#!/usr/bin/env python3 """A script that takes the graph of segments without cost functions and computes the non-local cost functions applied to edges. Input: - "node_id_param.json", expected to be in the current directory - the graph of segments without cost functions, "segments.gt" or "segments.graphml", expected to be in the current directory - shapefiles, specified as command line arguments Output: the graph of segments with cost functions, 'segments_cost_functions.gt' """ import graph_tool import time import json import math from os import path import shapefile import datetime from numpy import loadtxt import report_graph import util_eddies import bisect import argparse def calculate_radii_rossby(list_eddies, e_overestim, handlers, array_d_init): """Compute average on list_eddies of Rossby number and radius of maximum speed contour. """ radii = 0 # in m rossby = 0 days_modifier = 0 Omega = 2 * math.pi / 86164. n_eddies = len(list_eddies) for n in list_eddies: current_eddy = report_graph.node_to_date_eddy(n, e_overestim) i_SHPC = get_SHPC(array_d_init, current_eddy['date_index']) # calculate the location in the shapefile location = util_eddies.comp_ishape(handlers[i_SHPC], current_eddy['date_index'], current_eddy['eddy_index']) # now that we have the location in the shapefiles, we need to # get the radius and the rossby number shapeRec = handlers[i_SHPC]["readers"]["extremum"].shapeRecord(location) lat_in_deg = shapeRec.shape.points[0][1] # in degrees f = 2 * Omega * math.sin(math.radians(lat_in_deg)) # in s-1 V_max = shapeRec.record[4] # in m/s R_Vmax = handlers[i_SHPC]["readers"]["max_speed_contour"]\ .record(location)['r_eq_area'] * 1000 # in m if (V_max < 100): # calculate Ro and Delta_Ro rossby += V_max / (f * R_Vmax) else: days_modifier += 1 radii += R_Vmax # in m radii /= n_eddies if n_eddies > days_modifier: rossby /= n_eddies - days_modifier else: rossby = None return {"radii": radii, "rossby": rossby} def get_SHPC(array_d_ini, date_index): i_SHPC = bisect.bisect(array_d_init, date_index) assert i_SHPC >= 1 return i_SHPC - 1 t0 = time.perf_counter() timings = open("timings.txt", "w") parser = argparse.ArgumentParser() parser.add_argument("SHPC_dir", nargs='+') parser.add_argument("--graphml", action = "store_true", help = "save to graphml format") args = parser.parse_args() # Grab e_overestim: with open("node_id_param.json") as f: node_id_param = json.load(f) e_overestim = node_id_param["e_overestim"] # Set some values needed for the cost function: delta_cent_mean = 3.8481 # [in km] delta_cent_std = 8.0388 delta_ro_mean = -0.0025965 delta_ro_std = 5.2168 delta_r_mean = -0.0094709 * 1000 # [in m] delta_r_std = 8.6953 * 1000 # Load the graph_tool file: print('Loading graph...') g = graph_tool.Graph() try: g.load('segments.gt') except FileNotFoundError: g.load('segments.graphml') print('Loading done...') print("Input graph:") print("Number of vertices:", g.num_vertices()) print("Number of edges:", g.num_edges()) print("Internal properties:") g.list_properties() t1 = time.perf_counter() timings.write(f"loading: {t1 - t0:.0f} s\n") t0 = t1 g.vp['pos_first'] = g.new_vp('object') g.vp['pos_last'] = g.new_vp('object') g.vp['first_av_rad'] = g.new_vp('float') g.vp['first_av_ros'] = g.new_vp('float') g.vp['last_av_rad'] = g.new_vp('float') g.vp['last_av_ros'] = g.new_vp('float') g.ep['cost_function'] = g.new_ep('float') # Set up the list of SHPC: handlers = [util_eddies.open_shpc(shpc_dir) for shpc_dir in args.SHPC_dir] array_d_init = [handler["d_init"] for handler in handlers] # (create the list once and for all) num_of_days_to_avg = 7 # number of days to average print("Iterating on vertices...") for n in g.vertices(): segment = g.vp.inst_eddies[n] num_of_days = len(segment) # Calculate the date index, the eddy index and the SHPC index of # the first and last instantaneous eddies in the segment: first = report_graph.node_to_date_eddy(segment[0], e_overestim) first_SHPC = get_SHPC(array_d_init, first['date_index']) last = report_graph.node_to_date_eddy(segment[-1], e_overestim) last_SHPC = get_SHPC(array_d_init, last['date_index']) # Calculate the location in the shapefiles: first_loc = util_eddies.comp_ishape(handlers[first_SHPC], first['date_index'], first['eddy_index']) last_loc = util_eddies.comp_ishape(handlers[last_SHPC], last['date_index'], last['eddy_index']) # Grab the positions of the extrema and store them in the vertex # properties: g.vp.pos_first[n] = handlers[first_SHPC]["readers"]["extremum"]\ .shape(first_loc).points[0] # [in degrees] g.vp.pos_last[n] = handlers[last_SHPC]["readers"]["extremum"]\ .shape(last_loc).points[0] # [in degrees] if (num_of_days > num_of_days_to_avg): # The segment is longer than the number of days over which to average # First 7 days calculation first_res = calculate_radii_rossby(segment[:num_of_days_to_avg], e_overestim, handlers, array_d_init) # Average and assign the first radii: g.vp.first_av_rad[n] = first_res['radii'] if first_res['rossby'] is not None: # Average and assign the rossbies: g.vp.first_av_ros[n] = first_res['rossby'] # Last 7 days calculation: last_res = calculate_radii_rossby(segment[- num_of_days_to_avg:], e_overestim, handlers, array_d_init) # Average and assign the last radii g.vp.last_av_rad[n] = last_res['radii'] if last_res['rossby'] is not None: # Average and assign the rossbies: g.vp.last_av_ros[n] = last_res['rossby'] else: # The number of eddies in a segment is lower than the number # of days over which to average. The values will be the same # except for the positions. res = calculate_radii_rossby(segment, e_overestim, handlers, array_d_init) if res['rossby'] is not None: # Average and assign the rossbies: rossby = res['rossby'] g.vp.first_av_ros[n] = rossby g.vp.last_av_ros[n] = rossby # Average and assign the radii radii = res['radii'] g.vp.first_av_rad[n] = radii g.vp.last_av_rad[n] = radii t1 = time.perf_counter() timings.write(f"iterating on vertices: {t1 - t0:.0f} s\n") t0 = t1 print("Iterating on edges...") for edge in g.edges(): source_node = edge.source() target_node = edge.target() cf = -10000 lat_for_conv = (g.vp.pos_last[source_node][1] + g.vp.pos_first[target_node][1]) / 2 # (latitude needed for conversion of degrees to kilometers) lat_for_conv = math.radians(lat_for_conv) # need to convert to radians # because of the wrapping issue (360° wrapping incorrectly to 0°), # we check for that here lon_diff = abs(g.vp.pos_last[source_node][0] \ - g.vp.pos_first[target_node][0]) if (lon_diff > 300): lon_diff = 360 - lon_diff Delta_Cent = math.sqrt((lon_diff * 111.32 * math.cos(lat_for_conv))**2 + ((g.vp.pos_last[source_node][1] - g.vp.pos_first[target_node][1]) * 110.574)**2) # calculate the first term first_term = ((Delta_Cent - delta_cent_mean)/delta_cent_std) ** 2 # Rossbies: if (g.vp.first_av_ros[target_node] and g.vp.last_av_ros[source_node]): Delta_Ro = g.vp.last_av_ros[source_node] \ - g.vp.first_av_ros[target_node] else: # At least one of the rossbies is invalid. # Delta_Ro = delta_ro_mean Delta_Ro = 0 # Calculate the second term second_term = ((Delta_Ro - delta_ro_mean)/delta_ro_std ) ** 2 # R_Vmax 1 and 2 already exist, just get the delta Delta_R_Vmax = g.vp.last_av_rad[source_node] \ - g.vp.first_av_rad[target_node] # Calculate the third term third_term = ((Delta_R_Vmax - delta_r_mean)/delta_r_std) ** 2 ############################# # calculate the cost function ############################# cf = math.sqrt(first_term + second_term + third_term) # assign as weight to the edge g.ep.cost_function[edge] = cf t1 = time.perf_counter() timings.write(f"iterating on edges: {t1 - t0:.0f} s\n") t0 = t1 print("Saving...") if args.graphml: g.save('segments_cost_functions.graphml') else: g.save('segments_cost_functions.gt') print('All done') t1 = time.perf_counter() timings.write(f"saving: {t1 - t0:.0f} s\n") timings.close()