npoints2+=2;
888 889 890 891 892 893 894 895 896 897 898 899
	}
      }
    }

  My6CxGenXi2B gxi2(v_acxd, v_trks); 
  GeneralFit mFit(&gxi2);
  mFit.SetData(&gdata);        // connect data to the fitter , here the data is unused - gxi2 includes its data 
  mFit.SetMaxStep(1000);
  
  // SetParam(int n,double value, double step,double min=1., double max=-1.);
  for(size_t i=0; i<(NB_ANTENNES-1); i++) {
    char pname[32];
900 901 902 903 904 905
    sprintf(pname,"Phi0_%d",(int)(i+2));
    mFit.SetParam(2*i,pname,v_phi_0[i],M_PI/180.,0.,2.5*M_PI);
    sprintf(pname,"a_Phi_%d",(int)(i+2));
    mFit.SetParam(2*i+1,pname,v_a_phi[i],0.1,-15.,15.);
    if (fgphi0only)  mFit.SetFix(2*i+1, 0.);
    v_err_phi_0[i]=0.;  v_err_a_phi[i]=0.;
906
    sprintf(pname,"BaselineShift_X_%d",(int)(i+2));
907
    mFit.SetParam(6+3*i,pname,v_baselineshits[i].X(),0.02,-0.25,0.25);
908
    sprintf(pname,"BaselineShift_Y_%d",(int)(i+2));
909
    mFit.SetParam(7+3*i,pname,v_baselineshits[i].Y(),0.02,-0.25,0.25);
910
    sprintf(pname,"BaselineShift_Z_%d",(int)(i+2));
911
    mFit.SetParam(8+3*i,pname,v_baselineshits[i].Z(),0.02,-0.25,0.25);
912 913
    if (fgfixbaseline) {
      cout << " ... fitting phases only, fixed baselines "<<endl;
914
      mFit.SetFix(6+3*i); mFit.SetFix(7+3*i);  mFit.SetFix(8+3*i);
915
    }
916
  }
917
  cout << " Performing the fit (tot_npoints_fit= "<<tot_npoints_fit<<" ?= (npoints2="<<npoints2<<") ..."<< endl;
918 919 920 921
  rcfit = mFit.Fit();  xi2red=-99999.;
  cout<< "------ Fit result Reduce_Chisquare = " << mFit.GetChi2Red()<< " nstep="<<mFit.GetNStep() << " rc="<<rcfit<<endl;
  mFit.PrintFit();

922 923 924 925 926 927 928
  for(size_t j=0; j<4; j++) 
    for(size_t i=0; i<(NB_ANTENNES-1); i++) {
      bestfitparam[j*3+i]=mFit.GetParmErr(j*3+i);
      err_bestfitparam[j*3+i]=mFit.GetParmErr(j*3+i);
    }

  for(size_t i=0; i<(NB_ANTENNES-1); i++) {
929 930 931 932 933 934 935 936 937 938
    v_phi_0[i]=mFit.GetParm(2*i);      
    v_err_phi_0[i]=mFit.GetParmErr(2*i);
    v_a_phi[i]=mFit.GetParm(2*i+1);      
    v_err_a_phi[i]=mFit.GetParmErr(2*i+1);
    double xs=mFit.GetParm(i*3+6);  
    double exs=mFit.GetParmErr(i*3+6);  
    double ys=mFit.GetParm(i*3+7);  
    double eys=mFit.GetParmErr(i*3+7);  
    double zs=mFit.GetParm(i*3+8);  
    double ezs=mFit.GetParmErr(i*3+8);  
939 940 941 942
    v_baselineshits[i]=Vector3d(xs,ys,zs);
    v_err_baselineshits[i]=Vector3d(exs,eys,ezs);

  }
943 944 945
  fit_done=true;
  return 0;
}
946

947 948 949 950 951 952 953 954 955 956
int CxBaselineFitter::doSimplexMinimize()
{
  size_t NB_ANTENNES=v_acxd[0].getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=v_acxd[0].getNbCrossCor();
  cout << "======================================================================================"<<endl;
  cout << "------- CxBaselineFitter::doSimplexMinimize()  Performing baseline/phase determination using the 6 cross-cors "<<" TotNbTracks="<<tot_ntrks<<endl;

  if (NB_ANTENNES != 4)
    throw PError("CxBaselineFitter::doSimplexMinimize() NB_ANTENNES != 4  Current version works only for 4 antenna");

957
  My6CxMinZFunc mzfunc(v_acxd, v_trks, true); 
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
  MinZSimplex simplex(&mzfunc);
  // Guess the center and step for constructing the initial simplex
  size_t nparam = 4*(NB_ANTENNES-1);
  Vector P0(nparam); 
  Vector step(nparam);
  for(size_t i=0; i<(NB_ANTENNES-1); i++) {
    P0(i)=v_acxd[0].v_phase[i];
    step(i)=M_PI/6.;
    for(size_t j=0;j<3;j++) {
      P0((i+1)*3+j)=0.;
      step((i+1)*3+j)=0.05;
    }
  }
  cout << " Initial Point: "<<P0.Transpose()<<endl;
  cout << " Initial Step: "<<step.Transpose()<<endl;
  cout << "  Initial Xi2= " << mzfunc.Value(P0.Data())<<endl;

  simplex.SetInitialPoint(P0);
  simplex.SetInitialStep(step);
  simplex.SetPrtLevel(_prtlevel_);
  Vector oparm(nparam);
  int rc = simplex.Minimize(oparm);
  if (rc != 0) {
    string srt; 
    int sr = simplex.StopReason(srt);
    cout << " Convergence Pb, StopReason= " << sr << " : " << srt << endl;
  }
  else {
    cout << " Converged: NStep= " << simplex.NbIter() << " Best Xi2="<<  mzfunc.Value(oparm.Data()) << endl;
    simplex_done=true;
    for(size_t i=0; i<(NB_ANTENNES-1); i++) {
989
      v_phi_0[i]=oparm(i);      
990 991 992 993
      double xs=oparm(i*3+3);  
      double ys=oparm(i*3+4);  
      double zs=oparm(i*3+5);  
      v_baselineshits[i]=Vector3d(xs,ys,zs);
994
      cout << " ANTENNE["<<i+2<<"] : Phase="<<v_phi_0[i]<<" BaseLineShift="<<v_baselineshits[i]<<endl;
995 996 997 998 999 1000
    }
  }

  return 0;
}

1001
int CxBaselineFitter::doCheck()
1002 1003 1004 1005 1006 1007 1008 1009 1010
{
  size_t NB_ANTENNES=v_acxd[0].getNbAutoCor();   // nombre d'antennes 
  size_t NB_CXCORS=v_acxd[0].getNbCrossCor();
  cout << "======================================================================================"<<endl;
  cout << "------- CxBaselineFitter::doCheck()  Performing baseline/phase determination using the 6 cross-cors "<<" TotNbTracks="<<tot_ntrks<<endl;

  if (NB_ANTENNES != 4)
    throw PError("CxBaselineFitter::doCheck() NB_ANTENNES != 4  Current version works only for 4 antenna");

1011
  My6CxMinZFunc mzfunc(v_acxd, v_trks, true);   // true : Pas de aphi ds les tableaux param 
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
  mzfunc.SetPrintLevel(_prtlevel_);
  // Guess the center and step for constructing the initial simplex
  size_t nparam = 4*(NB_ANTENNES-1);
  Vector P0(nparam), PC(nparam); 
  Vector step(nparam);
  for(size_t i=0; i<(NB_ANTENNES-1); i++) {
    P0(i)=v_acxd[0].v_phase[i];
    step(i)=M_PI;
    for(size_t j=0;j<3;j++) {
      P0((i+1)*3+j)=0.;
      step((i+1)*3+j)=0.20;
    }
  }
  cout << " ---- Initial Point: "<<P0.Transpose()<<endl;
  cout << "  Initial Xi2= " << mzfunc.Value(P0.Data())<<endl;

  double pstep=M_PI/20.;
  double zstep=0.05;

  double bestxi2=9.e19;
  Vector oparm(nparam);
  size_t cnt=0;

  for(int i1=-1; i1<=1; i1++) {
    PC(0)=P0(0)+(double)i1*pstep;
    for(int i2=-1; i2<=1; i2++) {
      PC(1)=P0(1)+(double)i2*pstep;
      for(int i3=-1; i3<=1; i3++) {
	PC(2)=P0(2)+(double)i3*pstep;
	for(int j1=-1; j1<=1; j1++) {   
	  PC(5)=P0(5)+(double)j1*zstep;
	  for(int j2=-1; j2<=1; j2++) {
	    PC(8)=P0(8)+(double)j2*zstep;
	    for(int j3=-1; j3<=0; j3++) {
	      PC(11)=P0(11)+(double)j3*zstep;
	      double xi2=mzfunc.Value(PC.Data());
	      if (xi2<bestxi2) { bestxi2=xi2;  oparm=PC; }
	      cnt++;
	    }
	  }
	}
      }
    }
  }

  cout << "End of Check-Loop Count= " << cnt << " Best Xi2="<<  mzfunc.Value(oparm.Data()) << " for :"<<endl;
  cout << oparm.Transpose();

  return 0;
}

1063 1064 1065 1066 1067 1068 1069 1070 1071

int CxBaselineFitter::saveExpectedCx(string outcheckfilename)
{
  cout << "CxBaselineFitter::saveExpectedCx() saving expected cross-cor (and visi-data) to file "<<outcheckfilename<<endl;
  POutPersist pox(outcheckfilename);
  size_t NB_CXCORS=v_acxd[0].getNbCrossCor();
  char oname[48];

  My6CxSignalsB  cxsigb(v_acxd, v_trks);
1072 1073
  cxsigb.SetPrintLevel(_prtlevel_);

1074 1075 1076
  for(size_t i=0; i<v_acxd.size(); i++) {
    for(size_t j=0; j<v_acxd[i].NbTrk(); j++) {
      Vector tmvec = cxsigb.getTimeVec(i,j);
1077
      sprintf(oname,"tim_%d_%d",(int)j+1,(int)i+1);
1078 1079 1080
      pox << PPFNameTag(oname)<<tmvec;
      for(size_t kcx=0; kcx<NB_CXCORS; kcx++) {
	TVector< complex<double> >  signal = cxsigb.getDataSignal(i,j,kcx);
1081
	sprintf(oname,"cx_%d_%d_%d",(int)kcx+1,(int)j+1,(int)i+1);
1082 1083
	pox << PPFNameTag(oname)<<signal;
	TVector< complex<double> >  expsignal = cxsigb.getExpectedSignal(i,j,kcx,bestfitparam);
1084
	sprintf(oname,"simcx_%d_%d_%d",(int)kcx+1,(int)j+1,(int)i+1);
1085 1086 1087 1088 1089 1090
	pox << PPFNameTag(oname)<<expsignal;
      }
    }
  }
  return 0;
}