Interface.py 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#
#
import numpy as np
import os
import pickle
from netCDF4 import Dataset
import RPPtools as RPP
from mpi4py import MPI
#
import sys
sys.path.append(os.getcwd()+'/F90subroutines')
if MPI.COMM_WORLD.Get_rank() == 0 :
    err=os.system("cd F90subroutines; make all")
    if err != 0 :
        print("Compilation error in the FORTRAN interface")
        sys.exit()
else :
    print("Not compiling on other cores")
MPI.COMM_WORLD.Barrier()
#
import routing_interface
#
import configparser
config=configparser.ConfigParser({'Documentation':'false', 'nbxmax':'63'})
config.read("run.def")
gendoc=config.get("OverAll", "Documentation")
nbxmax=config.getint("OverAll", "nbxmax")
#
undef_int = 999999999.9
#
# Print the documentation for the FORTRAN interface
#
if gendoc.lower() == "true" : 
    docwrapper = open('DocumentationInterface', 'w')
    docwrapper.write(routing_interface.initatmgrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.gethydrogrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.findbasins.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.globalize.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.linkup.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.fetch.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.truncate.__doc__)
    docwrapper.close
#
# Functions to access the interfaces
#
#
# initatmgrid : Initialises the grid.f90 module and passes the description of the atmospheric grid.
#
55
def initatmgrid(rank, nbcore, nbpt, modelgrid) :
56 57 58
    print("INITATMGRID corners", np.array(modelgrid.polyll).shape)
    print("INITATMGRID area", np.array(modelgrid.area).shape)
    print("INITATMGRID neighbours", np.array(modelgrid.neighbours).shape)
59 60 61 62 63 64 65 66
    routing_interface.initatmgrid(rank, nbcore, modelgrid.polyll, modelgrid.coordll, modelgrid.area, modelgrid.contfrac, modelgrid.neighbours)
    return
#
#
#
def closeinterface(comm) :
    comm.Barrier()
    routing_interface.closeinterface()
67 68 69
    return
#
#
70
#
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
class HydroOverlap :
#
    def __init__(self, nbpt, nbvmax, sub_pts, sub_index_in, sub_area_in, sub_lon_in, sub_lat_in,  modelgrid, hydrodata) :
        #
        # Reshape stuff so that it fits into arrays
        #
        sub_index = np.zeros((nbpt,nbvmax,2), dtype=np.int8, order='F')
        sub_area = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lon = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lat = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        for ib in range(nbpt) :
            sub_area[ib,0:sub_pts[ib]] = sub_area_in[ib][:]
            sub_lon[ib,0:sub_pts[ib]] = sub_lon_in[ib][:]
            sub_lat[ib,0:sub_pts[ib]] = sub_lat_in[ib][:]
            for ip in range(sub_pts[ib]) :
                sub_index[ib,ip,:] = [sub_index_in[ib][0][ip],sub_index_in[ib][1][ip]]
        #
        trip_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        basins_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        topoind_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        fac_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        hierarchy_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        #
        trip_tmp[:,:] = np.nan
        basins_tmp[:,:] = np.nan
        for ib in range(nbpt) :
            trip_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.trip[ib][:])
            basins_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.basins[ib][:])
            topoind_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.topoind[ib][:])
            fac_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.fac[ib][:])
            hierarchy_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.disto[ib][:])
        #
        trip_tmp[np.isnan(trip_tmp)] = undef_int
        basins_tmp[np.isnan(trip_tmp)] = undef_int
        #
        # Go to the call of the FORTRAN interface
        #
        print("GETHYDROGRID : nbpt = ", nbpt, nbvmax)
        print("GETHYDROGRID : nbvmax = ", nbvmax)
        print("GETHYDROGRID : nbxmax = ", nbxmax)
        self.nbi, self.nbj, self.area_bx, self.trip_bx, self.basin_bx, self.topoind_bx, self.fac_bx, self.hierarchy_bx, \
            self.lon_bx, self.lat_bx, self.lshead_bx, self.nwbas = \
                    routing_interface.gethydrogrid(nbxmax, sub_pts, sub_index, sub_area, \
                    hydrodata.basinsmax, hydrodata.topoindmin, sub_lon, sub_lat, trip_tmp, basins_tmp, topoind_tmp, fac_tmp, hierarchy_tmp)
        #
        # Plot some diagnostics for the hydrology grid within the atmospheric meshes.
        #
        # Clean-up these arrays so that they are easy to use in Python.
        self.lon_bx[self.lon_bx > 360.]=np.nan
        self.lat_bx[self.lat_bx > 90.]=np.nan
        #
122 123 124 125
        return
#
#
#
126 127 128 129 130 131 132 133 134 135 136 137 138
class HydroSuper :
    def __init__(self, nbvmax, hydrodata, hydrooverlap) :
        #
        # Call findbasins
        #
        nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, basin_bxout, basin_bbout, self.basin_pts, basin_lshead, coast_pts = \
                    routing_interface.findbasins(nbvmax, hydrooverlap.nbi, hydrooverlap.nbj, hydrooverlap.trip_bx, \
                                                 hydrooverlap.basin_bx, hydrooverlap.fac_bx, hydrooverlap.hierarchy_bx, \
                                                 hydrooverlap.topoind_bx, hydrooverlap.lshead_bx, \
                                                 hydrooverlap.lon_bx, hydrooverlap.lat_bx)
        #
        # Call Globalize
        #
139 140 141 142 143 144
        lon_bx_tmp = hydrooverlap.lon_bx
        lon_bx_tmp[np.isnan(lon_bx_tmp)] = undef_int
        lat_bx_tmp = hydrooverlap.lat_bx
        lat_bx_tmp[np.isnan(lat_bx_tmp)] = undef_int
        self.basin_count, self.basin_notrun, self.basin_area, self.basin_cg, self.basin_hierarchy, self.basin_fac, self.basin_topoind, \
            self.basin_id, self.basin_outcoor, self.basin_type, self.basin_flowdir, \
145
            self.basin_lshead, self.outflow_grid, self.outflow_basin, self.nbcoastal, self.coastal_basin = \
146 147 148
                    routing_interface.globalize(hydrooverlap.area_bx, lon_bx_tmp, lat_bx_tmp, hydrooverlap.trip_bx, \
                                                hydrooverlap.hierarchy_bx, hydrooverlap.fac_bx, hydrooverlap.topoind_bx, hydrodata.topoindmin, \
                                                nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, self.basin_pts, basin_bxout, \
149
                                                basin_bbout, basin_lshead, coast_pts, hydrooverlap.nwbas)
150 151
        return
    #
152 153 154 155 156 157 158 159 160
    def linkup(self, hydrodata) :
        #
        # Call the linkup routine in routing_reg.
        #
        print("Invented basins =", hydrodata.basinsmax)
        self.inflow_number,self.inflow_grid,self.inflow_basin = routing_interface.linkup(nbxmax, self.basin_count, self.basin_area, self.basin_id, \
                                                                       self.basin_flowdir, self.basin_lshead, self.basin_hierarchy, \
                                                                       self.basin_fac, self.outflow_grid, self.outflow_basin, \
                                                                       self.nbcoastal, self.coastal_basin, float(hydrodata.basinsmax))
161 162
        return
    #
163 164
    def fetch(self, part, modelgrid) :
        #
165 166 167
        largest_pos = 50
        # Order of magnitude for the area precision in m^2.
        prec = 100.0
168
        #
169
        fetch_basin = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
170
        #
171
        self.basin_area = routing_interface.areanorm(self.basin_count, self.basin_area, self.outflow_grid)
172
        partial_sum = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
173
        #
174
        old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
175 176 177 178 179
        #
        maxdiff_sorted = prec*prec
        iter_count = 0
        #
        while iter_count < part.size*3 and maxdiff_sorted > prec :
180
            fetch_basin[:,:] = 0.0
181
            outflow_uparea = routing_interface.fetch(part.landcorelist, self.basin_count, self.basin_area, self.basin_id, self.basin_hierarchy, \
182
                                                         self.basin_fac, self.outflow_grid, self.outflow_basin, partial_sum, fetch_basin)
183 184
            partial_sum = np.copy(fetch_basin)
            part.landsendtohalo(partial_sum, order='F')
185 186
            partial_sum = part.zerocore(partial_sum, order='F')
            #
187 188 189 190 191 192 193 194 195 196 197 198
            # Find area the largest basins need at least to have.
            #
            xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
            # Precision in m^2 of the upstream areas when sorting.
            sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
            # If mono-proc no need to iterate as fetch produces the full result.
            if part.size == 1 :
                maxdiff_sorted = 0.0
            else :
                maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted))
            old_sorted[:] = sorted_outareas[0:largest_pos]
            iter_count += 1
199

200 201
        self.fetch_basin = np.copy(fetch_basin)
        #
202
        # Upstream area of the smalest river we call largest rivers. 
203
        #
204
        largest_rivarea = sorted_outareas[largest_pos-1]
205 206 207 208 209 210 211
        #
        #
        #
        yy=modelgrid.landscatter(np.sum(self.fetch_basin, axis=1)/np.sum(self.basin_area, axis=1))
        print("Rank :"+str(part.rank)+" OUT of fetch =+=+=+=+=+=+=+=+=+= \n"+str(yy)+"\n =+=+=+=+=+=+=+=+=+=")
        self.num_largest = routing_interface.rivclassification(self.basin_count, self.outflow_grid, self.outflow_basin, \
                                                               self.fetch_basin, largest_rivarea)
212
        print("Rank :"+str(part.rank)+" Area of smallest large rivers : ", largest_rivarea, " Nb of Large rivers on proc : ",self.num_largest)
213 214 215 216
        return
#
#
#
217
class HydroGraph :
218
    def __init__(self, nbasmax, hydrosuper, part, modelgrid) :
219
        self.nbasmax = nbasmax
220
        self.routing_area, self.routing_cg, self.topo_resid, self.route_togrid, self.route_tobasin, self.route_nbintobas, self.global_basinid, \
221
            self.route_outlet, self.route_type, self.origin_nbintobas, self.routing_fetch = \
222 223 224 225 226 227
                                    routing_interface.truncate(nbasmax, hydrosuper.num_largest, hydrosuper.basin_count, hydrosuper.basin_notrun, \
                                                               hydrosuper.basin_area, hydrosuper.basin_cg, \
                                                               hydrosuper.basin_topoind, hydrosuper.fetch_basin, hydrosuper.basin_id, \
                                                               hydrosuper.basin_outcoor, hydrosuper.basin_type, hydrosuper.basin_flowdir, \
                                                               hydrosuper.outflow_grid, hydrosuper.outflow_basin, \
                                                               hydrosuper.inflow_number,hydrosuper.inflow_grid,hydrosuper.inflow_basin)
228
        print("Rank :"+str(part.rank)+" Out truncate diag")
229 230
        yy=modelgrid.landscatter(np.sum(self.routing_fetch, axis=1)/np.sum(self.routing_area, axis=1))
        print ("Rank :"+str(part.rank)+" OUT of truncate =+=+=+=+=+=+=+=+=+= \n"+str(yy)+"\n =+=+=+=+=+=+=+=+=+=")
231 232
        return
    #
233 234 235 236 237
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
        cornerind=[0,2,4,6]
238
        nbcorners = len(cornerind)
239 240 241 242 243 244 245 246
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htu', self.nbasmax)
247
            outnf.createDimension('bnd', nbcorners)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        #
        # Coordinates
        #
        # Longitude
        longitude = part.gather(procgrid.lon_full)
        if part.rank == 0 :
            lon=outnf.createVariable("lon", vtyp, ('y','x'), fill_value=NCFillValue)
            lon.units="grid box centre degrees east"
            lon.title="Longitude"
            lon.axis="X"
            lon[:,:] = longitude[:,:]
        #
        # Latitude
        latitude = part.gather(procgrid.lat_full)
        if part.rank == 0 :
            lat=outnf.createVariable("lat", vtyp, ('y','x'), fill_value=NCFillValue)
            lat.units="grid box centre degrees north"
            lat.standard_name="grid latitude"
            lat.title="Latitude"
            lat.axis="Y"
            lat[:] = latitude[:,:]
        #
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        # Bounds of grid box
        #
        llonpoly=np.zeros((nbcorners,procgrid.nbland))
        llatpoly=np.zeros((nbcorners,procgrid.nbland))
        for i in range(procgrid.nbland) :
            llonpoly[:,i] = [procgrid.polyll[i][ic][0] for ic in cornerind]
            llatpoly[:,i] = [procgrid.polyll[i][ic][1] for ic in cornerind]
        lon_bnd = procgrid.landscatter(llonpoly)
        lat_bnd = procgrid.landscatter(llatpoly)
        if part.rank == 0 :
            lonbnd=outnf.createVariable("lon_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
            lonbnd.units="grid box corners degrees east"
            lonbnd.title="Longitude of Corners"
            latbnd=outnf.createVariable("lat_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
            latbnd.units="grid box corners degrees north"
            latbnd.title="Latitude of Corners"
        else :
            lonbnd= np.zeros((1,1,1))
            latbnd= np.zeros((1,1,1))
        lonbnd[:,:,:] = part.gather(lon_bnd[:,:,:])
        latbnd[:,:,:] = part.gather(lat_bnd[:,:,:])
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        #
        # Land sea mask
        #
        if part.rank == 0 :
                land=outnf.createVariable("land", vtyp, ('y','x'), fill_value=NCFillValue)
                land.units="Land Sea mask"
                land.standard_name="landsea mask"
                land.title="Land"
                land[:,:] = globalgrid.land[:,:]
        # Area
        areas = procgrid.landscatter(np.array(procgrid.area, dtype=np.float64))
        areas[np.isnan(areas)] = NCFillValue
        if part.rank == 0 :
            area=outnf.createVariable("area", vtyp, ('y','x'), fill_value=NCFillValue)
            area.units="m^2"
            area.standard_name="grid area"
            area.title="Area"
        else :
            area = np.zeros((1,1))
        area[:,:] = part.gather(areas[:,:])
        #
        # Variables
        # Once gathered on root_proc we transform them into float64. Careful, Integer variables do not have NaN ! 
        #
        rarea = procgrid.landscatter(self.routing_area[:,:], order='F')
316
        rarea = rarea.astype(vtyp, copy=False)
317 318 319 320 321 322 323 324 325
        rarea[np.isnan(rarea)] = NCFillValue
        if part.rank == 0 :
            routingarea = outnf.createVariable("routingarea", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routingarea.title = "Surface of basin"
            routingarea.units = "m^2"
        else :
            routingarea = np.zeros((1,1,1))
        routingarea[:,:,:] = part.gather(rarea)
        #
326 327
        # The field route_togrid is with indices on the local grid. That needs to be converted to the global grid.
        #
328 329 330 331 332 333 334 335 336
        itarget=-1
        for il in range(procgrid.nbland) :
            lo = procgrid.lon_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            la = procgrid.lat_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            d=np.sqrt((lo-3.13)**2+(la-39.70)**2)
            if d < 0.05 :
                itarget = il
                
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
337
            print(part.rank, itarget, " Before route_togrid = ", self.route_togrid[itarget,:])
338
        grgrid = part.l2glandindex(self.route_togrid[:,:])
339
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
340
            print(part.rank, itarget, " After route_togrid = ", self.route_togrid[itarget,:])
341
        rgrid = procgrid.landscatter(grgrid, order='F')
342
        rgrid = rgrid.astype(vtyp, copy=False)
343 344 345 346 347 348 349 350 351 352
        rgrid[rgrid >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            routetogrid = outnf.createVariable("routetogrid", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routetogrid.title = "Grid into which the basin flows"
            routetogrid.units = "-"
        else :
            routetogrid = np.zeros((1,1,1))    
        routetogrid[:,:,:] = part.gather(rgrid)
        #
        rtobasin = procgrid.landscatter(self.route_tobasin[:,:], order='F')
353
        rtobasin = rtobasin.astype(vtyp, copy=False)
354 355 356 357 358 359 360 361 362 363
        rtobasin[rtobasin >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            routetobasin = outnf.createVariable("routetobasin", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routetobasin.title = "Basin in to which the water goes"
            routetobasin.units = "-"
        else :
            routetobasin = np.zeros((1,1,1))
        routetobasin[:,:,:] = part.gather(rtobasin)
        #
        rid = procgrid.landscatter(self.global_basinid[:,:], order='F')
364
        rid = rid.astype(vtyp, copy=False)
365 366 367 368 369 370 371 372 373 374
        rid[rid >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :                           
            basinid = outnf.createVariable("basinid", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            basinid.title = "ID of basin"
            basinid.units = "-"
        else :
            basinid = np.zeros((1,1,1))
        basinid[:,:,:] = part.gather(rid)
        #
        rintobas = procgrid.landscatter(self.route_nbintobas[:])
375
        rintobas = rintobas.astype(vtyp, copy=False)
376 377 378 379 380 381 382 383 384 385
        rintobas[rintobas >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 : 
            routenbintobas = outnf.createVariable("routenbintobas", vtyp, ('y','x'), fill_value=NCFillValue)
            routenbintobas.title = "Number of basin into current one"
            routenbintobas.units = "-"
        else :
            routenbintobas = np.zeros((1,1))
        routenbintobas[:,:] = part.gather(rintobas)
        #
        onbintobas = procgrid.landscatter(self.origin_nbintobas[:])
386
        onbintobas = onbintobas.astype(vtyp, copy=False)
387 388 389 390 391 392 393 394 395 396
        onbintobas[onbintobas >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            originnbintobas = outnf.createVariable("originnbintobas", vtyp, ('y','x'), fill_value=NCFillValue)
            originnbintobas.title = "Number of sub-grid basin into current one before truncation"
            originnbintobas.units = "-"
        else :
            originnbintobas = np.zeros((1,1))
        originnbintobas[:,:] = part.gather(onbintobas)
        #
        olat = procgrid.landscatter(self.route_outlet[:,:,0], order='F')
397
        olat = olat.astype(vtyp, copy=False)
398 399 400 401 402 403 404 405 406 407
        olat[np.isnan(olat)] = NCFillValue
        if part.rank == 0 :
            outletlat = outnf.createVariable("outletlat", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outletlat.title = "Latitude of Outlet"
            outletlat.title = "degrees north"
        else :
            outletlat = np.zeros((1,1,1))
        outletlat[:,:,:] = part.gather(olat)
        #
        olon = procgrid.landscatter(self.route_outlet[:,:,1], order='F')
408
        olon = olon.astype(vtyp, copy=False)
409 410 411 412 413 414 415 416 417 418
        olon[np.isnan(olon)] = NCFillValue
        if part.rank == 0 :
            outletlon = outnf.createVariable("outletlon", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outletlon.title = "Longitude of outlet"
            outletlon.units = "degrees east"
        else :
            outletlon = np.zeros((1,1,1))
        outletlon[:,:,:] = part.gather(olon)
        #
        otype = procgrid.landscatter(self.route_type[:,:], order='F')
419
        otype = otype.astype(vtyp, copy=False)
420 421 422 423 424 425 426 427 428 429
        otype[np.isnan(otype)] = NCFillValue
        if part.rank == 0 :
            outlettype = outnf.createVariable("outlettype", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outlettype.title = "Type of outlet"
            outlettype.units = "code"
        else :
            outlettype = np.zeros((1,1,1))
        outlettype[:,:,:] = part.gather(otype)
        #
        tind = procgrid.landscatter(self.topo_resid[:,:], order='F')
430
        tind = tind.astype(vtyp, copy=False)
431 432 433 434 435 436 437 438 439
        tind[np.isnan(tind)] = NCFillValue
        if part.rank == 0 :
            topoindex = outnf.createVariable("topoindex", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            topoindex.title = "Topographic index of the retention time"
            topoindex.units = "m"
        else :
            topoindex = np.zeros((1,1,1))
        topoindex[:,:,:] = part.gather(tind)
        #
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
        # Save centre of gravity of HTU
        #
        cg = procgrid.landscatter(self.routing_cg[:,:,:], order='F')
        cg = cg.astype(vtyp, copy=False)
        cg[np.isnan(cg)] = NCFillValue
        if part.rank == 0 :
            CG_lon = outnf.createVariable("CG_lon", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            CG_lon.title = "Longitude of centre of gravity of HTU"
            CG_lon.units = "degrees east"
            CG_lat = outnf.createVariable("CG_lat", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            CG_lat.title = "Latitude of centre of gravity of HTU"
            CG_lat.units = "degrees north"
        else :
            CG_lon = np.zeros((1,1,1))
            CG_lat = np.zeros((1,1,1))
        CG_lon[:,:,:] = part.gather(cg[1,:,:,:])
        CG_lat[:,:,:] = part.gather(cg[0,:,:,:])
        #
458 459 460 461 462 463 464 465 466 467 468 469 470
        # Save the fetch of each basin
        #
        fe =  procgrid.landscatter(self.routing_fetch[:,:], order='F')
        fe = fe.astype(vtyp, copy=False)
        fe[np.isnan(fe)] = NCFillValue
        if part.rank == 0 :
            fetch = outnf.createVariable("fetch", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            fetch.title = "Fetch contributing to each HTU"
            fetch.units = "m^2"
        else :
            fetch = np.zeros((1,1,1))
        fetch[:,:,:] = part.gather(fe)
        #
471 472
        if part.rank == 0 :
            outnf.close()
473 474
        #
        return
475 476 477 478