Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Clément Haëck
submeso-color
Commits
4130e0b3
Commit
4130e0b3
authored
Mar 21, 2022
by
Clément Haëck
Browse files
Change argument to mask
Change histograms locations, add 'kind' directory Fix all occurences
parent
e1e8b3e0
Changes
9
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
152 additions
and
123 deletions
+152
-123
Compute/histogram/compute_hists_ostia_gs3.py
Compute/histogram/compute_hists_ostia_gs3.py
+2
-2
Compute/histogram/compute_hists_ostia_gs3_2thr.py
Compute/histogram/compute_hists_ostia_gs3_2thr.py
+2
-2
Plots/Hists/all_zones_median.py
Plots/Hists/all_zones_median.py
+2
-4
Plots/Hists/all_zones_median_cli.py
Plots/Hists/all_zones_median_cli.py
+6
-12
Plots/Hists/article_median.py
Plots/Hists/article_median.py
+45
-45
Plots/Hists/article_surplus.py
Plots/Hists/article_surplus.py
+40
-22
Plots/Hists/hists_seasons.py
Plots/Hists/hists_seasons.py
+2
-3
Plots/Hists/surplus_zones.py
Plots/Hists/surplus_zones.py
+27
-20
lib/data/hists.py
lib/data/hists.py
+26
-13
No files found.
Compute/histogram/compute_hists_ostia_gs3.py
View file @
4130e0b3
...
...
@@ -64,7 +64,7 @@ def main(args):
m_next
(
"Applying static masks"
)
# Apply masks: land (enlarged), total zone, min front proba
static
=
~
ds
.
land_large
*
ds
.
total
if
not
args
[
'
no
mask'
]:
if
args
[
'mask'
]:
static
=
static
*
ds
.
p_frt
ds
[
'HI'
]
=
ds
.
HI
.
where
(
static
)
ds
=
ds
.
drop_vars
([
'land_large'
,
'total'
,
'p_frt'
])
...
...
@@ -202,7 +202,7 @@ if __name__ == '__main__':
parser
.
add_argument
(
'-zones'
,
type
=
str
,
default
=
'INS'
)
args
=
lib
.
get_args
([
'region'
,
'year'
,
'days'
,
'scale'
,
'number'
,
'coef'
,
'fixes'
,
'threshold'
,
'
no
mask'
],
add_args
)
'coef'
,
'fixes'
,
'threshold'
,
'mask'
],
add_args
)
args
[
'fixes'
][
'Y'
]
=
args
[
'year'
]
args
[
'Y'
]
=
args
[
'year'
]
...
...
Compute/histogram/compute_hists_ostia_gs3_2thr.py
View file @
4130e0b3
...
...
@@ -64,7 +64,7 @@ def main(args):
m_next
(
"Applying static masks"
)
# Apply masks: land (enlarged), total zone, min front proba
static
=
~
ds
.
land_large
*
ds
.
total
if
not
args
[
'
no
mask'
]:
if
args
[
'mask'
]:
static
=
static
*
ds
.
p_frt
ds
[
'HI'
]
=
ds
.
HI
.
where
(
static
)
ds
=
ds
.
drop_vars
([
'land_large'
,
'total'
,
'p_frt'
])
...
...
@@ -202,7 +202,7 @@ if __name__ == '__main__':
parser
.
add_argument
(
'-zones'
,
type
=
str
,
default
=
'INS'
)
args
=
lib
.
get_args
([
'region'
,
'year'
,
'days'
,
'scale'
,
'number'
,
'coef'
,
'fixes'
,
'thr_lo'
,
'thr_hi'
,
'
no
mask'
],
'coef'
,
'fixes'
,
'thr_lo'
,
'thr_hi'
,
'mask'
],
add_args
)
args
[
'fixes'
][
'Y'
]
=
args
[
'year'
]
args
[
'Y'
]
=
args
[
'year'
]
...
...
Plots/Hists/all_zones_median.py
View file @
4130e0b3
...
...
@@ -14,11 +14,9 @@ fixes = dict(
scale
=
30.
,
number
=
2
,
coef
=
0
,
thr_lo
=
6
.
,
thr_lo
=
5
.
,
thr_hi
=
10.
,
Y
=
2007
,
nomask
=
False
)
Y
=
2007
)
fixes
.
update
(
args
[
'fixes'
])
args
[
'fixes'
]
=
fixes
...
...
Plots/Hists/all_zones_median_cli.py
View file @
4130e0b3
...
...
@@ -10,14 +10,13 @@ import Plots.util as plot_util
plot_util
.
use_tex
(
True
)
args
=
dict
(
region
=
'GS'
,
days
=
1
)
args
=
dict
(
region
=
'GS'
,
days
=
1
,
kind
=
'2thr'
,
mask
=
False
)
fixes
=
dict
(
scale
=
30.
,
number
=
2
,
coef
=
0
,
thr_lo
=
6.
,
thr_hi
=
10.
,
nomask
=
False
thr_lo
=
5.
,
thr_hi
=
10.
)
...
...
@@ -57,10 +56,7 @@ def plot(cli, cli_d1, cli_d9, ax, var, sel, color='k', ls='-'):
color
=
color
,
alpha
=
.
3
)
cset
=
tc
.
tol_cset
(
'vibrant'
)
colors
=
dict
(
low
=
'red'
,
mid
=
'blue'
,
hi
=
'teal'
)
colors
=
{
m
:
getattr
(
cset
,
c
)
for
m
,
c
in
colors
.
items
()}
colors
=
plot_util
.
get_mask_colors
(
'vibrant'
,
'red'
,
'blue'
,
'teal'
)
fig
,
axes
=
plt
.
subplots
(
3
,
3
,
figsize
=
(
10
,
6
),
sharex
=
True
)
fig
.
subplots_adjust
(
left
=
0.06
,
bottom
=
0.05
,
right
=
0.98
,
top
=
0.95
,
...
...
@@ -98,10 +94,8 @@ axes[0, 0].set_title('South')
axes
[
0
,
1
].
set_title
(
'Jet'
)
axes
[
0
,
2
].
set_title
(
'North'
)
labels
=
[
'Low'
,
'Med'
,
'Hi'
]
handles
=
[
plt
.
Line2D
((),
(),
ls
=
'-'
,
color
=
c
)
for
c
in
colors
.
values
()]
fig
.
legend
(
handles
,
labels
,
bbox_to_anchor
=
[
0.52
,
0.78
],
loc
=
'upper left'
,
framealpha
=
1.0
)
fig
.
legend
(
*
plot_util
.
get_mask_legend
(
colors
),
bbox_to_anchor
=
[
0.52
,
0.78
],
loc
=
'upper left'
,
framealpha
=
1.0
)
fig
.
canvas
.
draw
()
# fig.savefig(path.join(lib.root_plot, 'Hists', 'median_GS3', 'fig.pdf'))
...
...
Plots/Hists/article_median.py
View file @
4130e0b3
import
matplotlib.pyplot
as
plt
from
matplotlib.dates
import
DateFormatter
import
pandas
as
pd
import
tol_colors
as
tc
from
os
import
path
import
matplotlib.pyplot
as
plt
import
lib
import
lib.data.hists
import
lib.data.hists
as
lh
import
Plots.util
as
plot_util
plot_util
.
set_style
()
plot_util
.
use_tex
(
True
)
args
=
dict
(
region
=
'GS'
,
days
=
1
)
args
=
dict
(
region
=
'GS'
,
days
=
1
,
mask
=
True
,
kind
=
'2thr'
)
start
=
2007
fixes
=
dict
(
number
=
2
,
scale
=
30
,
coef
=
0
,
zone
=
'GS_S'
,
threshold
=
6.0
thr_lo
=
5.0
,
thr_hi
=
10.
,
Y
=
list
(
range
(
start
,
start
+
3
))
)
variable
=
'CHL'
ds
=
lib
.
data
.
hists
.
get_data
(
args
,
fixes
=
fixes
)
ds
=
ds
.
sel
(
variable
=
variable
)
ds
=
lh
.
get_data
(
args
,
fixes
=
fixes
)
ds
=
ds
.
squeeze
()
ds
=
lh
.
resample_8D_multiple_years
(
ds
,
days
=
3
)
pdf
=
lh
.
get_pdf
(
ds
,
variables
=
'CHL'
)
med
=
lh
.
get_median
(
pdf
)
med
=
med
.
load
()
ds
.
load
()
lib
.
data
.
hists
.
normalize_hist
(
ds
)
med
=
lib
.
data
.
hists
.
get_percentile
(
ds
,
0.5
)
grp
=
med
.
groupby
(
'time.dayofyear'
)
cli
=
grp
.
mean
()
cli_std
=
grp
.
std
()
cli
=
cli
.
rename
(
dayofyear
=
'time'
)
cli_std
=
cli_std
.
rename
(
dayofyear
=
'time'
)
ymax
=
med
.
sel
(
mask
=
'hi'
).
quantile
(
0.99
,
'time'
)
cli
=
cli
.
assign_coords
(
time
=
pd
.
to_datetime
(
2000
*
1000
+
cli
.
time
.
values
,
format
=
'%Y%j'
))
cli_std
=
cli_std
.
assign_coords
(
time
=
pd
.
to_datetime
(
2000
*
1000
+
cli_std
.
time
.
values
,
format
=
'%Y%j'
))
colors
=
plot_util
.
get_mask_colors
(
'vibrant'
,
'red'
,
'blue'
,
'teal'
)
# cli = cli.resample(time='8D').mean()
# cli = cli.isel(time=slice(None, -1))
fig
,
axes
=
plt
.
subplots
(
3
,
1
,
figsize
=
(
8
,
4.5
),
sharex
=
True
)
right
=
0.96
fig
.
subplots_adjust
(
left
=
0.08
,
bottom
=
0.05
,
right
=
right
,
top
=
0.93
,
hspace
=
0.1
)
cset
=
tc
.
tol_cset
(
'vibrant'
)
for
ax
,
z
in
zip
(
axes
,
'NIS'
):
zone
=
lh
.
get_GS3_name
(
z
)
for
m
,
c
in
colors
.
items
():
ax
.
plot
(
med
.
time
,
med
.
sel
(
zone
=
zone
,
mask
=
m
),
color
=
c
)
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
5
,
4
))
fig
.
subplots_adjust
(
left
=
0.15
,
bottom
=
0.08
,
right
=
0.98
,
top
=
0.98
)
if
z
!=
'N'
:
ax
.
set_ylim
(
None
,
ymax
.
sel
(
zone
=
zone
))
ax
.
annotate
(
lh
.
get_GS3_title
(
z
),
(
1.
,
0.5
),
xycoords
=
'axes fraction'
,
xytext
=
(
10
,
0
),
textcoords
=
'offset points'
,
ha
=
'left'
,
va
=
'center'
,
rotation
=
'vertical'
)
for
i
,
ax
in
enumerate
(
axes
):
ax
.
annotate
(
chr
(
97
+
i
)
+
')'
,
(
0.
,
1.
),
xycoords
=
'axes fraction'
,
xytext
=
(
-
40
,
2
),
textcoords
=
'offset points'
,
ha
=
'left'
,
va
=
'bottom'
)
ax
.
xaxis
.
axis_date
()
ax
.
set_ylabel
(
plot_util
.
CHL_LABEL
,
labelpad
=
10.0
)
def
plot
(
mask
,
color
):
values
=
cli
.
sel
(
mask
=
mask
)
v_std
=
cli_std
.
sel
(
mask
=
mask
)
ax
.
plot
(
cli
.
time
,
values
,
color
=
color
)
ax
.
fill_between
(
cli
.
time
,
values
-
2.
*
v_std
,
values
+
2.
*
v_std
,
color
=
color
,
alpha
=
0.4
)
axes
[
-
1
].
set_xlim
(
*
med
.
time
[[
0
,
-
1
]].
values
)
fig
.
legend
(
*
plot_util
.
get_mask_legend
(
colors
),
bbox_to_anchor
=
[
right
,
0.99
],
loc
=
'upper right'
,
ncol
=
3
,
borderaxespad
=
0.
)
plot
(
'frt'
,
cset
.
orange
)
plot
(
'bkg'
,
cset
.
teal
)
ax
.
set_xlim
(
*
cli
.
time
[[
0
,
-
1
]].
values
)
ax
.
xaxis
.
set_major_formatter
(
DateFormatter
(
'%b'
))
fig
.
savefig
(
path
.
join
(
lib
.
root_plot
,
'Hists'
,
'article_timeline'
,
'fig.png'
),
dpi
=
150
)
Plots/Hists/article_surplus.py
View file @
4130e0b3
...
...
@@ -6,7 +6,6 @@ import tol_colors as tc
import
xarray
as
xr
import
lib
import
lib.data.valid_pixels
as
lv
import
lib.data.hists
as
lh
import
Plots.util
as
plot_util
...
...
@@ -26,29 +25,47 @@ ds = ds.sum('zone')
pdf
=
lh
.
get_pdf
(
ds
,
variables
=
'CHL'
)
med
=
lh
.
get_median
(
pdf
).
load
()
fixes
[
'nomask'
]
=
True
ds
=
lh
.
get_data
(
fixes
=
fixes
)
ds
=
ds
.
squeeze
()
ds
=
lh
.
resample_8D_multiple_years
(
ds
)
ds
=
ds
.
sum
(
'zone'
)
chl
=
lh
.
get_data
(
fixes
=
fixes
,
mask
=
False
).
hist_CHL
chl
=
chl
.
squeeze
()
chl
=
lh
.
resample_8D_multiple_years
(
chl
)
chl
=
chl
.
sum
(
'zone'
,
keep_attrs
=
True
)
T
=
lh
.
get_total
(
chl
)
N
=
lh
.
get_N
(
chl
)
T
=
lh
.
get_total
(
ds
,
variables
=
'CHL'
)
N
=
lh
.
get_N
(
ds
,
variables
=
'CHL'
)
T_f
=
T
.
sum
(
'mask'
)
T_nf_mid
=
(
T
.
sel
(
mask
=
[
'low'
,
'hi'
]).
sum
(
'mask'
)
+
med
.
sel
(
mask
=
'low'
)
*
N
.
sel
(
mask
=
'mid'
))
T_nf_hi
=
(
T
.
sel
(
mask
=
[
'low'
,
'mid'
]).
sum
(
'mask'
)
+
med
.
sel
(
mask
=
'low'
)
*
N
.
sel
(
mask
=
'hi'
))
T_nf
=
xr
.
concat
([
T_nf_mid
,
T_nf_hi
],
dim
=
xr
.
DataArray
([
'mid'
,
'hi'
],
def
get_C_mean
(
T
,
N
,
masks
):
Ts
,
Ns
=
[
da
.
sel
(
mask
=
masks
).
sum
(
'mask'
)
for
da
in
[
T
,
N
]]
return
Ts
/
Ns
# Chl moyenne
C
=
get_C_mean
(
T
,
N
,
[
'low'
,
'mid'
,
'hi'
])
C_nf_hi
=
get_C_mean
(
T
,
N
,
[
'low'
,
'mid'
])
C_nf_mid
=
get_C_mean
(
T
,
N
,
[
'low'
,
'hi'
])
C_nf
=
xr
.
concat
([
C_nf_mid
,
C_nf_hi
],
dim
=
xr
.
DataArray
([
'mid'
,
'hi'
],
dims
=
[
'mask'
]))
# T_nf = T.sel(mask='low') + med * N
surplus
=
(
C
-
C_nf
)
/
C_nf
*
100.
# T_f = T.sum('mask')
# T_nf_mid = (T.sel(mask=['low', 'hi']).sum('mask')
# + med.sel(mask='low') * N.sel(mask='mid'))
# T_nf_hi = (T.sel(mask=['low', 'mid']).sum('mask')
# + med.sel(mask='low') * N.sel(mask='hi'))
# T_nf = xr.concat([T_nf_mid, T_nf_hi], dim=xr.DataArray(['mid', 'hi'],
# dims=['mask']))
# # T_nf = T.sel(mask='low') + med * N
# surplus = (T_f-T_nf)/T_f * 100.
# surplus = surplus.sel(mask=['mid', 'hi'])
surplus
=
(
T_f
-
T_nf
)
/
T_f
*
100.
surplus
=
surplus
.
load
(
)
# surplus = surplus
.sel(mask=['mid', 'hi'])
.load()
frac
=
N
/
N
.
sum
(
'mask'
)
est
=
frac
*
(
med
-
med
.
sel
(
mask
=
'low'
)
)
est
=
est
.
sel
(
mask
=
[
'mid'
,
'hi'
])
clis
=
lh
.
get_climatology
(
surplus
)
clis
=
lh
.
get_climatology
(
surplus
.
load
())
clis_est
=
lh
.
get_climatology
(
est
.
load
())
def
plot
(
cli
,
cli_d1
,
cli_d9
,
ax
,
sel
,
color
=
'k'
,
ls
=
'-'
):
...
...
@@ -72,15 +89,16 @@ ax.xaxis.set_major_formatter(plot_util.MonthFormatter())
for
m
,
c
in
colors
.
items
():
plot
(
*
clis
,
ax
,
dict
(
mask
=
m
),
color
=
c
)
plot
(
*
clis_est
,
ax
,
dict
(
mask
=
m
),
color
=
c
)
ax
.
set_ylabel
(
'Surplus [%]'
)
ax
.
set_xlim
(
clis
[
0
].
time
[[
0
,
-
1
]].
values
)
ax
.
set_ylim
(
0
,
None
)
#
ax.set_ylim(0, None)
labels
=
list
(
colors
.
keys
())
handles
=
[
plt
.
Line2D
((),
(),
color
=
c
)
for
c
in
colors
.
values
()]
fig
.
legend
(
handles
,
labels
,
bbox_to_anchor
=
[
0.
,
1.
],
loc
=
'upper left'
,
ncol
=
2
)
fig
.
savefig
(
path
.
join
(
lib
.
root_plot
,
'Hists'
,
'surplus'
,
'article_surplus.png'
),
dpi
=
150
)
#
fig.savefig(path.join(lib.root_plot, 'Hists', 'surplus', 'article_surplus.png'),
#
dpi=150)
Plots/Hists/hists_seasons.py
View file @
4130e0b3
...
...
@@ -14,9 +14,8 @@ fixes = dict(
scale
=
30.
,
number
=
2
,
coef
=
0
,
thr_lo
=
6.
,
thr_hi
=
10.
,
nomask
=
True
thr_lo
=
5.
,
thr_hi
=
10.
)
fixes
.
update
(
args
[
'fixes'
])
args
[
'fixes'
]
=
fixes
...
...
Plots/Hists/surplus_zones.py
View file @
4130e0b3
...
...
@@ -6,7 +6,6 @@ import tol_colors as tc
import
xarray
as
xr
import
lib
import
lib.data.valid_pixels
as
lv
import
lib.data.hists
as
lh
import
Plots.util
as
plot_util
...
...
@@ -15,32 +14,41 @@ fixes = dict(
number
=
2
,
scale
=
30.
,
coef
=
0
,
thr_lo
=
6
.
,
thr_lo
=
5
.
,
thr_hi
=
10.
)
ds
=
lh
.
get_data
(
fixes
=
fixes
)
ds
=
ds
.
squeeze
()
ds
=
lh
.
resample_8D_multiple_years
(
ds
)
pdf
=
lh
.
get_pdf
(
ds
,
variables
=
'CHL'
)
def
sum_masks
(
da
,
masks
):
return
da
.
sel
(
mask
=
masks
).
sum
(
'mask'
,
keep_attrs
=
True
)
def
concat
(
*
args
,
masks
=
[
'mid'
,
'hi'
]):
assert
len
(
args
)
==
len
(
masks
),
'ouch'
out
=
xr
.
concat
(
args
,
dim
=
xr
.
DataArray
(
masks
,
dims
=
[
'mask'
]))
return
out
hist
=
lh
.
get_data
(
fixes
=
fixes
).
hist_CHL
.
squeeze
()
# hist = hist.sum('zone', keep_attrs=True)
hist
=
lh
.
resample_8D_multiple_years
(
hist
)
pdf_mid
=
sum_masks
(
hist
,
[
'low'
,
'hi'
])
pdf_hi
=
sum_masks
(
hist
,
[
'low'
,
'mid'
])
pdf
=
concat
(
pdf_mid
,
pdf_hi
)
med
=
lh
.
get_median
(
pdf
).
load
()
fixes
[
'nomask'
]
=
True
ds
=
lh
.
get_data
(
fixes
=
fixes
)
ds
=
ds
.
squeeze
()
ds
=
lh
.
resample_8D_multiple_years
(
ds
)
hist
=
lh
.
get_data
(
fixes
=
fixes
,
mask
=
False
).
hist_CHL
.
squeeze
()
# hist = hist.sum('zone', keep_attrs=True)
hist
=
lh
.
resample_8D_multiple_years
(
hist
)
T
=
lh
.
get_total
(
ds
,
variables
=
'CHL'
)
N
=
lh
.
get_N
(
ds
,
variables
=
'CHL'
)
T
=
lh
.
get_total
(
hist
,
variables
=
'CHL'
)
N
=
lh
.
get_N
(
hist
,
variables
=
'CHL'
)
T_f
=
T
.
sum
(
'mask'
)
T_nf_mid
=
(
T
.
sel
(
mask
=
[
'low'
,
'hi'
]).
sum
(
'mask'
)
+
med
.
sel
(
mask
=
'low'
)
*
N
.
sel
(
mask
=
'mid'
))
T_nf_hi
=
(
T
.
sel
(
mask
=
[
'low'
,
'mid'
]).
sum
(
'mask'
)
+
med
.
sel
(
mask
=
'low'
)
*
N
.
sel
(
mask
=
'hi'
))
T_nf
=
xr
.
concat
([
T_nf_mid
,
T_nf_hi
],
dim
=
xr
.
DataArray
([
'mid'
,
'hi'
],
dims
=
[
'mask'
]))
# T_nf = T.sel(mask='low') + med * N
T_nf_mid
=
sum_masks
(
T
,
[
'low'
,
'hi'
])
+
med
.
sel
(
mask
=
'mid'
)
*
N
.
sel
(
mask
=
'mid'
)
N_nf_hi
=
sum_masks
(
T
,
[
'low'
,
'mid'
])
+
med
.
sel
(
mask
=
'hi'
)
*
N
.
sel
(
mask
=
'hi'
)
T_nf
=
concat
(
T_nf_mid
,
N_nf_hi
)
surplus
=
(
T_f
-
T_nf
)
/
T_f
*
100.
surplus
=
surplus
.
load
()
...
...
@@ -77,7 +85,6 @@ for ax, (z, t) in zip(axes, zones.items()):
plot
(
*
clis
,
ax
,
sel
,
color
=
c
)
ax
.
set_xlim
(
clis
[
0
].
time
[[
0
,
-
1
]].
values
)
ax
.
set_ylim
(
0
,
27
)
ax
.
set_title
(
t
)
axes
[
0
].
set_ylabel
(
'Surplus [%]'
)
...
...
lib/data/hists.py
View file @
4130e0b3
...
...
@@ -11,28 +11,32 @@ import lib
import
lib.data
ARGS
=
{
'region'
,
'days'
,
'kind'
,
'nomask'
}
defaults
=
dict
(
kind
=
'2thr'
,
nomask
=
False
)
ARGS
=
{
'region'
,
'days'
,
'kind'
,
'mask'
}
defaults
=
dict
(
kind
=
'2thr'
,
mask
=
True
)
"""
kind:
- '2thr': with 2 threshold, gives 3 histograms: low, mid and hi
- '1thr': one threshold, gives 2 histograms: bkg and frt
- '2d': 2d histogram (for Chl and HI)
mask: If it should use the front presence probability mask, or not
"""
def
PREGEX
(
args
):
pregex
=
[
"number_%(number:fmt=d:rgx=%I)/"
,
"scale_%(scale:fmt=.1f)/"
,
"coef_%(coef:fmt=d)/"
]
"coef_%(coef:fmt=d)/"
"{}/"
.
format
(
args
[
'kind'
])]
if
args
[
'kind'
]
==
'2thr'
:
pregex
+=
[
"hist_GS3"
,
"_thr_%(thr_lo:fmt=.2f)_%(thr_hi:fmt=.2f)"
]
elif
args
[
'kind'
]
==
'2d'
:
pregex
.
append
(
"hist_2D_GS3"
)
elif
args
[
'kind'
]
==
'thr'
:
pregex
+=
[
"hist_GS3"
,
"_thr_%(threshold:fmt=.2f)"
]
else
:
raise
ValueError
(
"Unknown hist pregex type '{}'"
.
format
(
args
[
'dim'
]))
pregex
.
append
(
"_thr_%(thr_lo:fmt=.2f)_%(thr_hi:fmt=.2f)"
)
elif
args
[
'kind'
]
==
'1thr'
:
pregex
.
append
(
"_thr_%(threshold:fmt=.2f)"
)
pregex
+=
[
"_%(time:Y)"
,
"_nomask"
if
args
[
'
no
mask'
]
else
""
,
"_nomask"
if
not
args
[
'mask'
]
else
""
,
".nc"
]
return
''
.
join
(
pregex
)
...
...
@@ -270,3 +274,12 @@ def get_climatology(ds):
cli_d1
=
restore_time
(
cli_d1
)
cli_d9
=
restore_time
(
cli_d9
)
return
cli
,
cli_d1
,
cli_d9
def
get_GS3_title
(
z
:
str
):
d
=
dict
(
S
=
'South'
,
I
=
'Jet'
,
N
=
'North'
)
return
d
[
z
]
def
get_GS3_name
(
z
:
str
):
return
'GS3_{}'
.
format
(
z
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment