Interface.py 33.9 KB
Newer Older
1 2 3 4 5 6 7 8
#
#
import numpy as np
import os
import pickle
from netCDF4 import Dataset
import RPPtools as RPP
from mpi4py import MPI
9
import gc
10 11
#
import sys
12 13 14 15 16
from inspect import currentframe, getframeinfo
#
localdir=os.path.dirname(getframeinfo(currentframe()).filename)
sys.path.append(localdir+'/F90subroutines')
F90=localdir+'/F90subroutines'
17
if MPI.COMM_WORLD.Get_rank() == 0 :
18
    err=os.system("cd "+F90+"; make all")
19 20 21 22 23 24 25 26 27 28
    if err != 0 :
        print("Compilation error in the FORTRAN interface")
        sys.exit()
else :
    print("Not compiling on other cores")
MPI.COMM_WORLD.Barrier()
#
import routing_interface
#
import configparser
29
config = configparser.ConfigParser()
30
config.read("run.def")
31 32 33
gendoc = config.get("OverAll", "Documentation", fallback='false')
nbxmax = config.getint("OverAll", "nbxmax", fallback=63)
largest_pos = config.getint("OverAll", "ROUTING_RIVERS", fallback=50)
34 35
#
undef_int = 999999999.9
36 37
# Order of magnitude for the area precision in m^2.
prec = 100.0
38 39 40
#
# Print the documentation for the FORTRAN interface
#
41
if gendoc.lower() == "true" :
42 43 44 45 46 47 48 49 50 51 52 53 54
    docwrapper = open('DocumentationInterface', 'w')
    docwrapper.write(routing_interface.initatmgrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.gethydrogrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.findbasins.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.globalize.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.linkup.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.fetch.__doc__)
    docwrapper.write("====================================================================\n")
55 56 57 58
    docwrapper.write(routing_interface.finish_truncate.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.killbas.__doc__)

59 60 61 62 63 64 65
    docwrapper.close
#
# Functions to access the interfaces
#
#
# initatmgrid : Initialises the grid.f90 module and passes the description of the atmospheric grid.
#
66
def initatmgrid(rank, nbcore, nbpt, modelgrid) :
67 68 69
    print("INITATMGRID corners", np.array(modelgrid.polyll).shape)
    print("INITATMGRID area", np.array(modelgrid.area).shape)
    print("INITATMGRID neighbours", np.array(modelgrid.neighbours).shape)
70 71 72 73 74 75 76 77
    routing_interface.initatmgrid(rank, nbcore, modelgrid.polyll, modelgrid.coordll, modelgrid.area, modelgrid.contfrac, modelgrid.neighbours)
    return
#
#
#
def closeinterface(comm) :
    comm.Barrier()
    routing_interface.closeinterface()
78 79 80
    return
#
#
81
#
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind) :
    #
    # Longitude
    longitude = part.gather(procgrid.lon_full)
    if part.rank == 0 :
        lon=outnf.createVariable("lon", vtyp, ('y','x'), fill_value=NCFillValue)
        lon.units="grid box centre degrees east"
        lon.title="Longitude"
        lon.axis="X"
        lon[:,:] = longitude[:,:]
    #
    # Latitude
    latitude = part.gather(procgrid.lat_full)
    if part.rank == 0 :
        lat=outnf.createVariable("lat", vtyp, ('y','x'), fill_value=NCFillValue)
        lat.units="grid box centre degrees north"
        lat.standard_name="grid latitude"
        lat.title="Latitude"
        lat.axis="Y"
        lat[:] = latitude[:,:]
    #
    # Bounds of grid box
    #
    llonpoly=np.zeros((nbcorners,procgrid.nbland))
    llatpoly=np.zeros((nbcorners,procgrid.nbland))
    for i in range(procgrid.nbland) :
        llonpoly[:,i] = [procgrid.polyll[i][ic][0] for ic in cornerind]
        llatpoly[:,i] = [procgrid.polyll[i][ic][1] for ic in cornerind]
        lon_bnd = procgrid.landscatter(llonpoly)
        lat_bnd = procgrid.landscatter(llatpoly)
    if part.rank == 0 :
        lonbnd=outnf.createVariable("lon_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        lonbnd.units="grid box corners degrees east"
        lonbnd.title="Longitude of Corners"
        latbnd=outnf.createVariable("lat_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        latbnd.units="grid box corners degrees north"
        latbnd.title="Latitude of Corners"
    else :
        lonbnd= np.zeros((1,1,1))
        latbnd= np.zeros((1,1,1))
    lonbnd[:,:,:] = part.gather(lon_bnd[:,:,:])
    latbnd[:,:,:] = part.gather(lat_bnd[:,:,:])
    #
    # Land sea mask
    #
    if part.rank == 0 :
        land=outnf.createVariable("land", vtyp, ('y','x'), fill_value=NCFillValue)
        land.units="Land Sea mask"
        land.standard_name="landsea mask"
        land.title="Land"
        land[:,:] = globalgrid.land[:,:]
    # Area
    areas = procgrid.landscatter(np.array(procgrid.area, dtype=np.float64))
    areas[np.isnan(areas)] = NCFillValue
    if part.rank == 0 :
        area=outnf.createVariable("area", vtyp, ('y','x'), fill_value=NCFillValue)
        area.units="m^2"
        area.standard_name="grid area"
        area.title="Area"
    else :
        area = np.zeros((1,1))
    area[:,:] = part.gather(areas[:,:])
    #
    return
#
# Add environment to netCDF file
#
def addenvironment(outnf, procgrid, part, vtyp, NCFillValue, nbpt) :
    #
    nbpt_proc = np.arange(1,nbpt+1, dtype=vtyp)
    proc = np.full(nbpt, part.rank, dtype=vtyp)
    # Environment
    # nbpt_proc
    subpt = procgrid.landscatter(nbpt_proc[:], order='F')
    subpt = subpt.astype(vtyp, copy=False)
    subpt[np.isnan(subpt)] = NCFillValue
    if part.rank == 0 :
        subptgrid = outnf.createVariable("nbpt_proc", vtyp, ('y','x'), fill_value=NCFillValue)
        subptgrid.title = "gridpoint reference inside each proc"
        subptgrid.units = "-"
    else :
        subptgrid = np.zeros((1,1))
    subptgrid[:,:] = part.gather(subpt)
    #
    # rank
    procnum = procgrid.landscatter(proc[:], order='F')
    procnum = procnum.astype(vtyp, copy=False)
    procnum[np.isnan(procnum)] = NCFillValue
    if part.rank == 0 :
        procn = outnf.createVariable("proc_num", vtyp, ('y','x'), fill_value=NCFillValue)
        procn.title = "rank"
        procn.units = "-"
    else :
        procn = np.zeros((1,1))
    procn[:,:] = part.gather(procnum)
    #
    return
#
#
#
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
def finalfetch(part, routing_area, basin_count, route_togrid, route_tobasin, fetch_in) :
    #
    fetch_out = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    partial_sum = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
    #
    maxdiff_sorted = prec*prec
    iter_count = 0
    #
    while iter_count < part.size*3 and maxdiff_sorted > prec :
        fetch_out[:,:] = 0.0
        outflow_uparea = routing_interface.finalfetch(part.landcorelist, routing_area, basin_count, route_togrid, \
                                                      route_tobasin, partial_sum, fetch_out)
        partial_sum = np.copy(fetch_out)
        part.landsendtohalo(partial_sum, order='F')
        partial_sum = part.zerocore(partial_sum, order='F')
        #
        # Find area the largest basins we need to have right.
        #
        xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
        # Precision in m^2 of the upstream areas when sorting.
        sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
        # If mono-proc no need to iterate as fetch produces the full result.
        if part.size == 1 :
            maxdiff_sorted = 0.0
        else :
            maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted))
        old_sorted[:] = sorted_outareas[0:largest_pos]
        iter_count += 1
211

212 213 214
    #
    fetch_error = np.sum(np.abs(fetch_out[part.landcorelist,:]-fetch_in[part.landcorelist,:]), axis=1)\
                                                    /np.sum(routing_area[part.landcorelist,:], axis=1)
215
    if np.max(fetch_error) > prec :
216
        print("Rank :"+str(part.rank)+" Too large fetch error (fraction of greid area) : ", fetch_error)
217

218 219 220 221 222 223
    print("Total fetch error in fraction of grid box : ", np.sum(fetch_error))
    #
    return fetch_out
#
#
#
224 225
class HydroOverlap :
#
Anthony Schrapffer's avatar
Anthony Schrapffer committed
226
    def __init__(self, nbpt, nbvmax, sub_pts, sub_index_in, sub_area_in, sub_lon_in, sub_lat_in, part, modelgrid, hydrodata) :
227 228 229 230 231 232 233 234 235 236 237 238
        #
        # Reshape stuff so that it fits into arrays
        #
        sub_index = np.zeros((nbpt,nbvmax,2), dtype=np.int8, order='F')
        sub_area = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lon = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lat = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        for ib in range(nbpt) :
            sub_area[ib,0:sub_pts[ib]] = sub_area_in[ib][:]
            sub_lon[ib,0:sub_pts[ib]] = sub_lon_in[ib][:]
            sub_lat[ib,0:sub_pts[ib]] = sub_lat_in[ib][:]
            for ip in range(sub_pts[ib]) :
239
                sub_index[ib,ip,:] = sub_index_in[ib][:,ip]
240
        #
241
        part.landsendtohalo(np.array(sub_area), order='F')
Anthony Schrapffer's avatar
Anthony Schrapffer committed
242
        #
243 244 245 246 247
        trip_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        basins_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        topoind_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        fac_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        hierarchy_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
248 249
        orog_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        floodp_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
250 251 252 253 254 255 256 257 258
        #
        trip_tmp[:,:] = np.nan
        basins_tmp[:,:] = np.nan
        for ib in range(nbpt) :
            trip_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.trip[ib][:])
            basins_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.basins[ib][:])
            topoind_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.topoind[ib][:])
            fac_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.fac[ib][:])
            hierarchy_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.disto[ib][:])
259 260
            orog_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.orog[ib][:])
            floodp_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.floodplains[ib][:])
261 262 263 264 265 266 267 268 269 270
        #
        trip_tmp[np.isnan(trip_tmp)] = undef_int
        basins_tmp[np.isnan(trip_tmp)] = undef_int
        #
        # Go to the call of the FORTRAN interface
        #
        print("GETHYDROGRID : nbpt = ", nbpt, nbvmax)
        print("GETHYDROGRID : nbvmax = ", nbvmax)
        print("GETHYDROGRID : nbxmax = ", nbxmax)
        self.nbi, self.nbj, self.area_bx, self.trip_bx, self.basin_bx, self.topoind_bx, self.fac_bx, self.hierarchy_bx, \
271
            self.orog_bx, self.floodp_bx, \
272
            self.lon_bx, self.lat_bx, self.lshead_bx = \
273
                    routing_interface.gethydrogrid(nbxmax, sub_pts, sub_index, sub_area, \
274 275
                    hydrodata.basinsmax, hydrodata.topoindmin, sub_lon, sub_lat, trip_tmp, basins_tmp, topoind_tmp, fac_tmp,\
                        hierarchy_tmp, orog_tmp, floodp_tmp)
276 277 278
        #
        # Plot some diagnostics for the hydrology grid within the atmospheric meshes.
        #
279
        self.nwbas = nbvmax
280 281 282 283
        # Clean-up these arrays so that they are easy to use in Python.
        self.lon_bx[self.lon_bx > 360.]=np.nan
        self.lat_bx[self.lat_bx > 90.]=np.nan
        #
284 285 286 287
        return
#
#
#
288
class HydroSuper :
289
    def __init__(self, nbvmax, hydrodata, hydrooverlap, nbasmax, part) :
290 291 292
        #
        # Keep largest possible number of HTUs
        #
293
        self.nbasmax = nbasmax
294
        self.nbhtuext = nbvmax
295 296 297 298 299 300
        self.nbpt = hydrooverlap.nbi.shape[0]
        #
        # nb_htu can be adjusted with self.nwbas
        # nb_htu can be lowered with a larger maxpercent (routing_reg.f90)
        nb_htu = 600 
        nbv = nbvmax
301 302 303 304
        #
        # Call findbasins
        #
        nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, basin_bxout, basin_bbout, self.basin_pts, basin_lshead, coast_pts = \
305 306 307 308 309 310 311 312 313
                    routing_interface.findbasins(nbpt = self.nbpt, nb_htu = nb_htu, nbv = nbv, nbi = hydrooverlap.nbi, nbj = hydrooverlap.nbj, trip_bx = hydrooverlap.trip_bx, \
                                                 basin_bx = hydrooverlap.basin_bx, fac_bx = hydrooverlap.fac_bx, hierarchy_bx = hydrooverlap.hierarchy_bx, \
                                                 topoind_bx = hydrooverlap.topoind_bx, lshead_bx = hydrooverlap.lshead_bx, \
                                                 lontmp = hydrooverlap.lon_bx, lattmp = hydrooverlap.lat_bx)
        #
        # Adjust nwbas to the maximum found over the domain
        #
        self.nwbas = part.domainmax(np.max(nb_basin))
        print("Maximum number of basin created : {0}".format(self.nwbas))
314 315 316
        #
        # Call Globalize
        #
317 318 319 320
        lon_bx_tmp = hydrooverlap.lon_bx
        lon_bx_tmp[np.isnan(lon_bx_tmp)] = undef_int
        lat_bx_tmp = hydrooverlap.lat_bx
        lat_bx_tmp[np.isnan(lat_bx_tmp)] = undef_int
321 322
        self.basin_count, self.basin_notrun, self.basin_area, self.basin_cg, self.basin_hierarchy, \
            self.basin_orog, self.basin_floodp, self.basin_fac, self.basin_topoind, \
323
            self.basin_id, self.basin_outcoor, self.basin_type, self.basin_flowdir, \
324
            self.basin_lshead, self.outflow_grid, self.outflow_basin, self.nbcoastal, self.coastal_basin = \
325 326 327 328 329
                    routing_interface.globalize(nbpt = self.nbpt, nb_htu = nb_htu,nbv = nbv, area_bx = hydrooverlap.area_bx, lon_bx = lon_bx_tmp, lat_bx = lat_bx_tmp, trip_bx = hydrooverlap.trip_bx, \
                                                hierarchy_bx = hydrooverlap.hierarchy_bx, orog_bx = hydrooverlap.orog_bx, floodp_bx =  hydrooverlap.floodp_bx,\
                                                fac_bx = hydrooverlap.fac_bx, topoind_bx = hydrooverlap.topoind_bx, min_topoind = hydrodata.topoindmin, \
                                                nb_basin = nb_basin, basin_inbxid = basin_inbxid, basin_outlet = basin_outlet, basin_outtp = basin_outtp, basin_sz = self.basin_sz, basin_pts = self.basin_pts, basin_bxout = basin_bxout, \
                                                basin_bbout = basin_bbout, lshead = basin_lshead, coast_pts = coast_pts, nwbas = self.nwbas)
330

331 332 333
        # Memory management
        del basin_bbout; del basin_lshead; del coast_pts; del basin_bxout; del self.basin_pts;
        del basin_outtp; del basin_outlet; del basin_inbxid; del nb_basin
334 335
        return
    #
336 337 338 339 340 341 342 343 344
    def linkup(self, hydrodata) :
        #
        # Call the linkup routine in routing_reg.
        #
        print("Invented basins =", hydrodata.basinsmax)
        self.inflow_number,self.inflow_grid,self.inflow_basin = routing_interface.linkup(nbxmax, self.basin_count, self.basin_area, self.basin_id, \
                                                                       self.basin_flowdir, self.basin_lshead, self.basin_hierarchy, \
                                                                       self.basin_fac, self.outflow_grid, self.outflow_basin, \
                                                                       self.nbcoastal, self.coastal_basin, float(hydrodata.basinsmax))
345
        self.nbxmax_in = self.inflow_number.shape[1]
346 347
        return
    #
348

POLCHER Jan's avatar
POLCHER Jan committed
349
    def fetch(self, part) :
350
        #
351
        fetch_basin = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
352
        #
353
        self.basin_area = routing_interface.areanorm(self.basin_count, self.basin_area, self.outflow_grid)
354
        partial_sum = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
355
        #
356
        old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
357 358 359 360 361
        #
        maxdiff_sorted = prec*prec
        iter_count = 0
        #
        while iter_count < part.size*3 and maxdiff_sorted > prec :
362
            fetch_basin[:,:] = 0.0
363
            outflow_uparea = routing_interface.fetch(part.landcorelist, self.basin_count, self.basin_area, self.basin_id, self.basin_hierarchy, \
364
                                                         self.basin_fac, self.outflow_grid, self.outflow_basin, partial_sum, fetch_basin)
365 366
            partial_sum = np.copy(fetch_basin)
            part.landsendtohalo(partial_sum, order='F')
367 368
            partial_sum = part.zerocore(partial_sum, order='F')
            #
369 370 371 372 373 374 375 376 377
            # Find area the largest basins need at least to have.
            #
            xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
            # Precision in m^2 of the upstream areas when sorting.
            sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
            # If mono-proc no need to iterate as fetch produces the full result.
            if part.size == 1 :
                maxdiff_sorted = 0.0
            else :
378 379 380
                l = min(sorted_outareas.shape[0],largest_pos)
                maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted[0:l]))
            old_sorted[:l] = sorted_outareas[0:largest_pos]
381
            iter_count += 1
382

383 384
        self.fetch_basin = np.copy(fetch_basin)
        #
385
        # Upstream area of the smalest river we call largest rivers.
386
        #
387
        self.largest_rivarea = sorted_outareas[l-1]
388 389 390
        #
        #
        #
391 392 393
        self.num_largest =  routing_interface.rivclassification( part.landcorelist, self.basin_count, self.outflow_grid, self.outflow_basin, \
                   self.fetch_basin, self.largest_rivarea)
        #print("Rank :"+str(part.rank)+" Area of smallest large rivers : ", self.largest_rivarea, " Nb of Large rivers on proc : ",self.num_largest)
394
        return
395 396 397 398 399

    def check_fetch(self):

        routing_interface.checkfetch(nbpt = self.nbpt, nwbas = self.nwbas, fetch_basin = self.fetch_basin, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, basin_count = self.basin_count)

400
        return
401 402 403 404 405

    def check_routing(self):

        routing_interface.checkrouting(nbpt = self.nbpt, nwbas = self.nwbas, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, basin_count = self.basin_count)

406 407
        return
    #
408
    #
409
    def killbas(self, tokill, totakeover, numops):
410 411 412 413 414 415 416 417 418 419
        ops = tokill.shape[1]

        routing_interface.killbas(nbpt = self.nbpt, nbxmax_in = self.nbxmax_in, \
                nbasmax = self.nbasmax, nwbas = self.nwbas, ops = ops, tokill = tokill,\
                totakeover = totakeover, numops = numops, basin_count = self.basin_count,\
                basin_area = self.basin_area, basin_orog = self.basin_orog, basin_floodp = self.basin_floodp, \
                basin_cg = self.basin_cg, basin_topoind = self.basin_topoind, fetch_basin = self.fetch_basin,\
                basin_id = self.basin_id, basin_coor = self.basin_outcoor, basin_type = self.basin_type,\
                basin_flowdir = self.basin_flowdir, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, \
                inflow_number = self.inflow_number, inflow_grid = self.inflow_grid, inflow_basin = self.inflow_basin)
420

421
    #
422 423 424 425 426 427 428 429 430 431
    def add_variable(self,outnf, procgrid, NCFillValue, part, coord, name, title, units, data, vtyp):
        var = procgrid.landscatter(data.astype(vtyp), order='F')
        var[np.isnan(var)] = NCFillValue
        if part.rank == 0 :
            ncvar = outnf.createVariable(name, vtyp, coord, fill_value=NCFillValue)
            ncvar.title = title
            ncvar.units = units
        else :
            ncvar = np.zeros((1,1,1))
        ncvar[:] = part.gather(var)
432

433 434 435 436 437
    #
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
438
        inflow_size = 100
439 440 441 442 443 444 445 446 447 448
        cornerind=[0,2,4,6]
        nbcorners = len(cornerind)
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htuext', self.nbhtuext)
449 450
            outnf.createDimension('htu', self.inflow_number.shape[1])
            outnf.createDimension('in',inflow_size )
451 452 453 454 455 456
            outnf.createDimension('bnd', nbcorners)
        else :
            outnf = None
        #
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
457
        #
458 459 460
        # Variables
        # Once gathered on root_proc we transform them into float64. Careful, Integer variables do not have NaN !
        #
461 462 463 464 465 466
        # nbpt_glo
        nbpt_loc = np.zeros((self.nbpt,1)).astype(np.int32)
        nbpt_loc[:,0] = np.arange(1, self.nbpt+1)
        nbpt_glo = part.l2glandindex(nbpt_loc)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "nbpt_glo", "Grid point Global", "-", nbpt_glo[:,0], vtyp)
        #
Anthony's avatar
Anthony committed
467
        # contfrac
468 469 470 471 472
        contfrac = np.array(procgrid.contfrac)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "contfrac", "Land fraction", "-", np.array(procgrid.contfrac), vtyp)
        #
        # basin_id
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_id", "ID for each HTU", "-", self.basin_id, vtyp)
473 474
        #
        #self.basin_count
475
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "basin_count", "HTU count", "-", self.basin_count, vtyp)
476
        #
477 478 479 480 481 482
        # self.basin_notrun
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "basin_notrun", "Not run", "-", self.basin_notrun, vtyp)
        #
        # self.basin_area
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_area", "Basin area", "-", self.basin_area, vtyp)
        #
483 484 485 486 487 488
        # self.basin_orog
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_orog", "Basin orography", "-", self.basin_orog, vtyp)
        #
        # self.basin_floodp
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_floodp", "Basin floodplains", "-", self.basin_floodp, vtyp)
        #
489 490 491 492 493 494
        # self.basin_cg
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "CG_lon", "CG lon", "-", self.basin_cg[:,:,1], vtyp)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "CG_lat", "CG lat", "-", self.basin_cg[:,:,0], vtyp)
        #
        # self.topoind
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_topoind", "Topoindex", "-", self.basin_topoind, vtyp)
495
        #
496 497 498
        # outcoor
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "outcoor_lon", "outcoor lon", "-", self.basin_outcoor[:,:,1], vtyp)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "outcoor_lat", "outcoor lat", "-", self.basin_outcoor[:,:,0], vtyp)
499
        #
500 501
        # type
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_type", "type", "-", self.basin_type, vtyp)
502
        #
503 504 505
        # flowdir
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_flowdir", "flowdir", "-", self.basin_flowdir, vtyp)
        #
506
        #
507
        #self.outflow_grid
508 509 510 511 512 513
        grgrid = part.l2glandindex(self.outflow_grid)
        grgrid[self.outflow_grid == 0 ] = -2 # in case it flows out of the domain, the 0 should not remain
        grgrid[self.outflow_grid == -1 ] = -1
        grgrid[self.outflow_grid == -2 ] = -2
        grgrid[self.outflow_grid == -3 ] = -3
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "HTUoutgrid", "HTU outflow grid", "-", grgrid, vtyp)
514 515
        #
        #self.outflow_basin
516 517 518 519 520 521 522 523
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "HTUoutbasin", "Outflow HTU of grid", "-", self.outflow_basin, vtyp)
        #
        # self.inflow_number
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "HTUinnum", "Inflow number", "-", self.inflow_number, vtyp)
        #
        # Inflow Grid -> convert to global
        gingrid = part.l2glandindex(self.inflow_grid[:,:,:inflow_size])
        self.add_variable(outnf, procgrid, NCFillValue, part, ('in','htu','y','x'), "HTUingrid", "Inflow grid", "-", gingrid, vtyp)
Anthony's avatar
Anthony committed
524 525
        #
        # Inflow Basin
526
        self.add_variable(outnf, procgrid, NCFillValue, part, ('in','htu','y','x'), "HTUinbas", "Inflow basin", "-", self.inflow_basin[:,:,:inflow_size], vtyp)
527 528 529
        #
        # Save the fetch of each basin
        #
530
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "fetch_basin", "Fetch contributing to each HTU", "m^2", self.fetch_basin, vtyp)
531 532 533 534 535 536 537
        #
        # Close file
        #
        if part.rank == 0 :
            outnf.close()
        #
        return
538 539 540
#
#
#
541
class HydroGraph :
542
    def __init__(self, nbasmax, hydrosuper, part, modelgrid) :
543
        #
544
        self.nbasmax = nbasmax
545
        self.nbpt = hydrosuper.basin_count.shape[0]
546 547
        nwbas = hydrosuper.basin_topoind.shape[1]
        nbxmax_in = hydrosuper.inflow_grid.shape[1]
548
        #
549 550 551
        self.routing_area, self.routing_orog, self.routing_floodp, self.routing_cg, self.topo_resid, self.route_nbbasin,\
            self.route_togrid, self.route_tobasin, self.route_nbintobas, self.global_basinid, \
            self.route_outlet, self.route_type, self.origin_nbintobas, self.routing_fetch = \
552
                                    routing_interface.finish_truncate(nbpt = self.nbpt, nbxmax_in = nbxmax_in, nbasmax = nbasmax, nwbas = nwbas, num_largest = hydrosuper.num_largest, gridarea = modelgrid.area, cfrac = modelgrid.contfrac, basin_count = hydrosuper.basin_count, \
553 554
                                                               basin_notrun = hydrosuper.basin_notrun, basin_area = hydrosuper.basin_area, \
                                                               basin_orog = hydrosuper.basin_orog, basin_floodp = hydrosuper.basin_floodp, basin_cg = hydrosuper.basin_cg, \
555 556 557 558 559
                                                               basin_topoind = hydrosuper.basin_topoind, fetch_basin = hydrosuper.fetch_basin, basin_id = hydrosuper.basin_id, \
                                                               basin_coor = hydrosuper.basin_outcoor, basin_type = hydrosuper.basin_type, basin_flowdir = hydrosuper.basin_flowdir, \
                                                               outflow_grid = hydrosuper.outflow_grid, outflow_basin = hydrosuper.outflow_basin, \
                                                               inflow_number = hydrosuper.inflow_number, inflow_grid = hydrosuper.inflow_grid, inflow_basin = hydrosuper.inflow_basin)

560 561
        #
        self.routing_fetch = finalfetch(part, self.routing_area, self.route_nbbasin, self.route_togrid, self.route_tobasin, self.routing_fetch)
562
        #
563
        self.num_largest = routing_interface.finalrivclass(part.landcorelist, self.route_togrid, self.route_tobasin, self.routing_fetch, \
564
                      hydrosuper.largest_rivarea)
565
        #
566 567 568 569 570
        # Inflows
        self.max_inflow = part.domainmax(np.max(hydrosuper.inflow_number))
        gingrid = part.l2glandindex( hydrosuper.inflow_grid[:,:,:self.max_inflow])
        self.route_innum, self.route_ingrid, self.route_inbasin = routing_interface.finish_inflows(nbpt = self.nbpt, nbxmax_in = nbxmax_in, nbasmax = nbasmax, inf_max = self.max_inflow, basin_count = hydrosuper.basin_count, inflow_number = hydrosuper.inflow_number, inflow_grid = gingrid, inflow_basin = hydrosuper.inflow_basin[:,:,:self.max_inflow])

571
        return
572 573 574 575 576 577 578 579 580
    #
    #
    #
    def add_variable(self,outnf, procgrid, NCFillValue, part, coord, name, title, units, data, vtyp, orig_type = "float"):
        var = procgrid.landscatter(data.astype(vtyp), order='F')

        if orig_type == "float":
            var[np.isnan(var)] = NCFillValue
        elif orig_type == "int":
581
            var[var>=np.abs(RPP.IntFillValue)] = NCFillValue
582 583 584 585 586 587 588 589

        if part.rank == 0:
            ncvar = outnf.createVariable(name, vtyp, coord, fill_value=NCFillValue)
            ncvar.title = title
            ncvar.units = units
        else :
            ncvar = np.zeros((1,1,1))
        ncvar[:] = part.gather(var)
590
    #
591
    #
592
    #
593 594 595 596 597
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
        cornerind=[0,2,4,6]
598
        nbcorners = len(cornerind)
599 600 601 602 603 604 605 606
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htu', self.nbasmax)
607
            outnf.createDimension('bnd', nbcorners)
608
            outnf.createDimension('inflow', self.max_inflow)
609
        else :
610
            outnf = None
611
        #
612 613
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
614
        #
615
        # land grid index -> to facilitate the analyses of the routing
616
        #
617 618 619 620
        nbpt_loc = np.zeros((self.nbpt,1)).astype(np.int32)
        nbpt_loc[:,0] = np.arange(1, self.nbpt+1)
        nbpt_glo = part.l2glandindex(nbpt_loc)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "nbpt_glo", "Grid point Global", "-", nbpt_glo[:,0], vtyp)
621
        #
622
        ################
623
        #
624
        # TEST: l2glandindex
625 626 627 628 629 630 631
        itarget=-1
        for il in range(procgrid.nbland) :
            lo = procgrid.lon_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            la = procgrid.lat_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            d=np.sqrt((lo-3.13)**2+(la-39.70)**2)
            if d < 0.05 :
                itarget = il
632

633
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
634
            print(part.rank, itarget, " Before route_togrid = ", self.route_togrid[itarget,:])
635
        # Conversion
636
        grgrid = part.l2glandindex(self.route_togrid[:,:])
637
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
638
            print(part.rank, itarget, " After route_togrid = ", self.route_togrid[itarget,:])
639 640
        ################
        #
641
        # The field route_togrid is with indices on the local grid. That needs to be converted to the global grid.
642 643 644 645 646 647 648 649
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "routetogrid", "Grid into which the basin flows", "-", grgrid, vtyp, "int")
        # route to basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "routetobasin", "Basin in to which the water goes", "-", self.route_tobasin[:,:], vtyp, "int")
        # basin id
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "basinid", "ID of basin", "-", self.global_basinid[:,:], vtyp, "int")
        #
        # basin area
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "basin_area", "area of basin", "m^2", self.routing_area[:,:], vtyp, "float")
650 651 652 653 654

        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "basin_orog", "Mean orography", "m", self.routing_orog[:,:], vtyp, "float")

        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "basin_floodp", "area of floodplains", "m^2", self.routing_floodp[:,:], vtyp, "float")

655 656
        # route number into basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "routenbintobas", "Number of basin into current one", "-", self.route_nbintobas[:], vtyp, "int")
657
        #
658 659
        # original number into basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ( 'y','x'), "originnbintobas", "Number of sub-grid basin into current one before truncation", "-", self.origin_nbintobas[:], vtyp, "int")
660
        #
661 662 663 664 665
        # latitude of outlet
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "outletlat", "Latitude of Outlet", "degrees north", self.route_outlet[:,:,0], vtyp, "float")
        # longitude of outlet
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "outletlon", "Longitude of Outlet", "degrees east", self.route_outlet[:,:,1], vtyp, "float")
        # type of outlet
666
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "outlettype", "Type of outlet", "code", self.route_type[:,:], vtyp, "float")
667
        #
668 669
        # topographic index
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "topoindex", "Topographic index of the retention time", "m", self.topo_resid[:,:], vtyp, "float")
670
        #
671

672 673
        # Inflow number
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "route_innum", "Number of inflow", "-", self.route_innum[:,:], vtyp, "int")
674
        #
675 676 677
        # Inflow grid
        #gingrid = part.l2glandindex(self.inflow_grid[:,:,:inflow_size])
        self.add_variable(outnf, procgrid, NCFillValue, part, ('inflow', 'htu','y','x'), "route_ingrid", "Grid from which the water flows", "-", self.route_ingrid[:,:,:], vtyp, "int")
678
        #
679 680
        # Inflow basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ('inflow', 'htu','y','x'), "route_inbasin", "Basin from which the water flows", "-", self.route_inbasin[:,:,:], vtyp, "int")
681

682
        #
683 684
        # Save centre of gravity of HTU
        #
685 686
        # Check if it works
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "CG_lon", "Longitude of centre of gravity of HTU", "degrees east", self.routing_cg[:,:,1], vtyp, "float")
687 688

        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "CG_lat", "Latitude of centre of gravity of HTU", "degrees north", self.routing_cg[:,:,0], vtyp, "float")
689
        #
690 691
        # Save the fetch of each basin
        #
692
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "fetch", "Fetch contributing to each HTU", "m^2", self.routing_fetch[:,:], vtyp, "float")
693
        #
694 695
        # Close the file
        if part.rank == 0:
696
            outnf.close()
697 698
        #
        return