Interface.py 31.5 KB
Newer Older
1 2 3 4 5 6 7 8
#
#
import numpy as np
import os
import pickle
from netCDF4 import Dataset
import RPPtools as RPP
from mpi4py import MPI
9
import gc
10 11
#
import sys
12 13 14 15 16
from inspect import currentframe, getframeinfo
#
localdir=os.path.dirname(getframeinfo(currentframe()).filename)
sys.path.append(localdir+'/F90subroutines')
F90=localdir+'/F90subroutines'
17
if MPI.COMM_WORLD.Get_rank() == 0 :
18
    err=os.system("cd "+F90+"; make all")
19 20 21 22 23 24 25 26 27 28
    if err != 0 :
        print("Compilation error in the FORTRAN interface")
        sys.exit()
else :
    print("Not compiling on other cores")
MPI.COMM_WORLD.Barrier()
#
import routing_interface
#
import configparser
29
config = configparser.ConfigParser({'Documentation':'false', 'nbxmax':'63', 'ROUTING_RIVERS':'50'})
30
config.read("run.def")
31 32 33
gendoc = config.get("OverAll", "Documentation")
nbxmax = config.getint("OverAll", "nbxmax")
largest_pos = config.getint("OverAll", "ROUTING_RIVERS")
34 35
#
undef_int = 999999999.9
36 37
# Order of magnitude for the area precision in m^2.
prec = 100.0
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#
# Print the documentation for the FORTRAN interface
#
if gendoc.lower() == "true" : 
    docwrapper = open('DocumentationInterface', 'w')
    docwrapper.write(routing_interface.initatmgrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.gethydrogrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.findbasins.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.globalize.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.linkup.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.fetch.__doc__)
    docwrapper.write("====================================================================\n")
55 56 57 58
    docwrapper.write(routing_interface.finish_truncate.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.killbas.__doc__)

59 60 61 62 63 64 65
    docwrapper.close
#
# Functions to access the interfaces
#
#
# initatmgrid : Initialises the grid.f90 module and passes the description of the atmospheric grid.
#
66
def initatmgrid(rank, nbcore, nbpt, modelgrid) :
67 68 69
    print("INITATMGRID corners", np.array(modelgrid.polyll).shape)
    print("INITATMGRID area", np.array(modelgrid.area).shape)
    print("INITATMGRID neighbours", np.array(modelgrid.neighbours).shape)
70 71 72 73 74 75 76 77
    routing_interface.initatmgrid(rank, nbcore, modelgrid.polyll, modelgrid.coordll, modelgrid.area, modelgrid.contfrac, modelgrid.neighbours)
    return
#
#
#
def closeinterface(comm) :
    comm.Barrier()
    routing_interface.closeinterface()
78 79 80
    return
#
#
81
#
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind) :
    #
    # Longitude
    longitude = part.gather(procgrid.lon_full)
    if part.rank == 0 :
        lon=outnf.createVariable("lon", vtyp, ('y','x'), fill_value=NCFillValue)
        lon.units="grid box centre degrees east"
        lon.title="Longitude"
        lon.axis="X"
        lon[:,:] = longitude[:,:]
    #
    # Latitude
    latitude = part.gather(procgrid.lat_full)
    if part.rank == 0 :
        lat=outnf.createVariable("lat", vtyp, ('y','x'), fill_value=NCFillValue)
        lat.units="grid box centre degrees north"
        lat.standard_name="grid latitude"
        lat.title="Latitude"
        lat.axis="Y"
        lat[:] = latitude[:,:]
    #
    # Bounds of grid box
    #
    llonpoly=np.zeros((nbcorners,procgrid.nbland))
    llatpoly=np.zeros((nbcorners,procgrid.nbland))
    for i in range(procgrid.nbland) :
        llonpoly[:,i] = [procgrid.polyll[i][ic][0] for ic in cornerind]
        llatpoly[:,i] = [procgrid.polyll[i][ic][1] for ic in cornerind]
        lon_bnd = procgrid.landscatter(llonpoly)
        lat_bnd = procgrid.landscatter(llatpoly)
    if part.rank == 0 :
        lonbnd=outnf.createVariable("lon_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        lonbnd.units="grid box corners degrees east"
        lonbnd.title="Longitude of Corners"
        latbnd=outnf.createVariable("lat_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        latbnd.units="grid box corners degrees north"
        latbnd.title="Latitude of Corners"
    else :
        lonbnd= np.zeros((1,1,1))
        latbnd= np.zeros((1,1,1))
    lonbnd[:,:,:] = part.gather(lon_bnd[:,:,:])
    latbnd[:,:,:] = part.gather(lat_bnd[:,:,:])
    #
    # Land sea mask
    #
    if part.rank == 0 :
        land=outnf.createVariable("land", vtyp, ('y','x'), fill_value=NCFillValue)
        land.units="Land Sea mask"
        land.standard_name="landsea mask"
        land.title="Land"
        land[:,:] = globalgrid.land[:,:]
    # Area
    areas = procgrid.landscatter(np.array(procgrid.area, dtype=np.float64))
    areas[np.isnan(areas)] = NCFillValue
    if part.rank == 0 :
        area=outnf.createVariable("area", vtyp, ('y','x'), fill_value=NCFillValue)
        area.units="m^2"
        area.standard_name="grid area"
        area.title="Area"
    else :
        area = np.zeros((1,1))
    area[:,:] = part.gather(areas[:,:])
    #
    return
#
# Add environment to netCDF file
#
def addenvironment(outnf, procgrid, part, vtyp, NCFillValue, nbpt) :
    #
    nbpt_proc = np.arange(1,nbpt+1, dtype=vtyp)
    proc = np.full(nbpt, part.rank, dtype=vtyp)
    # Environment
    # nbpt_proc
    subpt = procgrid.landscatter(nbpt_proc[:], order='F')
    subpt = subpt.astype(vtyp, copy=False)
    subpt[np.isnan(subpt)] = NCFillValue
    if part.rank == 0 :
        subptgrid = outnf.createVariable("nbpt_proc", vtyp, ('y','x'), fill_value=NCFillValue)
        subptgrid.title = "gridpoint reference inside each proc"
        subptgrid.units = "-"
    else :
        subptgrid = np.zeros((1,1))
    subptgrid[:,:] = part.gather(subpt)
    #
    # rank
    procnum = procgrid.landscatter(proc[:], order='F')
    procnum = procnum.astype(vtyp, copy=False)
    procnum[np.isnan(procnum)] = NCFillValue
    if part.rank == 0 :
        procn = outnf.createVariable("proc_num", vtyp, ('y','x'), fill_value=NCFillValue)
        procn.title = "rank"
        procn.units = "-"
    else :
        procn = np.zeros((1,1))
    procn[:,:] = part.gather(procnum)
    #
    return
#
#
#
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
def finalfetch(part, routing_area, basin_count, route_togrid, route_tobasin, fetch_in) :
    #
    fetch_out = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    partial_sum = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
    #
    maxdiff_sorted = prec*prec
    iter_count = 0
    #
    while iter_count < part.size*3 and maxdiff_sorted > prec :
        fetch_out[:,:] = 0.0
        outflow_uparea = routing_interface.finalfetch(part.landcorelist, routing_area, basin_count, route_togrid, \
                                                      route_tobasin, partial_sum, fetch_out)
        partial_sum = np.copy(fetch_out)
        part.landsendtohalo(partial_sum, order='F')
        partial_sum = part.zerocore(partial_sum, order='F')
        #
        # Find area the largest basins we need to have right.
        #
        xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
        # Precision in m^2 of the upstream areas when sorting.
        sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
        # If mono-proc no need to iterate as fetch produces the full result.
        if part.size == 1 :
            maxdiff_sorted = 0.0
        else :
            maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted))
        old_sorted[:] = sorted_outareas[0:largest_pos]
        iter_count += 1
211

212 213 214 215 216 217 218 219 220 221 222 223
    #
    fetch_error = np.sum(np.abs(fetch_out[part.landcorelist,:]-fetch_in[part.landcorelist,:]), axis=1)\
                                                    /np.sum(routing_area[part.landcorelist,:], axis=1)
    if np.max(fetch_error) > prec : 
        print("Rank :"+str(part.rank)+" Too large fetch error (fraction of greid area) : ", fetch_error)
          
    print("Total fetch error in fraction of grid box : ", np.sum(fetch_error))
    #
    return fetch_out
#
#
#
224 225
class HydroOverlap :
#
Anthony Schrapffer's avatar
Anthony Schrapffer committed
226
    def __init__(self, nbpt, nbvmax, sub_pts, sub_index_in, sub_area_in, sub_lon_in, sub_lat_in, part, modelgrid, hydrodata) :
227 228 229 230 231 232 233 234 235 236 237 238 239 240
        #
        # Reshape stuff so that it fits into arrays
        #
        sub_index = np.zeros((nbpt,nbvmax,2), dtype=np.int8, order='F')
        sub_area = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lon = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lat = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        for ib in range(nbpt) :
            sub_area[ib,0:sub_pts[ib]] = sub_area_in[ib][:]
            sub_lon[ib,0:sub_pts[ib]] = sub_lon_in[ib][:]
            sub_lat[ib,0:sub_pts[ib]] = sub_lat_in[ib][:]
            for ip in range(sub_pts[ib]) :
                sub_index[ib,ip,:] = [sub_index_in[ib][0][ip],sub_index_in[ib][1][ip]]
        #
241
        part.landsendtohalo(np.array(sub_area), order='F')
Anthony Schrapffer's avatar
Anthony Schrapffer committed
242
        #
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        trip_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        basins_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        topoind_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        fac_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        hierarchy_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        #
        trip_tmp[:,:] = np.nan
        basins_tmp[:,:] = np.nan
        for ib in range(nbpt) :
            trip_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.trip[ib][:])
            basins_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.basins[ib][:])
            topoind_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.topoind[ib][:])
            fac_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.fac[ib][:])
            hierarchy_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.disto[ib][:])
        #
        trip_tmp[np.isnan(trip_tmp)] = undef_int
        basins_tmp[np.isnan(trip_tmp)] = undef_int
        #
        # Go to the call of the FORTRAN interface
        #
        print("GETHYDROGRID : nbpt = ", nbpt, nbvmax)
        print("GETHYDROGRID : nbvmax = ", nbvmax)
        print("GETHYDROGRID : nbxmax = ", nbxmax)
        self.nbi, self.nbj, self.area_bx, self.trip_bx, self.basin_bx, self.topoind_bx, self.fac_bx, self.hierarchy_bx, \
267
            self.lon_bx, self.lat_bx, self.lshead_bx = \
268 269 270 271 272
                    routing_interface.gethydrogrid(nbxmax, sub_pts, sub_index, sub_area, \
                    hydrodata.basinsmax, hydrodata.topoindmin, sub_lon, sub_lat, trip_tmp, basins_tmp, topoind_tmp, fac_tmp, hierarchy_tmp)
        #
        # Plot some diagnostics for the hydrology grid within the atmospheric meshes.
        #
273
        self.nwbas = nbvmax
274 275 276 277
        # Clean-up these arrays so that they are easy to use in Python.
        self.lon_bx[self.lon_bx > 360.]=np.nan
        self.lat_bx[self.lat_bx > 90.]=np.nan
        #
278 279 280 281
        return
#
#
#
282
class HydroSuper :
283
    def __init__(self, nbvmax, hydrodata, hydrooverlap, nbasmax) :
284 285 286
        #
        # Keep largest possible number of HTUs
        #
287
        self.nbasmax = nbasmax
288
        self.nbhtuext = nbvmax
289
        self.nwbas = hydrooverlap.nwbas
290 291 292 293 294 295 296 297 298 299 300
        #
        # Call findbasins
        #
        nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, basin_bxout, basin_bbout, self.basin_pts, basin_lshead, coast_pts = \
                    routing_interface.findbasins(nbvmax, hydrooverlap.nbi, hydrooverlap.nbj, hydrooverlap.trip_bx, \
                                                 hydrooverlap.basin_bx, hydrooverlap.fac_bx, hydrooverlap.hierarchy_bx, \
                                                 hydrooverlap.topoind_bx, hydrooverlap.lshead_bx, \
                                                 hydrooverlap.lon_bx, hydrooverlap.lat_bx)
        #
        # Call Globalize
        #
301 302 303 304 305 306
        lon_bx_tmp = hydrooverlap.lon_bx
        lon_bx_tmp[np.isnan(lon_bx_tmp)] = undef_int
        lat_bx_tmp = hydrooverlap.lat_bx
        lat_bx_tmp[np.isnan(lat_bx_tmp)] = undef_int
        self.basin_count, self.basin_notrun, self.basin_area, self.basin_cg, self.basin_hierarchy, self.basin_fac, self.basin_topoind, \
            self.basin_id, self.basin_outcoor, self.basin_type, self.basin_flowdir, \
307
            self.basin_lshead, self.outflow_grid, self.outflow_basin, self.nbcoastal, self.coastal_basin = \
308 309 310
                    routing_interface.globalize(hydrooverlap.area_bx, lon_bx_tmp, lat_bx_tmp, hydrooverlap.trip_bx, \
                                                hydrooverlap.hierarchy_bx, hydrooverlap.fac_bx, hydrooverlap.topoind_bx, hydrodata.topoindmin, \
                                                nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, self.basin_pts, basin_bxout, \
311
                                                basin_bbout, basin_lshead, coast_pts, hydrooverlap.nwbas)
312

313
        self.nbpt = self.basin_count.shape[0]
314
        
315 316
        return
    #
317 318 319 320 321 322 323 324 325
    def linkup(self, hydrodata) :
        #
        # Call the linkup routine in routing_reg.
        #
        print("Invented basins =", hydrodata.basinsmax)
        self.inflow_number,self.inflow_grid,self.inflow_basin = routing_interface.linkup(nbxmax, self.basin_count, self.basin_area, self.basin_id, \
                                                                       self.basin_flowdir, self.basin_lshead, self.basin_hierarchy, \
                                                                       self.basin_fac, self.outflow_grid, self.outflow_basin, \
                                                                       self.nbcoastal, self.coastal_basin, float(hydrodata.basinsmax))
326
        self.nbxmax_in = self.inflow_number.shape[1]
327 328
        return
    #
329

POLCHER Jan's avatar
POLCHER Jan committed
330
    def fetch(self, part) :
331
        #
332
        fetch_basin = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
333
        #
334
        self.basin_area = routing_interface.areanorm(self.basin_count, self.basin_area, self.outflow_grid)
335
        partial_sum = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
336
        #
337
        old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
338 339 340 341 342
        #
        maxdiff_sorted = prec*prec
        iter_count = 0
        #
        while iter_count < part.size*3 and maxdiff_sorted > prec :
343
            fetch_basin[:,:] = 0.0
344
            outflow_uparea = routing_interface.fetch(part.landcorelist, self.basin_count, self.basin_area, self.basin_id, self.basin_hierarchy, \
345
                                                         self.basin_fac, self.outflow_grid, self.outflow_basin, partial_sum, fetch_basin)
346 347
            partial_sum = np.copy(fetch_basin)
            part.landsendtohalo(partial_sum, order='F')
348 349
            partial_sum = part.zerocore(partial_sum, order='F')
            #
350 351 352 353 354 355 356 357 358
            # Find area the largest basins need at least to have.
            #
            xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
            # Precision in m^2 of the upstream areas when sorting.
            sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
            # If mono-proc no need to iterate as fetch produces the full result.
            if part.size == 1 :
                maxdiff_sorted = 0.0
            else :
359 360 361
                l = min(sorted_outareas.shape[0],largest_pos)
                maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted[0:l]))
            old_sorted[:l] = sorted_outareas[0:largest_pos]
362
            iter_count += 1
363

364 365
        self.fetch_basin = np.copy(fetch_basin)
        #
366
        # Upstream area of the smalest river we call largest rivers. 
367
        #
368
        self.largest_rivarea = sorted_outareas[l-1]
369 370 371
        #
        #
        #
372 373 374
        self.num_largest =  routing_interface.rivclassification( part.landcorelist, self.basin_count, self.outflow_grid, self.outflow_basin, \
                   self.fetch_basin, self.largest_rivarea)
        #print("Rank :"+str(part.rank)+" Area of smallest large rivers : ", self.largest_rivarea, " Nb of Large rivers on proc : ",self.num_largest)
375
        return
376 377 378 379 380 381 382 383 384 385 386 387

    def check_fetch(self):

        routing_interface.checkfetch(nbpt = self.nbpt, nwbas = self.nwbas, fetch_basin = self.fetch_basin, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, basin_count = self.basin_count)

        return 

    def check_routing(self):

        routing_interface.checkrouting(nbpt = self.nbpt, nwbas = self.nwbas, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, basin_count = self.basin_count)

        return 
388
    #
389 390 391 392 393 394 395 396
    # 
    def killbas(self, tokill, totakeover, numops):
        ops = tokill.shape[1] 
 
        routing_interface.killbas(nbpt = self.nbpt, nbxmax_in = self.nbxmax_in, nbasmax = self.nbasmax, nwbas = self.nwbas, ops = ops, tokill = tokill, totakeover = totakeover, numops = numops, basin_count = self.basin_count, basin_area = self.basin_area, \
            basin_cg = self.basin_cg, basin_topoind = self.basin_topoind, fetch_basin = self.fetch_basin, basin_id = self.basin_id, basin_coor = self.basin_outcoor, basin_type = self.basin_type, basin_flowdir = self.basin_flowdir, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, \
            inflow_number = self.inflow_number, inflow_grid = self.inflow_grid, inflow_basin = self.inflow_basin)

397
    #
398 399 400 401 402 403 404 405 406 407 408
    def add_variable(self,outnf, procgrid, NCFillValue, part, coord, name, title, units, data, vtyp):
        var = procgrid.landscatter(data.astype(vtyp), order='F')
        var[np.isnan(var)] = NCFillValue
        if part.rank == 0 :
            ncvar = outnf.createVariable(name, vtyp, coord, fill_value=NCFillValue)
            ncvar.title = title
            ncvar.units = units
        else :
            ncvar = np.zeros((1,1,1))
        ncvar[:] = part.gather(var)
    
409 410 411 412 413
    #
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
414
        inflow_size = 100
415 416 417 418 419 420 421 422 423 424
        cornerind=[0,2,4,6]
        nbcorners = len(cornerind)
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htuext', self.nbhtuext)
425 426
            outnf.createDimension('htu', self.inflow_number.shape[1])
            outnf.createDimension('in',inflow_size )
427 428 429 430 431 432 433 434 435 436
            outnf.createDimension('bnd', nbcorners)
        else :
            outnf = None
        #
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
        # 
        # Variables
        # Once gathered on root_proc we transform them into float64. Careful, Integer variables do not have NaN !
        #
437 438 439 440 441 442
        # nbpt_glo
        nbpt_loc = np.zeros((self.nbpt,1)).astype(np.int32)
        nbpt_loc[:,0] = np.arange(1, self.nbpt+1)
        nbpt_glo = part.l2glandindex(nbpt_loc)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "nbpt_glo", "Grid point Global", "-", nbpt_glo[:,0], vtyp)
        #
Anthony's avatar
Anthony committed
443
        # contfrac
444 445 446 447 448
        contfrac = np.array(procgrid.contfrac)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "contfrac", "Land fraction", "-", np.array(procgrid.contfrac), vtyp)
        #
        # basin_id
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_id", "ID for each HTU", "-", self.basin_id, vtyp)
449 450
        #
        #self.basin_count
451
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "basin_count", "HTU count", "-", self.basin_count, vtyp)
452
        #
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        # self.basin_notrun
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "basin_notrun", "Not run", "-", self.basin_notrun, vtyp)
        #
        # self.basin_area
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_area", "Basin area", "-", self.basin_area, vtyp)
        #
        # self.basin_cg
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "CG_lon", "CG lon", "-", self.basin_cg[:,:,1], vtyp)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "CG_lat", "CG lat", "-", self.basin_cg[:,:,0], vtyp)
        #
        # self.topoind
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_topoind", "Topoindex", "-", self.basin_topoind, vtyp)
        # 
        # outcoor
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "outcoor_lon", "outcoor lon", "-", self.basin_outcoor[:,:,1], vtyp)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "outcoor_lat", "outcoor lat", "-", self.basin_outcoor[:,:,0], vtyp)
        # 
        # type
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_type", "type", "-", self.basin_type, vtyp)
472
        #
473 474 475 476
        # flowdir
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_flowdir", "flowdir", "-", self.basin_flowdir, vtyp)
        #
        # 
477
        #self.outflow_grid
478 479 480 481 482 483
        grgrid = part.l2glandindex(self.outflow_grid)
        grgrid[self.outflow_grid == 0 ] = -2 # in case it flows out of the domain, the 0 should not remain
        grgrid[self.outflow_grid == -1 ] = -1
        grgrid[self.outflow_grid == -2 ] = -2
        grgrid[self.outflow_grid == -3 ] = -3
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "HTUoutgrid", "HTU outflow grid", "-", grgrid, vtyp)
484 485
        #
        #self.outflow_basin
486 487 488 489 490 491 492 493
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "HTUoutbasin", "Outflow HTU of grid", "-", self.outflow_basin, vtyp)
        #
        # self.inflow_number
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "HTUinnum", "Inflow number", "-", self.inflow_number, vtyp)
        #
        # Inflow Grid -> convert to global
        gingrid = part.l2glandindex(self.inflow_grid[:,:,:inflow_size])
        self.add_variable(outnf, procgrid, NCFillValue, part, ('in','htu','y','x'), "HTUingrid", "Inflow grid", "-", gingrid, vtyp)
Anthony's avatar
Anthony committed
494 495
        #
        # Inflow Basin
496
        self.add_variable(outnf, procgrid, NCFillValue, part, ('in','htu','y','x'), "HTUinbas", "Inflow basin", "-", self.inflow_basin[:,:,:inflow_size], vtyp)
497 498 499
        #
        # Save the fetch of each basin
        #
500
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "fetch_basin", "Fetch contributing to each HTU", "m^2", self.fetch_basin, vtyp)
501 502 503 504 505 506 507
        #
        # Close file
        #
        if part.rank == 0 :
            outnf.close()
        #
        return
508 509 510
#
#
#
511
class HydroGraph :
512
    def __init__(self, nbasmax, hydrosuper, part, modelgrid) :
513
        #
514
        self.nbasmax = nbasmax
515
        self.nbpt = hydrosuper.basin_count.shape[0]
516 517
        nwbas = hydrosuper.basin_topoind.shape[1]
        nbxmax_in = hydrosuper.inflow_grid.shape[1]
518
        #
519 520
        self.routing_area, self.routing_cg, self.topo_resid, self.route_nbbasin, self.route_togrid, self.route_tobasin, self.route_nbintobas, \
            self.global_basinid, self.route_outlet, self.route_type, self.origin_nbintobas, self.routing_fetch = \
521 522 523 524 525 526 527
                                    routing_interface.finish_truncate(nbpt = self.nbpt, nbxmax_in = nbxmax_in, nbasmax = nbasmax, nwbas = nwbas, num_largest = hydrosuper.num_largest, gridarea = modelgrid.area, cfrac = modelgrid.contfrac, basin_count = hydrosuper.basin_count, \
                                                               basin_notrun = hydrosuper.basin_notrun, basin_area = hydrosuper.basin_area, basin_cg = hydrosuper.basin_cg, \
                                                               basin_topoind = hydrosuper.basin_topoind, fetch_basin = hydrosuper.fetch_basin, basin_id = hydrosuper.basin_id, \
                                                               basin_coor = hydrosuper.basin_outcoor, basin_type = hydrosuper.basin_type, basin_flowdir = hydrosuper.basin_flowdir, \
                                                               outflow_grid = hydrosuper.outflow_grid, outflow_basin = hydrosuper.outflow_basin, \
                                                               inflow_number = hydrosuper.inflow_number, inflow_grid = hydrosuper.inflow_grid, inflow_basin = hydrosuper.inflow_basin)

528 529 530 531
        #
        self.routing_fetch = finalfetch(part, self.routing_area, self.route_nbbasin, self.route_togrid, self.route_tobasin, self.routing_fetch)
        # 
        self.num_largest = routing_interface.finalrivclass(part.landcorelist, self.route_togrid, self.route_tobasin, self.routing_fetch, \
532
                      hydrosuper.largest_rivarea)
533
        #
534 535 536 537 538 539 540
        # Inflows
        self.max_inflow = part.domainmax(np.max(hydrosuper.inflow_number))
        gingrid = part.l2glandindex( hydrosuper.inflow_grid[:,:,:self.max_inflow])
        self.route_innum, self.route_ingrid, self.route_inbasin = routing_interface.finish_inflows(nbpt = self.nbpt, nbxmax_in = nbxmax_in, nbasmax = nbasmax, inf_max = self.max_inflow, basin_count = hydrosuper.basin_count, inflow_number = hydrosuper.inflow_number, inflow_grid = gingrid, inflow_basin = hydrosuper.inflow_basin[:,:,:self.max_inflow])


    
541
        return
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562

    #
    #
    #
    def add_variable(self,outnf, procgrid, NCFillValue, part, coord, name, title, units, data, vtyp, orig_type = "float"):
        var = procgrid.landscatter(data.astype(vtyp), order='F')

        if orig_type == "float":
            var[np.isnan(var)] = NCFillValue
        elif orig_type == "int":
            var[var>=RPP.IntFillValue] = NCFillValue

        if part.rank == 0:
            ncvar = outnf.createVariable(name, vtyp, coord, fill_value=NCFillValue)
            ncvar.title = title
            ncvar.units = units
        else :
            ncvar = np.zeros((1,1,1))
        ncvar[:] = part.gather(var)
    #    
    #
563
    #
564 565 566 567 568
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
        cornerind=[0,2,4,6]
569
        nbcorners = len(cornerind)
570 571 572 573 574 575 576 577
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htu', self.nbasmax)
578
            outnf.createDimension('bnd', nbcorners)
579
            outnf.createDimension('inflow', self.max_inflow)
580
        else :
581
            outnf = None
582
        #
583 584
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
585
        #
586 587 588 589 590 591
        # land grid index -> to facilitate the analyses of the routing
        # 
        nbpt_loc = np.zeros((self.nbpt,1)).astype(np.int32)
        nbpt_loc[:,0] = np.arange(1, self.nbpt+1)
        nbpt_glo = part.l2glandindex(nbpt_loc)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "nbpt_glo", "Grid point Global", "-", nbpt_glo[:,0], vtyp)
592
        #
593 594 595
        ################
        # 
        # TEST: l2glandindex
596 597 598 599 600 601 602 603 604
        itarget=-1
        for il in range(procgrid.nbland) :
            lo = procgrid.lon_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            la = procgrid.lat_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            d=np.sqrt((lo-3.13)**2+(la-39.70)**2)
            if d < 0.05 :
                itarget = il
                
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
605
            print(part.rank, itarget, " Before route_togrid = ", self.route_togrid[itarget,:])
606
        # Conversion 
607
        grgrid = part.l2glandindex(self.route_togrid[:,:])
608
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
609
            print(part.rank, itarget, " After route_togrid = ", self.route_togrid[itarget,:])
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
        ################
        #
        # The field route_togrid is with indices on the local grid. That needs to be converted to the global grid.        
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "routetogrid", "Grid into which the basin flows", "-", grgrid, vtyp, "int")
        # route to basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "routetobasin", "Basin in to which the water goes", "-", self.route_tobasin[:,:], vtyp, "int")
        # basin id
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "basinid", "ID of basin", "-", self.global_basinid[:,:], vtyp, "int")
        #
        # basin area
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "basin_area", "area of basin", "m^2", self.routing_area[:,:], vtyp, "float")
        # route number into basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "routenbintobas", "Number of basin into current one", "-", self.route_nbintobas[:], vtyp, "int")
        # 
        # original number into basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ( 'y','x'), "originnbintobas", "Number of sub-grid basin into current one before truncation", "-", self.origin_nbintobas[:], vtyp, "int")
        # 
        # latitude of outlet
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "outletlat", "Latitude of Outlet", "degrees north", self.route_outlet[:,:,0], vtyp, "float")
        # longitude of outlet
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "outletlon", "Longitude of Outlet", "degrees east", self.route_outlet[:,:,1], vtyp, "float")
        # type of outlet
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "outlettype", "Type of outlet", "code", self.route_type[:,:], vtyp, "float")   
633
        #
634 635
        # topographic index
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "topoindex", "Topographic index of the retention time", "m", self.topo_resid[:,:], vtyp, "float")
636
        #
637 638 639
        
        # Inflow number
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "route_innum", "Number of inflow", "-", self.route_innum[:,:], vtyp, "int")
640
        #
641 642 643
        # Inflow grid
        #gingrid = part.l2glandindex(self.inflow_grid[:,:,:inflow_size])
        self.add_variable(outnf, procgrid, NCFillValue, part, ('inflow', 'htu','y','x'), "route_ingrid", "Grid from which the water flows", "-", self.route_ingrid[:,:,:], vtyp, "int")
644
        #
645 646 647
        # Inflow basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ('inflow', 'htu','y','x'), "route_inbasin", "Basin from which the water flows", "-", self.route_inbasin[:,:,:], vtyp, "int")
        
648
        #
649 650
        # Save centre of gravity of HTU
        #
651 652 653 654
        # Check if it works
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "CG_lon", "Longitude of centre of gravity of HTU", "degrees east", self.routing_cg[:,:,1], vtyp, "float")
 
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "CG_lat", "Latitude of centre of gravity of HTU", "degrees north", self.routing_cg[:,:,0], vtyp, "float") 
655
        #
656 657
        # Save the fetch of each basin
        #
658
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "fetch", "Fetch contributing to each HTU", "m^2", self.routing_fetch[:,:], vtyp, "float")
659
        #
660 661
        # Close the file
        if part.rank == 0:
662
            outnf.close()
663 664
        #
        return
665 666 667 668