Interface.py 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#
#
import numpy as np
import os
import pickle
from netCDF4 import Dataset
import RPPtools as RPP
from mpi4py import MPI
#
import sys
sys.path.append(os.getcwd()+'/F90subroutines')
if MPI.COMM_WORLD.Get_rank() == 0 :
    err=os.system("cd F90subroutines; make all")
    if err != 0 :
        print("Compilation error in the FORTRAN interface")
        sys.exit()
else :
    print("Not compiling on other cores")
MPI.COMM_WORLD.Barrier()
#
import routing_interface
#
import configparser
24
config = configparser.ConfigParser({'Documentation':'false', 'nbxmax':'63', 'ROUTING_RIVERS':'50'})
25
config.read("run.def")
26 27 28
gendoc = config.get("OverAll", "Documentation")
nbxmax = config.getint("OverAll", "nbxmax")
largest_pos = config.getint("OverAll", "ROUTING_RIVERS")
29 30
#
undef_int = 999999999.9
31 32
# Order of magnitude for the area precision in m^2.
prec = 100.0
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#
# Print the documentation for the FORTRAN interface
#
if gendoc.lower() == "true" : 
    docwrapper = open('DocumentationInterface', 'w')
    docwrapper.write(routing_interface.initatmgrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.gethydrogrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.findbasins.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.globalize.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.linkup.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.fetch.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.truncate.__doc__)
    docwrapper.close
#
# Functions to access the interfaces
#
#
# initatmgrid : Initialises the grid.f90 module and passes the description of the atmospheric grid.
#
58
def initatmgrid(rank, nbcore, nbpt, modelgrid) :
59 60 61
    print("INITATMGRID corners", np.array(modelgrid.polyll).shape)
    print("INITATMGRID area", np.array(modelgrid.area).shape)
    print("INITATMGRID neighbours", np.array(modelgrid.neighbours).shape)
62 63 64 65 66 67 68 69
    routing_interface.initatmgrid(rank, nbcore, modelgrid.polyll, modelgrid.coordll, modelgrid.area, modelgrid.contfrac, modelgrid.neighbours)
    return
#
#
#
def closeinterface(comm) :
    comm.Barrier()
    routing_interface.closeinterface()
70 71 72
    return
#
#
73
#
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
def finalfetch(part, routing_area, basin_count, route_togrid, route_tobasin, fetch_in) :
    #
    fetch_out = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    partial_sum = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
    #
    maxdiff_sorted = prec*prec
    iter_count = 0
    #
    while iter_count < part.size*3 and maxdiff_sorted > prec :
        fetch_out[:,:] = 0.0
        outflow_uparea = routing_interface.finalfetch(part.landcorelist, routing_area, basin_count, route_togrid, \
                                                      route_tobasin, partial_sum, fetch_out)
        partial_sum = np.copy(fetch_out)
        part.landsendtohalo(partial_sum, order='F')
        partial_sum = part.zerocore(partial_sum, order='F')
        #
        # Find area the largest basins we need to have right.
        #
        xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
        # Precision in m^2 of the upstream areas when sorting.
        sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
        # If mono-proc no need to iterate as fetch produces the full result.
        if part.size == 1 :
            maxdiff_sorted = 0.0
        else :
            maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted))
        old_sorted[:] = sorted_outareas[0:largest_pos]
        iter_count += 1
    #
    fetch_error = np.sum(np.abs(fetch_out[part.landcorelist,:]-fetch_in[part.landcorelist,:]), axis=1)\
                                                    /np.sum(routing_area[part.landcorelist,:], axis=1)
    if np.max(fetch_error) > prec : 
        print("Rank :"+str(part.rank)+" Too large fetch error (fraction of greid area) : ", fetch_error)
          
    print("Total fetch error in fraction of grid box : ", np.sum(fetch_error))
    #
    return fetch_out
#
#
#
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
class HydroOverlap :
#
    def __init__(self, nbpt, nbvmax, sub_pts, sub_index_in, sub_area_in, sub_lon_in, sub_lat_in,  modelgrid, hydrodata) :
        #
        # Reshape stuff so that it fits into arrays
        #
        sub_index = np.zeros((nbpt,nbvmax,2), dtype=np.int8, order='F')
        sub_area = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lon = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lat = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        for ib in range(nbpt) :
            sub_area[ib,0:sub_pts[ib]] = sub_area_in[ib][:]
            sub_lon[ib,0:sub_pts[ib]] = sub_lon_in[ib][:]
            sub_lat[ib,0:sub_pts[ib]] = sub_lat_in[ib][:]
            for ip in range(sub_pts[ib]) :
                sub_index[ib,ip,:] = [sub_index_in[ib][0][ip],sub_index_in[ib][1][ip]]
        #
        trip_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        basins_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        topoind_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        fac_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        hierarchy_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        #
        trip_tmp[:,:] = np.nan
        basins_tmp[:,:] = np.nan
        for ib in range(nbpt) :
            trip_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.trip[ib][:])
            basins_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.basins[ib][:])
            topoind_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.topoind[ib][:])
            fac_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.fac[ib][:])
            hierarchy_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.disto[ib][:])
        #
        trip_tmp[np.isnan(trip_tmp)] = undef_int
        basins_tmp[np.isnan(trip_tmp)] = undef_int
        #
        # Go to the call of the FORTRAN interface
        #
        print("GETHYDROGRID : nbpt = ", nbpt, nbvmax)
        print("GETHYDROGRID : nbvmax = ", nbvmax)
        print("GETHYDROGRID : nbxmax = ", nbxmax)
        self.nbi, self.nbj, self.area_bx, self.trip_bx, self.basin_bx, self.topoind_bx, self.fac_bx, self.hierarchy_bx, \
            self.lon_bx, self.lat_bx, self.lshead_bx, self.nwbas = \
                    routing_interface.gethydrogrid(nbxmax, sub_pts, sub_index, sub_area, \
                    hydrodata.basinsmax, hydrodata.topoindmin, sub_lon, sub_lat, trip_tmp, basins_tmp, topoind_tmp, fac_tmp, hierarchy_tmp)
        #
        # Plot some diagnostics for the hydrology grid within the atmospheric meshes.
        #
        # Clean-up these arrays so that they are easy to use in Python.
        self.lon_bx[self.lon_bx > 360.]=np.nan
        self.lat_bx[self.lat_bx > 90.]=np.nan
        #
166 167 168 169
        return
#
#
#
170 171 172 173 174 175 176 177 178 179 180 181 182
class HydroSuper :
    def __init__(self, nbvmax, hydrodata, hydrooverlap) :
        #
        # Call findbasins
        #
        nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, basin_bxout, basin_bbout, self.basin_pts, basin_lshead, coast_pts = \
                    routing_interface.findbasins(nbvmax, hydrooverlap.nbi, hydrooverlap.nbj, hydrooverlap.trip_bx, \
                                                 hydrooverlap.basin_bx, hydrooverlap.fac_bx, hydrooverlap.hierarchy_bx, \
                                                 hydrooverlap.topoind_bx, hydrooverlap.lshead_bx, \
                                                 hydrooverlap.lon_bx, hydrooverlap.lat_bx)
        #
        # Call Globalize
        #
183 184 185 186 187 188
        lon_bx_tmp = hydrooverlap.lon_bx
        lon_bx_tmp[np.isnan(lon_bx_tmp)] = undef_int
        lat_bx_tmp = hydrooverlap.lat_bx
        lat_bx_tmp[np.isnan(lat_bx_tmp)] = undef_int
        self.basin_count, self.basin_notrun, self.basin_area, self.basin_cg, self.basin_hierarchy, self.basin_fac, self.basin_topoind, \
            self.basin_id, self.basin_outcoor, self.basin_type, self.basin_flowdir, \
189
            self.basin_lshead, self.outflow_grid, self.outflow_basin, self.nbcoastal, self.coastal_basin = \
190 191 192
                    routing_interface.globalize(hydrooverlap.area_bx, lon_bx_tmp, lat_bx_tmp, hydrooverlap.trip_bx, \
                                                hydrooverlap.hierarchy_bx, hydrooverlap.fac_bx, hydrooverlap.topoind_bx, hydrodata.topoindmin, \
                                                nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, self.basin_pts, basin_bxout, \
193
                                                basin_bbout, basin_lshead, coast_pts, hydrooverlap.nwbas)
194 195
        return
    #
196 197 198 199 200 201 202 203 204
    def linkup(self, hydrodata) :
        #
        # Call the linkup routine in routing_reg.
        #
        print("Invented basins =", hydrodata.basinsmax)
        self.inflow_number,self.inflow_grid,self.inflow_basin = routing_interface.linkup(nbxmax, self.basin_count, self.basin_area, self.basin_id, \
                                                                       self.basin_flowdir, self.basin_lshead, self.basin_hierarchy, \
                                                                       self.basin_fac, self.outflow_grid, self.outflow_basin, \
                                                                       self.nbcoastal, self.coastal_basin, float(hydrodata.basinsmax))
205 206
        return
    #
207
    def fetch(self, part, modelgrid) :
208
        #
209
        fetch_basin = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
210
        #
211
        self.basin_area = routing_interface.areanorm(self.basin_count, self.basin_area, self.outflow_grid)
212
        partial_sum = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
213
        #
214
        old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
215 216 217 218 219
        #
        maxdiff_sorted = prec*prec
        iter_count = 0
        #
        while iter_count < part.size*3 and maxdiff_sorted > prec :
220
            fetch_basin[:,:] = 0.0
221
            outflow_uparea = routing_interface.fetch(part.landcorelist, self.basin_count, self.basin_area, self.basin_id, self.basin_hierarchy, \
222
                                                         self.basin_fac, self.outflow_grid, self.outflow_basin, partial_sum, fetch_basin)
223 224
            partial_sum = np.copy(fetch_basin)
            part.landsendtohalo(partial_sum, order='F')
225 226
            partial_sum = part.zerocore(partial_sum, order='F')
            #
227 228 229 230 231 232 233 234 235 236 237 238
            # Find area the largest basins need at least to have.
            #
            xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
            # Precision in m^2 of the upstream areas when sorting.
            sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
            # If mono-proc no need to iterate as fetch produces the full result.
            if part.size == 1 :
                maxdiff_sorted = 0.0
            else :
                maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted))
            old_sorted[:] = sorted_outareas[0:largest_pos]
            iter_count += 1
239

240 241
        self.fetch_basin = np.copy(fetch_basin)
        #
242
        # Upstream area of the smalest river we call largest rivers. 
243
        #
244
        self.largest_rivarea = sorted_outareas[largest_pos-1]
245 246 247 248 249
        #
        #
        #
        yy=modelgrid.landscatter(np.sum(self.fetch_basin, axis=1)/np.sum(self.basin_area, axis=1))
        print("Rank :"+str(part.rank)+" OUT of fetch =+=+=+=+=+=+=+=+=+= \n"+str(yy)+"\n =+=+=+=+=+=+=+=+=+=")
250 251 252
        self.num_largest = routing_interface.rivclassification(part.landcorelist, self.basin_count, self.outflow_grid, self.outflow_basin, \
                                                               self.fetch_basin, self.largest_rivarea)
        print("Rank :"+str(part.rank)+" Area of smallest large rivers : ", self.largest_rivarea, " Nb of Large rivers on proc : ",self.num_largest)
253 254 255 256
        return
#
#
#
257
class HydroGraph :
258
    def __init__(self, nbasmax, hydrosuper, part, modelgrid) :
259
        self.nbasmax = nbasmax
260 261 262 263
        self.routing_area, self.routing_cg, self.topo_resid, self.route_nbbasin, self.route_togrid, self.route_tobasin, self.route_nbintobas, \
            self.global_basinid, self.route_outlet, self.route_type, self.origin_nbintobas, self.routing_fetch = \
                                    routing_interface.truncate(nbasmax, hydrosuper.num_largest, part.landcorelist, hydrosuper.basin_count, \
                                                               hydrosuper.basin_notrun, hydrosuper.basin_area, hydrosuper.basin_cg, \
264 265 266 267
                                                               hydrosuper.basin_topoind, hydrosuper.fetch_basin, hydrosuper.basin_id, \
                                                               hydrosuper.basin_outcoor, hydrosuper.basin_type, hydrosuper.basin_flowdir, \
                                                               hydrosuper.outflow_grid, hydrosuper.outflow_basin, \
                                                               hydrosuper.inflow_number,hydrosuper.inflow_grid,hydrosuper.inflow_basin)
268 269 270 271 272 273
        #
        self.routing_fetch = finalfetch(part, self.routing_area, self.route_nbbasin, self.route_togrid, self.route_tobasin, self.routing_fetch)
        # 
        self.num_largest = routing_interface.finalrivclass(part.landcorelist, self.route_togrid, self.route_tobasin, self.routing_fetch, \
                                                           hydrosuper.largest_rivarea)
        #
274 275
        yy=modelgrid.landscatter(np.sum(self.routing_fetch, axis=1)/np.sum(self.routing_area, axis=1))
        print ("Rank :"+str(part.rank)+" OUT of truncate =+=+=+=+=+=+=+=+=+= \n"+str(yy)+"\n =+=+=+=+=+=+=+=+=+=")
276 277
        return
    #
278 279 280 281 282
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
        cornerind=[0,2,4,6]
283
        nbcorners = len(cornerind)
284 285 286 287 288 289 290 291
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htu', self.nbasmax)
292
            outnf.createDimension('bnd', nbcorners)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        #
        # Coordinates
        #
        # Longitude
        longitude = part.gather(procgrid.lon_full)
        if part.rank == 0 :
            lon=outnf.createVariable("lon", vtyp, ('y','x'), fill_value=NCFillValue)
            lon.units="grid box centre degrees east"
            lon.title="Longitude"
            lon.axis="X"
            lon[:,:] = longitude[:,:]
        #
        # Latitude
        latitude = part.gather(procgrid.lat_full)
        if part.rank == 0 :
            lat=outnf.createVariable("lat", vtyp, ('y','x'), fill_value=NCFillValue)
            lat.units="grid box centre degrees north"
            lat.standard_name="grid latitude"
            lat.title="Latitude"
            lat.axis="Y"
            lat[:] = latitude[:,:]
        #
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        # Bounds of grid box
        #
        llonpoly=np.zeros((nbcorners,procgrid.nbland))
        llatpoly=np.zeros((nbcorners,procgrid.nbland))
        for i in range(procgrid.nbland) :
            llonpoly[:,i] = [procgrid.polyll[i][ic][0] for ic in cornerind]
            llatpoly[:,i] = [procgrid.polyll[i][ic][1] for ic in cornerind]
        lon_bnd = procgrid.landscatter(llonpoly)
        lat_bnd = procgrid.landscatter(llatpoly)
        if part.rank == 0 :
            lonbnd=outnf.createVariable("lon_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
            lonbnd.units="grid box corners degrees east"
            lonbnd.title="Longitude of Corners"
            latbnd=outnf.createVariable("lat_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
            latbnd.units="grid box corners degrees north"
            latbnd.title="Latitude of Corners"
        else :
            lonbnd= np.zeros((1,1,1))
            latbnd= np.zeros((1,1,1))
        lonbnd[:,:,:] = part.gather(lon_bnd[:,:,:])
        latbnd[:,:,:] = part.gather(lat_bnd[:,:,:])
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        #
        # Land sea mask
        #
        if part.rank == 0 :
                land=outnf.createVariable("land", vtyp, ('y','x'), fill_value=NCFillValue)
                land.units="Land Sea mask"
                land.standard_name="landsea mask"
                land.title="Land"
                land[:,:] = globalgrid.land[:,:]
        # Area
        areas = procgrid.landscatter(np.array(procgrid.area, dtype=np.float64))
        areas[np.isnan(areas)] = NCFillValue
        if part.rank == 0 :
            area=outnf.createVariable("area", vtyp, ('y','x'), fill_value=NCFillValue)
            area.units="m^2"
            area.standard_name="grid area"
            area.title="Area"
        else :
            area = np.zeros((1,1))
        area[:,:] = part.gather(areas[:,:])
        #
        # Variables
        # Once gathered on root_proc we transform them into float64. Careful, Integer variables do not have NaN ! 
        #
        rarea = procgrid.landscatter(self.routing_area[:,:], order='F')
361
        rarea = rarea.astype(vtyp, copy=False)
362 363 364 365 366 367 368 369 370
        rarea[np.isnan(rarea)] = NCFillValue
        if part.rank == 0 :
            routingarea = outnf.createVariable("routingarea", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routingarea.title = "Surface of basin"
            routingarea.units = "m^2"
        else :
            routingarea = np.zeros((1,1,1))
        routingarea[:,:,:] = part.gather(rarea)
        #
371 372
        # The field route_togrid is with indices on the local grid. That needs to be converted to the global grid.
        #
373 374 375 376 377 378 379 380 381
        itarget=-1
        for il in range(procgrid.nbland) :
            lo = procgrid.lon_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            la = procgrid.lat_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            d=np.sqrt((lo-3.13)**2+(la-39.70)**2)
            if d < 0.05 :
                itarget = il
                
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
382
            print(part.rank, itarget, " Before route_togrid = ", self.route_togrid[itarget,:])
383
        grgrid = part.l2glandindex(self.route_togrid[:,:])
384
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
385
            print(part.rank, itarget, " After route_togrid = ", self.route_togrid[itarget,:])
386
        rgrid = procgrid.landscatter(grgrid, order='F')
387
        rgrid = rgrid.astype(vtyp, copy=False)
388 389 390 391 392 393 394 395 396 397
        rgrid[rgrid >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            routetogrid = outnf.createVariable("routetogrid", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routetogrid.title = "Grid into which the basin flows"
            routetogrid.units = "-"
        else :
            routetogrid = np.zeros((1,1,1))    
        routetogrid[:,:,:] = part.gather(rgrid)
        #
        rtobasin = procgrid.landscatter(self.route_tobasin[:,:], order='F')
398
        rtobasin = rtobasin.astype(vtyp, copy=False)
399 400 401 402 403 404 405 406 407 408
        rtobasin[rtobasin >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            routetobasin = outnf.createVariable("routetobasin", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routetobasin.title = "Basin in to which the water goes"
            routetobasin.units = "-"
        else :
            routetobasin = np.zeros((1,1,1))
        routetobasin[:,:,:] = part.gather(rtobasin)
        #
        rid = procgrid.landscatter(self.global_basinid[:,:], order='F')
409
        rid = rid.astype(vtyp, copy=False)
410 411 412 413 414 415 416 417 418 419
        rid[rid >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :                           
            basinid = outnf.createVariable("basinid", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            basinid.title = "ID of basin"
            basinid.units = "-"
        else :
            basinid = np.zeros((1,1,1))
        basinid[:,:,:] = part.gather(rid)
        #
        rintobas = procgrid.landscatter(self.route_nbintobas[:])
420
        rintobas = rintobas.astype(vtyp, copy=False)
421 422 423 424 425 426 427 428 429 430
        rintobas[rintobas >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 : 
            routenbintobas = outnf.createVariable("routenbintobas", vtyp, ('y','x'), fill_value=NCFillValue)
            routenbintobas.title = "Number of basin into current one"
            routenbintobas.units = "-"
        else :
            routenbintobas = np.zeros((1,1))
        routenbintobas[:,:] = part.gather(rintobas)
        #
        onbintobas = procgrid.landscatter(self.origin_nbintobas[:])
431
        onbintobas = onbintobas.astype(vtyp, copy=False)
432 433 434 435 436 437 438 439 440 441
        onbintobas[onbintobas >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            originnbintobas = outnf.createVariable("originnbintobas", vtyp, ('y','x'), fill_value=NCFillValue)
            originnbintobas.title = "Number of sub-grid basin into current one before truncation"
            originnbintobas.units = "-"
        else :
            originnbintobas = np.zeros((1,1))
        originnbintobas[:,:] = part.gather(onbintobas)
        #
        olat = procgrid.landscatter(self.route_outlet[:,:,0], order='F')
442
        olat = olat.astype(vtyp, copy=False)
443 444 445 446 447 448 449 450 451 452
        olat[np.isnan(olat)] = NCFillValue
        if part.rank == 0 :
            outletlat = outnf.createVariable("outletlat", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outletlat.title = "Latitude of Outlet"
            outletlat.title = "degrees north"
        else :
            outletlat = np.zeros((1,1,1))
        outletlat[:,:,:] = part.gather(olat)
        #
        olon = procgrid.landscatter(self.route_outlet[:,:,1], order='F')
453
        olon = olon.astype(vtyp, copy=False)
454 455 456 457 458 459 460 461 462 463
        olon[np.isnan(olon)] = NCFillValue
        if part.rank == 0 :
            outletlon = outnf.createVariable("outletlon", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outletlon.title = "Longitude of outlet"
            outletlon.units = "degrees east"
        else :
            outletlon = np.zeros((1,1,1))
        outletlon[:,:,:] = part.gather(olon)
        #
        otype = procgrid.landscatter(self.route_type[:,:], order='F')
464
        otype = otype.astype(vtyp, copy=False)
465 466 467 468 469 470 471 472 473 474
        otype[np.isnan(otype)] = NCFillValue
        if part.rank == 0 :
            outlettype = outnf.createVariable("outlettype", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outlettype.title = "Type of outlet"
            outlettype.units = "code"
        else :
            outlettype = np.zeros((1,1,1))
        outlettype[:,:,:] = part.gather(otype)
        #
        tind = procgrid.landscatter(self.topo_resid[:,:], order='F')
475
        tind = tind.astype(vtyp, copy=False)
476 477 478 479 480 481 482 483 484
        tind[np.isnan(tind)] = NCFillValue
        if part.rank == 0 :
            topoindex = outnf.createVariable("topoindex", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            topoindex.title = "Topographic index of the retention time"
            topoindex.units = "m"
        else :
            topoindex = np.zeros((1,1,1))
        topoindex[:,:,:] = part.gather(tind)
        #
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
        # Save centre of gravity of HTU
        #
        cg = procgrid.landscatter(self.routing_cg[:,:,:], order='F')
        cg = cg.astype(vtyp, copy=False)
        cg[np.isnan(cg)] = NCFillValue
        if part.rank == 0 :
            CG_lon = outnf.createVariable("CG_lon", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            CG_lon.title = "Longitude of centre of gravity of HTU"
            CG_lon.units = "degrees east"
            CG_lat = outnf.createVariable("CG_lat", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            CG_lat.title = "Latitude of centre of gravity of HTU"
            CG_lat.units = "degrees north"
        else :
            CG_lon = np.zeros((1,1,1))
            CG_lat = np.zeros((1,1,1))
        CG_lon[:,:,:] = part.gather(cg[1,:,:,:])
        CG_lat[:,:,:] = part.gather(cg[0,:,:,:])
        #
503 504 505 506 507 508 509 510 511 512 513 514 515
        # Save the fetch of each basin
        #
        fe =  procgrid.landscatter(self.routing_fetch[:,:], order='F')
        fe = fe.astype(vtyp, copy=False)
        fe[np.isnan(fe)] = NCFillValue
        if part.rank == 0 :
            fetch = outnf.createVariable("fetch", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            fetch.title = "Fetch contributing to each HTU"
            fetch.units = "m^2"
        else :
            fetch = np.zeros((1,1,1))
        fetch[:,:,:] = part.gather(fe)
        #
516 517
        if part.rank == 0 :
            outnf.close()
518 519
        #
        return
520 521 522 523