Interface.py 28.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
#
#
import numpy as np
import os
import pickle
from netCDF4 import Dataset
import RPPtools as RPP
from mpi4py import MPI
#
import sys
11 12 13 14 15
from inspect import currentframe, getframeinfo
#
localdir=os.path.dirname(getframeinfo(currentframe()).filename)
sys.path.append(localdir+'/F90subroutines')
F90=localdir+'/F90subroutines'
16
if MPI.COMM_WORLD.Get_rank() == 0 :
17
    err=os.system("cd "+F90+"; make all")
18 19 20 21 22 23 24 25 26 27
    if err != 0 :
        print("Compilation error in the FORTRAN interface")
        sys.exit()
else :
    print("Not compiling on other cores")
MPI.COMM_WORLD.Barrier()
#
import routing_interface
#
import configparser
28
config = configparser.ConfigParser({'Documentation':'false', 'nbxmax':'63', 'ROUTING_RIVERS':'50'})
29
config.read("run.def")
30 31 32
gendoc = config.get("OverAll", "Documentation")
nbxmax = config.getint("OverAll", "nbxmax")
largest_pos = config.getint("OverAll", "ROUTING_RIVERS")
33 34
#
undef_int = 999999999.9
35 36
# Order of magnitude for the area precision in m^2.
prec = 100.0
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#
# Print the documentation for the FORTRAN interface
#
if gendoc.lower() == "true" : 
    docwrapper = open('DocumentationInterface', 'w')
    docwrapper.write(routing_interface.initatmgrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.gethydrogrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.findbasins.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.globalize.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.linkup.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.fetch.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.truncate.__doc__)
    docwrapper.close
#
# Functions to access the interfaces
#
#
# initatmgrid : Initialises the grid.f90 module and passes the description of the atmospheric grid.
#
62
def initatmgrid(rank, nbcore, nbpt, modelgrid) :
63 64 65
    print("INITATMGRID corners", np.array(modelgrid.polyll).shape)
    print("INITATMGRID area", np.array(modelgrid.area).shape)
    print("INITATMGRID neighbours", np.array(modelgrid.neighbours).shape)
66 67 68 69 70 71 72 73
    routing_interface.initatmgrid(rank, nbcore, modelgrid.polyll, modelgrid.coordll, modelgrid.area, modelgrid.contfrac, modelgrid.neighbours)
    return
#
#
#
def closeinterface(comm) :
    comm.Barrier()
    routing_interface.closeinterface()
74 75 76
    return
#
#
77
#
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
def addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind) :
    #
    # Longitude
    longitude = part.gather(procgrid.lon_full)
    if part.rank == 0 :
        lon=outnf.createVariable("lon", vtyp, ('y','x'), fill_value=NCFillValue)
        lon.units="grid box centre degrees east"
        lon.title="Longitude"
        lon.axis="X"
        lon[:,:] = longitude[:,:]
    #
    # Latitude
    latitude = part.gather(procgrid.lat_full)
    if part.rank == 0 :
        lat=outnf.createVariable("lat", vtyp, ('y','x'), fill_value=NCFillValue)
        lat.units="grid box centre degrees north"
        lat.standard_name="grid latitude"
        lat.title="Latitude"
        lat.axis="Y"
        lat[:] = latitude[:,:]
    #
    # Bounds of grid box
    #
    llonpoly=np.zeros((nbcorners,procgrid.nbland))
    llatpoly=np.zeros((nbcorners,procgrid.nbland))
    for i in range(procgrid.nbland) :
        llonpoly[:,i] = [procgrid.polyll[i][ic][0] for ic in cornerind]
        llatpoly[:,i] = [procgrid.polyll[i][ic][1] for ic in cornerind]
        lon_bnd = procgrid.landscatter(llonpoly)
        lat_bnd = procgrid.landscatter(llatpoly)
    if part.rank == 0 :
        lonbnd=outnf.createVariable("lon_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        lonbnd.units="grid box corners degrees east"
        lonbnd.title="Longitude of Corners"
        latbnd=outnf.createVariable("lat_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        latbnd.units="grid box corners degrees north"
        latbnd.title="Latitude of Corners"
    else :
        lonbnd= np.zeros((1,1,1))
        latbnd= np.zeros((1,1,1))
    lonbnd[:,:,:] = part.gather(lon_bnd[:,:,:])
    latbnd[:,:,:] = part.gather(lat_bnd[:,:,:])
    #
    # Land sea mask
    #
    if part.rank == 0 :
        land=outnf.createVariable("land", vtyp, ('y','x'), fill_value=NCFillValue)
        land.units="Land Sea mask"
        land.standard_name="landsea mask"
        land.title="Land"
        land[:,:] = globalgrid.land[:,:]
    # Area
    areas = procgrid.landscatter(np.array(procgrid.area, dtype=np.float64))
    areas[np.isnan(areas)] = NCFillValue
    if part.rank == 0 :
        area=outnf.createVariable("area", vtyp, ('y','x'), fill_value=NCFillValue)
        area.units="m^2"
        area.standard_name="grid area"
        area.title="Area"
    else :
        area = np.zeros((1,1))
    area[:,:] = part.gather(areas[:,:])
    #
    return
#
# Add environment to netCDF file
#
def addenvironment(outnf, procgrid, part, vtyp, NCFillValue, nbpt) :
    #
    nbpt_proc = np.arange(1,nbpt+1, dtype=vtyp)
    proc = np.full(nbpt, part.rank, dtype=vtyp)
    # Environment
    # nbpt_proc
    subpt = procgrid.landscatter(nbpt_proc[:], order='F')
    subpt = subpt.astype(vtyp, copy=False)
    subpt[np.isnan(subpt)] = NCFillValue
    if part.rank == 0 :
        subptgrid = outnf.createVariable("nbpt_proc", vtyp, ('y','x'), fill_value=NCFillValue)
        subptgrid.title = "gridpoint reference inside each proc"
        subptgrid.units = "-"
    else :
        subptgrid = np.zeros((1,1))
    subptgrid[:,:] = part.gather(subpt)
    #
    # rank
    procnum = procgrid.landscatter(proc[:], order='F')
    procnum = procnum.astype(vtyp, copy=False)
    procnum[np.isnan(procnum)] = NCFillValue
    if part.rank == 0 :
        procn = outnf.createVariable("proc_num", vtyp, ('y','x'), fill_value=NCFillValue)
        procn.title = "rank"
        procn.units = "-"
    else :
        procn = np.zeros((1,1))
    procn[:,:] = part.gather(procnum)
    #
    return
#
#
#
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
def finalfetch(part, routing_area, basin_count, route_togrid, route_tobasin, fetch_in) :
    #
    fetch_out = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    partial_sum = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
    #
    maxdiff_sorted = prec*prec
    iter_count = 0
    #
    while iter_count < part.size*3 and maxdiff_sorted > prec :
        fetch_out[:,:] = 0.0
        outflow_uparea = routing_interface.finalfetch(part.landcorelist, routing_area, basin_count, route_togrid, \
                                                      route_tobasin, partial_sum, fetch_out)
        partial_sum = np.copy(fetch_out)
        part.landsendtohalo(partial_sum, order='F')
        partial_sum = part.zerocore(partial_sum, order='F')
        #
        # Find area the largest basins we need to have right.
        #
        xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
        # Precision in m^2 of the upstream areas when sorting.
        sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
        # If mono-proc no need to iterate as fetch produces the full result.
        if part.size == 1 :
            maxdiff_sorted = 0.0
        else :
            maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted))
        old_sorted[:] = sorted_outareas[0:largest_pos]
        iter_count += 1
    #
    fetch_error = np.sum(np.abs(fetch_out[part.landcorelist,:]-fetch_in[part.landcorelist,:]), axis=1)\
                                                    /np.sum(routing_area[part.landcorelist,:], axis=1)
    if np.max(fetch_error) > prec : 
        print("Rank :"+str(part.rank)+" Too large fetch error (fraction of greid area) : ", fetch_error)
          
    print("Total fetch error in fraction of grid box : ", np.sum(fetch_error))
    #
    return fetch_out
#
#
#
219 220
class HydroOverlap :
#
Anthony Schrapffer's avatar
Anthony Schrapffer committed
221
    def __init__(self, nbpt, nbvmax, sub_pts, sub_index_in, sub_area_in, sub_lon_in, sub_lat_in, part, modelgrid, hydrodata) :
222 223 224 225 226 227 228 229 230 231 232 233 234 235
        #
        # Reshape stuff so that it fits into arrays
        #
        sub_index = np.zeros((nbpt,nbvmax,2), dtype=np.int8, order='F')
        sub_area = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lon = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lat = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        for ib in range(nbpt) :
            sub_area[ib,0:sub_pts[ib]] = sub_area_in[ib][:]
            sub_lon[ib,0:sub_pts[ib]] = sub_lon_in[ib][:]
            sub_lat[ib,0:sub_pts[ib]] = sub_lat_in[ib][:]
            for ip in range(sub_pts[ib]) :
                sub_index[ib,ip,:] = [sub_index_in[ib][0][ip],sub_index_in[ib][1][ip]]
        #
Anthony Schrapffer's avatar
Anthony Schrapffer committed
236 237
        part.landsendtohalo(sub_area, order='F')
        #
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        trip_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        basins_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        topoind_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        fac_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        hierarchy_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        #
        trip_tmp[:,:] = np.nan
        basins_tmp[:,:] = np.nan
        for ib in range(nbpt) :
            trip_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.trip[ib][:])
            basins_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.basins[ib][:])
            topoind_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.topoind[ib][:])
            fac_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.fac[ib][:])
            hierarchy_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.disto[ib][:])
        #
        trip_tmp[np.isnan(trip_tmp)] = undef_int
        basins_tmp[np.isnan(trip_tmp)] = undef_int
        #
        # Go to the call of the FORTRAN interface
        #
        print("GETHYDROGRID : nbpt = ", nbpt, nbvmax)
        print("GETHYDROGRID : nbvmax = ", nbvmax)
        print("GETHYDROGRID : nbxmax = ", nbxmax)
        self.nbi, self.nbj, self.area_bx, self.trip_bx, self.basin_bx, self.topoind_bx, self.fac_bx, self.hierarchy_bx, \
            self.lon_bx, self.lat_bx, self.lshead_bx, self.nwbas = \
                    routing_interface.gethydrogrid(nbxmax, sub_pts, sub_index, sub_area, \
                    hydrodata.basinsmax, hydrodata.topoindmin, sub_lon, sub_lat, trip_tmp, basins_tmp, topoind_tmp, fac_tmp, hierarchy_tmp)
        #
        # Plot some diagnostics for the hydrology grid within the atmospheric meshes.
        #
        # Clean-up these arrays so that they are easy to use in Python.
        self.lon_bx[self.lon_bx > 360.]=np.nan
        self.lat_bx[self.lat_bx > 90.]=np.nan
        #
272 273 274 275
        return
#
#
#
276 277
class HydroSuper :
    def __init__(self, nbvmax, hydrodata, hydrooverlap) :
278 279 280 281
        #
        # Keep largest possible number of HTUs
        #
        self.nbhtuext = nbvmax
282 283 284 285 286 287 288 289 290 291 292
        #
        # Call findbasins
        #
        nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, basin_bxout, basin_bbout, self.basin_pts, basin_lshead, coast_pts = \
                    routing_interface.findbasins(nbvmax, hydrooverlap.nbi, hydrooverlap.nbj, hydrooverlap.trip_bx, \
                                                 hydrooverlap.basin_bx, hydrooverlap.fac_bx, hydrooverlap.hierarchy_bx, \
                                                 hydrooverlap.topoind_bx, hydrooverlap.lshead_bx, \
                                                 hydrooverlap.lon_bx, hydrooverlap.lat_bx)
        #
        # Call Globalize
        #
293 294 295 296 297 298
        lon_bx_tmp = hydrooverlap.lon_bx
        lon_bx_tmp[np.isnan(lon_bx_tmp)] = undef_int
        lat_bx_tmp = hydrooverlap.lat_bx
        lat_bx_tmp[np.isnan(lat_bx_tmp)] = undef_int
        self.basin_count, self.basin_notrun, self.basin_area, self.basin_cg, self.basin_hierarchy, self.basin_fac, self.basin_topoind, \
            self.basin_id, self.basin_outcoor, self.basin_type, self.basin_flowdir, \
299
            self.basin_lshead, self.outflow_grid, self.outflow_basin, self.nbcoastal, self.coastal_basin = \
300 301 302
                    routing_interface.globalize(hydrooverlap.area_bx, lon_bx_tmp, lat_bx_tmp, hydrooverlap.trip_bx, \
                                                hydrooverlap.hierarchy_bx, hydrooverlap.fac_bx, hydrooverlap.topoind_bx, hydrodata.topoindmin, \
                                                nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, self.basin_pts, basin_bxout, \
303
                                                basin_bbout, basin_lshead, coast_pts, hydrooverlap.nwbas)
304
        self.nbpt = self.basin_count.shape[0]
305 306
        return
    #
307 308 309 310 311 312 313 314 315
    def linkup(self, hydrodata) :
        #
        # Call the linkup routine in routing_reg.
        #
        print("Invented basins =", hydrodata.basinsmax)
        self.inflow_number,self.inflow_grid,self.inflow_basin = routing_interface.linkup(nbxmax, self.basin_count, self.basin_area, self.basin_id, \
                                                                       self.basin_flowdir, self.basin_lshead, self.basin_hierarchy, \
                                                                       self.basin_fac, self.outflow_grid, self.outflow_basin, \
                                                                       self.nbcoastal, self.coastal_basin, float(hydrodata.basinsmax))
316 317
        return
    #
POLCHER Jan's avatar
POLCHER Jan committed
318
    def fetch(self, part) :
319
        #
320
        fetch_basin = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
321
        #
322
        self.basin_area = routing_interface.areanorm(self.basin_count, self.basin_area, self.outflow_grid)
323
        partial_sum = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
324
        #
325
        old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
326 327 328 329 330
        #
        maxdiff_sorted = prec*prec
        iter_count = 0
        #
        while iter_count < part.size*3 and maxdiff_sorted > prec :
331
            fetch_basin[:,:] = 0.0
332
            outflow_uparea = routing_interface.fetch(part.landcorelist, self.basin_count, self.basin_area, self.basin_id, self.basin_hierarchy, \
333
                                                         self.basin_fac, self.outflow_grid, self.outflow_basin, partial_sum, fetch_basin)
334 335
            partial_sum = np.copy(fetch_basin)
            part.landsendtohalo(partial_sum, order='F')
336 337
            partial_sum = part.zerocore(partial_sum, order='F')
            #
338 339 340 341 342 343 344 345 346 347 348 349
            # Find area the largest basins need at least to have.
            #
            xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
            # Precision in m^2 of the upstream areas when sorting.
            sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
            # If mono-proc no need to iterate as fetch produces the full result.
            if part.size == 1 :
                maxdiff_sorted = 0.0
            else :
                maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted))
            old_sorted[:] = sorted_outareas[0:largest_pos]
            iter_count += 1
350

351 352
        self.fetch_basin = np.copy(fetch_basin)
        #
353
        # Upstream area of the smalest river we call largest rivers. 
354
        #
355
        self.largest_rivarea = sorted_outareas[largest_pos-1]
356 357 358
        #
        #
        #
359 360 361
        self.num_largest = routing_interface.rivclassification(part.landcorelist, self.basin_count, self.outflow_grid, self.outflow_basin, \
                                                               self.fetch_basin, self.largest_rivarea)
        print("Rank :"+str(part.rank)+" Area of smallest large rivers : ", self.largest_rivarea, " Nb of Large rivers on proc : ",self.num_largest)
362
        return
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    #
    #
    #
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
        cornerind=[0,2,4,6]
        nbcorners = len(cornerind)
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htuext', self.nbhtuext)
            outnf.createDimension('bnd', nbcorners)
        else :
            outnf = None
        #
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
        # 
        # Variables
        # Once gathered on root_proc we transform them into float64. Careful, Integer variables do not have NaN !
        #
        # self.basin_id
        bid = procgrid.landscatter(self.basin_id[:,:].astype(vtyp), order='F')
        bid[np.isnan(bid)] = NCFillValue
        if part.rank == 0 :
            basinid = outnf.createVariable("HTUid", vtyp, ('htuext','y','x'), fill_value=NCFillValue)
            basinid.title = "ID for each HTU"
            basinid.units = "-"
        else :
            basinid = np.zeros((1,1,1))
        basinid[:,:,:] = part.gather(bid)
        #
        #self.basin_count
        bcnt = procgrid.landscatter(self.basin_count[:].astype(vtyp), order='F')
        bcnt[np.isnan(bcnt)] = NCFillValue
        if part.rank == 0 :
            basincnt = outnf.createVariable("HTUcount", vtyp, ('y','x'), fill_value=NCFillValue)
            basincnt.title = "HTU count"
            basincnt.units = "-"
        else :
            basincnt = np.zeros((1,1))
        basincnt[:,:] = part.gather(bcnt)
        #
        #self.basin_area
        ba = procgrid.landscatter(self.basin_area[:,:].astype(vtyp), order='F')
        ba[np.isnan(ba)] = NCFillValue
        if part.rank == 0 :
            basinarea = outnf.createVariable("HTUarea", vtyp, ('htuext','y','x'), fill_value=NCFillValue)
            basinarea.title = "HTU area"
            basinarea.units = "m^2"
        else :
            basinarea = np.zeros((1,1,1))
        basinarea[:,:,:] = part.gather(ba)
        #
        #self.outflow_grid
        og = procgrid.landscatter(self.outflow_grid[:,:].astype(vtyp), order='F')
        og[np.isnan(og)] = NCFillValue
        if part.rank == 0 :
            outgrid = outnf.createVariable("HTUoutgrid", vtyp, ('htuext','y','x'), fill_value=NCFillValue)
            outgrid.title = "HTU outflow grid"
            outgrid.units = "-"
        else :
            outgrid = np.zeros((1,1,1))
        outgrid[:,:,:] = part.gather(og)
        #
        #self.outflow_basin
        ob = procgrid.landscatter(self.outflow_basin[:,:].astype(vtyp), order='F')
        ob[np.isnan(ob)] = NCFillValue
        if part.rank == 0 :
            outbas = outnf.createVariable("HTUoutbasin", vtyp, ('htuext','y','x'), fill_value=NCFillValue)
            outbas.title = "Outflow HTU of grid"
            outbas.units = "-"
        else :
            outbas = np.zeros((1,1,1))
        outbas[:,:,:] = part.gather(ob)
        #
        # Save the fetch of each basin
        #
        fe = procgrid.landscatter(self.fetch_basin[:,:].astype(vtyp), order='F')
        fe[np.isnan(fe)] = NCFillValue
        if part.rank == 0 :
            fetch = outnf.createVariable("fetch", vtyp, ('htuext','y','x'), fill_value=NCFillValue)
            fetch.title = "Fetch contributing to each HTU"
            fetch.units = "m^2"
        else :
            fetch = np.zeros((1,1,1))
        fetch[:,:,:] = part.gather(fe)
        #
        # Close file
        #
        if part.rank == 0 :
            outnf.close()
        #
        return
463 464 465
#
#
#
466
class HydroGraph :
POLCHER Jan's avatar
POLCHER Jan committed
467
    def __init__(self, nbasmax, hydrosuper, part) :
468
        #
469
        self.nbasmax = nbasmax
470 471
        self.nbpt = hydrosuper.basin_count.shape[0]
        #
472 473 474 475
        self.routing_area, self.routing_cg, self.topo_resid, self.route_nbbasin, self.route_togrid, self.route_tobasin, self.route_nbintobas, \
            self.global_basinid, self.route_outlet, self.route_type, self.origin_nbintobas, self.routing_fetch = \
                                    routing_interface.truncate(nbasmax, hydrosuper.num_largest, part.landcorelist, hydrosuper.basin_count, \
                                                               hydrosuper.basin_notrun, hydrosuper.basin_area, hydrosuper.basin_cg, \
476 477 478 479
                                                               hydrosuper.basin_topoind, hydrosuper.fetch_basin, hydrosuper.basin_id, \
                                                               hydrosuper.basin_outcoor, hydrosuper.basin_type, hydrosuper.basin_flowdir, \
                                                               hydrosuper.outflow_grid, hydrosuper.outflow_basin, \
                                                               hydrosuper.inflow_number,hydrosuper.inflow_grid,hydrosuper.inflow_basin)
480 481 482 483 484 485
        #
        self.routing_fetch = finalfetch(part, self.routing_area, self.route_nbbasin, self.route_togrid, self.route_tobasin, self.routing_fetch)
        # 
        self.num_largest = routing_interface.finalrivclass(part.landcorelist, self.route_togrid, self.route_tobasin, self.routing_fetch, \
                                                           hydrosuper.largest_rivarea)
        #
486 487
        return
    #
488 489 490 491 492
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
        cornerind=[0,2,4,6]
493
        nbcorners = len(cornerind)
494 495 496 497 498 499 500 501
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htu', self.nbasmax)
502
            outnf.createDimension('bnd', nbcorners)
503
        else :
504
            outnf = None
505
        #
506 507
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
508
        #
509 510
        # The field route_togrid is with indices on the local grid. That needs to be converted to the global grid.
        #
511 512 513 514 515 516 517 518 519
        itarget=-1
        for il in range(procgrid.nbland) :
            lo = procgrid.lon_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            la = procgrid.lat_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            d=np.sqrt((lo-3.13)**2+(la-39.70)**2)
            if d < 0.05 :
                itarget = il
                
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
520
            print(part.rank, itarget, " Before route_togrid = ", self.route_togrid[itarget,:])
521
        grgrid = part.l2glandindex(self.route_togrid[:,:])
522
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
523
            print(part.rank, itarget, " After route_togrid = ", self.route_togrid[itarget,:])
524
        rgrid = procgrid.landscatter(grgrid.astype(vtyp), order='F')
525 526 527 528 529 530 531 532 533
        rgrid[rgrid >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            routetogrid = outnf.createVariable("routetogrid", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routetogrid.title = "Grid into which the basin flows"
            routetogrid.units = "-"
        else :
            routetogrid = np.zeros((1,1,1))    
        routetogrid[:,:,:] = part.gather(rgrid)
        #
534
        rtobasin = procgrid.landscatter(self.route_tobasin[:,:].astype(vtyp), order='F')
535
        rtobasin = rtobasin.astype(vtyp, copy=False)
536 537 538 539 540 541 542 543 544
        rtobasin[rtobasin >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            routetobasin = outnf.createVariable("routetobasin", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routetobasin.title = "Basin in to which the water goes"
            routetobasin.units = "-"
        else :
            routetobasin = np.zeros((1,1,1))
        routetobasin[:,:,:] = part.gather(rtobasin)
        #
545
        rid = procgrid.landscatter(self.global_basinid[:,:].astype(vtyp), order='F')
546 547 548 549 550 551 552 553 554
        rid[rid >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :                           
            basinid = outnf.createVariable("basinid", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            basinid.title = "ID of basin"
            basinid.units = "-"
        else :
            basinid = np.zeros((1,1,1))
        basinid[:,:,:] = part.gather(rid)
        #
555
        rintobas = procgrid.landscatter(self.route_nbintobas[:].astype(vtyp))
556 557 558 559 560 561 562 563 564
        rintobas[rintobas >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 : 
            routenbintobas = outnf.createVariable("routenbintobas", vtyp, ('y','x'), fill_value=NCFillValue)
            routenbintobas.title = "Number of basin into current one"
            routenbintobas.units = "-"
        else :
            routenbintobas = np.zeros((1,1))
        routenbintobas[:,:] = part.gather(rintobas)
        #
565
        onbintobas = procgrid.landscatter(self.origin_nbintobas[:].astype(vtyp))
566 567 568 569 570 571 572 573 574
        onbintobas[onbintobas >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            originnbintobas = outnf.createVariable("originnbintobas", vtyp, ('y','x'), fill_value=NCFillValue)
            originnbintobas.title = "Number of sub-grid basin into current one before truncation"
            originnbintobas.units = "-"
        else :
            originnbintobas = np.zeros((1,1))
        originnbintobas[:,:] = part.gather(onbintobas)
        #
575
        olat = procgrid.landscatter(self.route_outlet[:,:,0].astype(vtyp), order='F')
576 577 578 579 580 581 582 583 584
        olat[np.isnan(olat)] = NCFillValue
        if part.rank == 0 :
            outletlat = outnf.createVariable("outletlat", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outletlat.title = "Latitude of Outlet"
            outletlat.title = "degrees north"
        else :
            outletlat = np.zeros((1,1,1))
        outletlat[:,:,:] = part.gather(olat)
        #
585
        olon = procgrid.landscatter(self.route_outlet[:,:,1].astype(vtyp), order='F')
586 587 588 589 590 591 592 593 594
        olon[np.isnan(olon)] = NCFillValue
        if part.rank == 0 :
            outletlon = outnf.createVariable("outletlon", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outletlon.title = "Longitude of outlet"
            outletlon.units = "degrees east"
        else :
            outletlon = np.zeros((1,1,1))
        outletlon[:,:,:] = part.gather(olon)
        #
595
        otype = procgrid.landscatter(self.route_type[:,:].astype(vtyp), order='F')
596 597 598 599 600 601 602 603 604
        otype[np.isnan(otype)] = NCFillValue
        if part.rank == 0 :
            outlettype = outnf.createVariable("outlettype", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outlettype.title = "Type of outlet"
            outlettype.units = "code"
        else :
            outlettype = np.zeros((1,1,1))
        outlettype[:,:,:] = part.gather(otype)
        #
605
        tind = procgrid.landscatter(self.topo_resid[:,:].astype(vtyp), order='F')
606 607 608 609 610 611 612 613 614
        tind[np.isnan(tind)] = NCFillValue
        if part.rank == 0 :
            topoindex = outnf.createVariable("topoindex", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            topoindex.title = "Topographic index of the retention time"
            topoindex.units = "m"
        else :
            topoindex = np.zeros((1,1,1))
        topoindex[:,:,:] = part.gather(tind)
        #
615 616
        # Save centre of gravity of HTU
        #
617
        cg = procgrid.landscatter(self.routing_cg[:,:,:].astype(vtyp), order='F')
618 619 620 621 622 623 624 625 626 627 628 629 630 631
        cg[np.isnan(cg)] = NCFillValue
        if part.rank == 0 :
            CG_lon = outnf.createVariable("CG_lon", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            CG_lon.title = "Longitude of centre of gravity of HTU"
            CG_lon.units = "degrees east"
            CG_lat = outnf.createVariable("CG_lat", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            CG_lat.title = "Latitude of centre of gravity of HTU"
            CG_lat.units = "degrees north"
        else :
            CG_lon = np.zeros((1,1,1))
            CG_lat = np.zeros((1,1,1))
        CG_lon[:,:,:] = part.gather(cg[1,:,:,:])
        CG_lat[:,:,:] = part.gather(cg[0,:,:,:])
        #
632 633
        # Save the fetch of each basin
        #
634
        fe =  procgrid.landscatter(self.routing_fetch[:,:].astype(vtyp), order='F')
635 636 637 638 639 640 641 642 643
        fe[np.isnan(fe)] = NCFillValue
        if part.rank == 0 :
            fetch = outnf.createVariable("fetch", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            fetch.title = "Fetch contributing to each HTU"
            fetch.units = "m^2"
        else :
            fetch = np.zeros((1,1,1))
        fetch[:,:,:] = part.gather(fe)
        #
644 645
        if part.rank == 0 :
            outnf.close()
646 647
        #
        return
648 649 650 651