Interface.py 30.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
#
#
import numpy as np
import os
import pickle
from netCDF4 import Dataset
import RPPtools as RPP
from mpi4py import MPI
#
import sys
11 12 13 14 15
from inspect import currentframe, getframeinfo
#
localdir=os.path.dirname(getframeinfo(currentframe()).filename)
sys.path.append(localdir+'/F90subroutines')
F90=localdir+'/F90subroutines'
16
if MPI.COMM_WORLD.Get_rank() == 0 :
17
    err=os.system("cd "+F90+"; make all")
18 19 20 21 22 23 24 25 26 27
    if err != 0 :
        print("Compilation error in the FORTRAN interface")
        sys.exit()
else :
    print("Not compiling on other cores")
MPI.COMM_WORLD.Barrier()
#
import routing_interface
#
import configparser
28
config = configparser.ConfigParser({'Documentation':'false', 'nbxmax':'63', 'ROUTING_RIVERS':'50'})
29
config.read("run.def")
30 31 32
gendoc = config.get("OverAll", "Documentation")
nbxmax = config.getint("OverAll", "nbxmax")
largest_pos = config.getint("OverAll", "ROUTING_RIVERS")
33 34
#
undef_int = 999999999.9
35 36
# Order of magnitude for the area precision in m^2.
prec = 100.0
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#
# Print the documentation for the FORTRAN interface
#
if gendoc.lower() == "true" : 
    docwrapper = open('DocumentationInterface', 'w')
    docwrapper.write(routing_interface.initatmgrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.gethydrogrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.findbasins.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.globalize.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.linkup.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.fetch.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.truncate.__doc__)
    docwrapper.close
#
# Functions to access the interfaces
#
#
# initatmgrid : Initialises the grid.f90 module and passes the description of the atmospheric grid.
#
62
def initatmgrid(rank, nbcore, nbpt, modelgrid) :
63 64 65
    print("INITATMGRID corners", np.array(modelgrid.polyll).shape)
    print("INITATMGRID area", np.array(modelgrid.area).shape)
    print("INITATMGRID neighbours", np.array(modelgrid.neighbours).shape)
66 67 68 69 70 71 72 73
    routing_interface.initatmgrid(rank, nbcore, modelgrid.polyll, modelgrid.coordll, modelgrid.area, modelgrid.contfrac, modelgrid.neighbours)
    return
#
#
#
def closeinterface(comm) :
    comm.Barrier()
    routing_interface.closeinterface()
74 75 76
    return
#
#
77
#
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
def addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind) :
    #
    # Longitude
    longitude = part.gather(procgrid.lon_full)
    if part.rank == 0 :
        lon=outnf.createVariable("lon", vtyp, ('y','x'), fill_value=NCFillValue)
        lon.units="grid box centre degrees east"
        lon.title="Longitude"
        lon.axis="X"
        lon[:,:] = longitude[:,:]
    #
    # Latitude
    latitude = part.gather(procgrid.lat_full)
    if part.rank == 0 :
        lat=outnf.createVariable("lat", vtyp, ('y','x'), fill_value=NCFillValue)
        lat.units="grid box centre degrees north"
        lat.standard_name="grid latitude"
        lat.title="Latitude"
        lat.axis="Y"
        lat[:] = latitude[:,:]
    #
    # Bounds of grid box
    #
    llonpoly=np.zeros((nbcorners,procgrid.nbland))
    llatpoly=np.zeros((nbcorners,procgrid.nbland))
    for i in range(procgrid.nbland) :
        llonpoly[:,i] = [procgrid.polyll[i][ic][0] for ic in cornerind]
        llatpoly[:,i] = [procgrid.polyll[i][ic][1] for ic in cornerind]
        lon_bnd = procgrid.landscatter(llonpoly)
        lat_bnd = procgrid.landscatter(llatpoly)
    if part.rank == 0 :
        lonbnd=outnf.createVariable("lon_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        lonbnd.units="grid box corners degrees east"
        lonbnd.title="Longitude of Corners"
        latbnd=outnf.createVariable("lat_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        latbnd.units="grid box corners degrees north"
        latbnd.title="Latitude of Corners"
    else :
        lonbnd= np.zeros((1,1,1))
        latbnd= np.zeros((1,1,1))
    lonbnd[:,:,:] = part.gather(lon_bnd[:,:,:])
    latbnd[:,:,:] = part.gather(lat_bnd[:,:,:])
    #
    # Land sea mask
    #
    if part.rank == 0 :
        land=outnf.createVariable("land", vtyp, ('y','x'), fill_value=NCFillValue)
        land.units="Land Sea mask"
        land.standard_name="landsea mask"
        land.title="Land"
        land[:,:] = globalgrid.land[:,:]
    # Area
    areas = procgrid.landscatter(np.array(procgrid.area, dtype=np.float64))
    areas[np.isnan(areas)] = NCFillValue
    if part.rank == 0 :
        area=outnf.createVariable("area", vtyp, ('y','x'), fill_value=NCFillValue)
        area.units="m^2"
        area.standard_name="grid area"
        area.title="Area"
    else :
        area = np.zeros((1,1))
    area[:,:] = part.gather(areas[:,:])
    #
    return
#
# Add environment to netCDF file
#
def addenvironment(outnf, procgrid, part, vtyp, NCFillValue, nbpt) :
    #
    nbpt_proc = np.arange(1,nbpt+1, dtype=vtyp)
    proc = np.full(nbpt, part.rank, dtype=vtyp)
    # Environment
    # nbpt_proc
    subpt = procgrid.landscatter(nbpt_proc[:], order='F')
    subpt = subpt.astype(vtyp, copy=False)
    subpt[np.isnan(subpt)] = NCFillValue
    if part.rank == 0 :
        subptgrid = outnf.createVariable("nbpt_proc", vtyp, ('y','x'), fill_value=NCFillValue)
        subptgrid.title = "gridpoint reference inside each proc"
        subptgrid.units = "-"
    else :
        subptgrid = np.zeros((1,1))
    subptgrid[:,:] = part.gather(subpt)
    #
    # rank
    procnum = procgrid.landscatter(proc[:], order='F')
    procnum = procnum.astype(vtyp, copy=False)
    procnum[np.isnan(procnum)] = NCFillValue
    if part.rank == 0 :
        procn = outnf.createVariable("proc_num", vtyp, ('y','x'), fill_value=NCFillValue)
        procn.title = "rank"
        procn.units = "-"
    else :
        procn = np.zeros((1,1))
    procn[:,:] = part.gather(procnum)
    #
    return
#
#
#
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
def finalfetch(part, routing_area, basin_count, route_togrid, route_tobasin, fetch_in) :
    #
    fetch_out = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    partial_sum = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
    #
    maxdiff_sorted = prec*prec
    iter_count = 0
    #
    while iter_count < part.size*3 and maxdiff_sorted > prec :
        fetch_out[:,:] = 0.0
        outflow_uparea = routing_interface.finalfetch(part.landcorelist, routing_area, basin_count, route_togrid, \
                                                      route_tobasin, partial_sum, fetch_out)
        partial_sum = np.copy(fetch_out)
        part.landsendtohalo(partial_sum, order='F')
        partial_sum = part.zerocore(partial_sum, order='F')
        #
        # Find area the largest basins we need to have right.
        #
        xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
        # Precision in m^2 of the upstream areas when sorting.
        sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
        # If mono-proc no need to iterate as fetch produces the full result.
        if part.size == 1 :
            maxdiff_sorted = 0.0
        else :
            maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted))
        old_sorted[:] = sorted_outareas[0:largest_pos]
        iter_count += 1
    #
    fetch_error = np.sum(np.abs(fetch_out[part.landcorelist,:]-fetch_in[part.landcorelist,:]), axis=1)\
                                                    /np.sum(routing_area[part.landcorelist,:], axis=1)
    if np.max(fetch_error) > prec : 
        print("Rank :"+str(part.rank)+" Too large fetch error (fraction of greid area) : ", fetch_error)
          
    print("Total fetch error in fraction of grid box : ", np.sum(fetch_error))
    #
    return fetch_out
#
#
#
219 220
class HydroOverlap :
#
Anthony Schrapffer's avatar
Anthony Schrapffer committed
221
    def __init__(self, nbpt, nbvmax, sub_pts, sub_index_in, sub_area_in, sub_lon_in, sub_lat_in, part, modelgrid, hydrodata) :
222 223 224 225 226 227 228 229 230 231 232 233 234 235
        #
        # Reshape stuff so that it fits into arrays
        #
        sub_index = np.zeros((nbpt,nbvmax,2), dtype=np.int8, order='F')
        sub_area = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lon = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lat = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        for ib in range(nbpt) :
            sub_area[ib,0:sub_pts[ib]] = sub_area_in[ib][:]
            sub_lon[ib,0:sub_pts[ib]] = sub_lon_in[ib][:]
            sub_lat[ib,0:sub_pts[ib]] = sub_lat_in[ib][:]
            for ip in range(sub_pts[ib]) :
                sub_index[ib,ip,:] = [sub_index_in[ib][0][ip],sub_index_in[ib][1][ip]]
        #
Anthony Schrapffer's avatar
Anthony Schrapffer committed
236 237
        part.landsendtohalo(sub_area, order='F')
        #
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        trip_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        basins_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        topoind_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        fac_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        hierarchy_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        #
        trip_tmp[:,:] = np.nan
        basins_tmp[:,:] = np.nan
        for ib in range(nbpt) :
            trip_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.trip[ib][:])
            basins_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.basins[ib][:])
            topoind_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.topoind[ib][:])
            fac_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.fac[ib][:])
            hierarchy_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.disto[ib][:])
        #
        trip_tmp[np.isnan(trip_tmp)] = undef_int
        basins_tmp[np.isnan(trip_tmp)] = undef_int
        #
        # Go to the call of the FORTRAN interface
        #
        print("GETHYDROGRID : nbpt = ", nbpt, nbvmax)
        print("GETHYDROGRID : nbvmax = ", nbvmax)
        print("GETHYDROGRID : nbxmax = ", nbxmax)
        self.nbi, self.nbj, self.area_bx, self.trip_bx, self.basin_bx, self.topoind_bx, self.fac_bx, self.hierarchy_bx, \
            self.lon_bx, self.lat_bx, self.lshead_bx, self.nwbas = \
                    routing_interface.gethydrogrid(nbxmax, sub_pts, sub_index, sub_area, \
                    hydrodata.basinsmax, hydrodata.topoindmin, sub_lon, sub_lat, trip_tmp, basins_tmp, topoind_tmp, fac_tmp, hierarchy_tmp)
        #
        # Plot some diagnostics for the hydrology grid within the atmospheric meshes.
        #
        # Clean-up these arrays so that they are easy to use in Python.
        self.lon_bx[self.lon_bx > 360.]=np.nan
        self.lat_bx[self.lat_bx > 90.]=np.nan
        #
272 273 274 275
        return
#
#
#
276 277
class HydroSuper :
    def __init__(self, nbvmax, hydrodata, hydrooverlap) :
278 279 280 281
        #
        # Keep largest possible number of HTUs
        #
        self.nbhtuext = nbvmax
282 283 284 285 286 287 288 289 290 291 292
        #
        # Call findbasins
        #
        nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, basin_bxout, basin_bbout, self.basin_pts, basin_lshead, coast_pts = \
                    routing_interface.findbasins(nbvmax, hydrooverlap.nbi, hydrooverlap.nbj, hydrooverlap.trip_bx, \
                                                 hydrooverlap.basin_bx, hydrooverlap.fac_bx, hydrooverlap.hierarchy_bx, \
                                                 hydrooverlap.topoind_bx, hydrooverlap.lshead_bx, \
                                                 hydrooverlap.lon_bx, hydrooverlap.lat_bx)
        #
        # Call Globalize
        #
293 294 295 296 297 298
        lon_bx_tmp = hydrooverlap.lon_bx
        lon_bx_tmp[np.isnan(lon_bx_tmp)] = undef_int
        lat_bx_tmp = hydrooverlap.lat_bx
        lat_bx_tmp[np.isnan(lat_bx_tmp)] = undef_int
        self.basin_count, self.basin_notrun, self.basin_area, self.basin_cg, self.basin_hierarchy, self.basin_fac, self.basin_topoind, \
            self.basin_id, self.basin_outcoor, self.basin_type, self.basin_flowdir, \
299
            self.basin_lshead, self.outflow_grid, self.outflow_basin, self.nbcoastal, self.coastal_basin = \
300 301 302
                    routing_interface.globalize(hydrooverlap.area_bx, lon_bx_tmp, lat_bx_tmp, hydrooverlap.trip_bx, \
                                                hydrooverlap.hierarchy_bx, hydrooverlap.fac_bx, hydrooverlap.topoind_bx, hydrodata.topoindmin, \
                                                nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, self.basin_pts, basin_bxout, \
303
                                                basin_bbout, basin_lshead, coast_pts, hydrooverlap.nwbas)
304
        self.nbpt = self.basin_count.shape[0]
305 306
        return
    #
307 308 309 310 311 312 313 314 315
    def linkup(self, hydrodata) :
        #
        # Call the linkup routine in routing_reg.
        #
        print("Invented basins =", hydrodata.basinsmax)
        self.inflow_number,self.inflow_grid,self.inflow_basin = routing_interface.linkup(nbxmax, self.basin_count, self.basin_area, self.basin_id, \
                                                                       self.basin_flowdir, self.basin_lshead, self.basin_hierarchy, \
                                                                       self.basin_fac, self.outflow_grid, self.outflow_basin, \
                                                                       self.nbcoastal, self.coastal_basin, float(hydrodata.basinsmax))
316 317
        return
    #
POLCHER Jan's avatar
POLCHER Jan committed
318
    def fetch(self, part) :
319
        #
320
        fetch_basin = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
321
        #
322
        self.basin_area = routing_interface.areanorm(self.basin_count, self.basin_area, self.outflow_grid)
323
        partial_sum = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
324
        #
325
        old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
326 327 328 329 330
        #
        maxdiff_sorted = prec*prec
        iter_count = 0
        #
        while iter_count < part.size*3 and maxdiff_sorted > prec :
331
            fetch_basin[:,:] = 0.0
332
            outflow_uparea = routing_interface.fetch(part.landcorelist, self.basin_count, self.basin_area, self.basin_id, self.basin_hierarchy, \
333
                                                         self.basin_fac, self.outflow_grid, self.outflow_basin, partial_sum, fetch_basin)
334 335
            partial_sum = np.copy(fetch_basin)
            part.landsendtohalo(partial_sum, order='F')
336 337
            partial_sum = part.zerocore(partial_sum, order='F')
            #
338 339 340 341 342 343 344 345 346 347 348 349
            # Find area the largest basins need at least to have.
            #
            xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
            # Precision in m^2 of the upstream areas when sorting.
            sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
            # If mono-proc no need to iterate as fetch produces the full result.
            if part.size == 1 :
                maxdiff_sorted = 0.0
            else :
                maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted))
            old_sorted[:] = sorted_outareas[0:largest_pos]
            iter_count += 1
350

351 352
        self.fetch_basin = np.copy(fetch_basin)
        #
353
        # Upstream area of the smalest river we call largest rivers. 
354
        #
355
        self.largest_rivarea = sorted_outareas[largest_pos-1]
356 357 358
        #
        #
        #
359 360 361
        self.num_largest = routing_interface.rivclassification(part.landcorelist, self.basin_count, self.outflow_grid, self.outflow_basin, \
                                                               self.fetch_basin, self.largest_rivarea)
        print("Rank :"+str(part.rank)+" Area of smallest large rivers : ", self.largest_rivarea, " Nb of Large rivers on proc : ",self.num_largest)
362
        return
363 364
    #
    #
365 366 367 368 369 370 371 372 373 374 375
    def add_variable(self,outnf, procgrid, NCFillValue, part, coord, name, title, units, data, vtyp):
        var = procgrid.landscatter(data.astype(vtyp), order='F')
        var[np.isnan(var)] = NCFillValue
        if part.rank == 0 :
            ncvar = outnf.createVariable(name, vtyp, coord, fill_value=NCFillValue)
            ncvar.title = title
            ncvar.units = units
        else :
            ncvar = np.zeros((1,1,1))
        ncvar[:] = part.gather(var)
    
376 377 378 379 380
    #
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
381
        inflow_size = 100
382 383 384 385 386 387 388 389 390 391
        cornerind=[0,2,4,6]
        nbcorners = len(cornerind)
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htuext', self.nbhtuext)
392 393
            outnf.createDimension('htu', self.inflow_number.shape[1])
            outnf.createDimension('in',inflow_size )
394 395 396 397 398 399 400 401 402 403
            outnf.createDimension('bnd', nbcorners)
        else :
            outnf = None
        #
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
        # 
        # Variables
        # Once gathered on root_proc we transform them into float64. Careful, Integer variables do not have NaN !
        #
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        # nbpt_glo
        nbpt_loc = np.zeros((self.nbpt,1)).astype(np.int32)
        nbpt_loc[:,0] = np.arange(1, self.nbpt+1)
        nbpt_glo = part.l2glandindex(nbpt_loc)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "nbpt_glo", "Grid point Global", "-", nbpt_glo[:,0], vtyp)
        #
        # gridarea
        contfrac = np.array(procgrid.contfrac)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "contfrac", "Land fraction", "-", np.array(procgrid.contfrac), vtyp)
        #
        # gridarea
        nbptarea = np.array(procgrid.area)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "gridarea", "Grid area", "-", nbptarea, vtyp)
        #
        # basin_id
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_id", "ID for each HTU", "-", self.basin_id, vtyp)
420 421
        #
        #self.basin_count
422
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "basin_count", "HTU count", "-", self.basin_count, vtyp)
423
        #
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        # self.basin_notrun
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "basin_notrun", "Not run", "-", self.basin_notrun, vtyp)
        #
        # self.basin_area
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_area", "Basin area", "-", self.basin_area, vtyp)
        #
        # self.basin_cg
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "CG_lon", "CG lon", "-", self.basin_cg[:,:,1], vtyp)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "CG_lat", "CG lat", "-", self.basin_cg[:,:,0], vtyp)
        #
        # self.topoind
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_topoind", "Topoindex", "-", self.basin_topoind, vtyp)
        # 
        # outcoor
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "outcoor_lon", "outcoor lon", "-", self.basin_outcoor[:,:,1], vtyp)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "outcoor_lat", "outcoor lat", "-", self.basin_outcoor[:,:,0], vtyp)
        # 
        # type
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_type", "type", "-", self.basin_type, vtyp)
443
        #
444 445 446 447
        # flowdir
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_flowdir", "flowdir", "-", self.basin_flowdir, vtyp)
        #
        # 
448
        #self.outflow_grid
449 450 451 452 453 454
        grgrid = part.l2glandindex(self.outflow_grid)
        grgrid[self.outflow_grid == 0 ] = -2 # in case it flows out of the domain, the 0 should not remain
        grgrid[self.outflow_grid == -1 ] = -1
        grgrid[self.outflow_grid == -2 ] = -2
        grgrid[self.outflow_grid == -3 ] = -3
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "HTUoutgrid", "HTU outflow grid", "-", grgrid, vtyp)
455 456
        #
        #self.outflow_basin
457 458 459 460 461 462 463 464 465 466 467
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "HTUoutbasin", "Outflow HTU of grid", "-", self.outflow_basin, vtyp)
        #
        # self.inflow_number
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "HTUinnum", "Inflow number", "-", self.inflow_number, vtyp)
        #
        # Inflow Grid -> convert to global
        gingrid = part.l2glandindex(self.inflow_grid[:,:,:inflow_size])
        self.add_variable(outnf, procgrid, NCFillValue, part, ('in','htu','y','x'), "HTUingrid", "Inflow grid", "-", gingrid, vtyp)

        self.add_variable(outnf, procgrid, NCFillValue, part, ('in','htu','y','x'), "HTUinbas", "Inflow basin", "-", self.inflow_basin[:,:,:inflow_size], vtyp)

468 469 470
        #
        # Save the fetch of each basin
        #
471
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "fetch_basin", "Fetch contributing to each HTU", "m^2", self.fetch_basin, vtyp)
472 473 474 475 476 477 478
        #
        # Close file
        #
        if part.rank == 0 :
            outnf.close()
        #
        return
479 480 481
#
#
#
482
class HydroGraph :
POLCHER Jan's avatar
POLCHER Jan committed
483
    def __init__(self, nbasmax, hydrosuper, part) :
484
        #
485
        self.nbasmax = nbasmax
486 487
        self.nbpt = hydrosuper.basin_count.shape[0]
        #
488 489 490 491
        self.routing_area, self.routing_cg, self.topo_resid, self.route_nbbasin, self.route_togrid, self.route_tobasin, self.route_nbintobas, \
            self.global_basinid, self.route_outlet, self.route_type, self.origin_nbintobas, self.routing_fetch = \
                                    routing_interface.truncate(nbasmax, hydrosuper.num_largest, part.landcorelist, hydrosuper.basin_count, \
                                                               hydrosuper.basin_notrun, hydrosuper.basin_area, hydrosuper.basin_cg, \
492 493 494 495
                                                               hydrosuper.basin_topoind, hydrosuper.fetch_basin, hydrosuper.basin_id, \
                                                               hydrosuper.basin_outcoor, hydrosuper.basin_type, hydrosuper.basin_flowdir, \
                                                               hydrosuper.outflow_grid, hydrosuper.outflow_basin, \
                                                               hydrosuper.inflow_number,hydrosuper.inflow_grid,hydrosuper.inflow_basin)
496 497 498 499 500 501
        #
        self.routing_fetch = finalfetch(part, self.routing_area, self.route_nbbasin, self.route_togrid, self.route_tobasin, self.routing_fetch)
        # 
        self.num_largest = routing_interface.finalrivclass(part.landcorelist, self.route_togrid, self.route_tobasin, self.routing_fetch, \
                                                           hydrosuper.largest_rivarea)
        #
502 503
        return
    #
504 505 506 507 508
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
        cornerind=[0,2,4,6]
509
        nbcorners = len(cornerind)
510 511 512 513 514 515 516 517
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htu', self.nbasmax)
518
            outnf.createDimension('bnd', nbcorners)
519
        else :
520
            outnf = None
521
        #
522 523
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
524
        #
525 526
        # The field route_togrid is with indices on the local grid. That needs to be converted to the global grid.
        #
527 528 529 530 531 532 533 534 535
        itarget=-1
        for il in range(procgrid.nbland) :
            lo = procgrid.lon_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            la = procgrid.lat_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            d=np.sqrt((lo-3.13)**2+(la-39.70)**2)
            if d < 0.05 :
                itarget = il
                
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
536
            print(part.rank, itarget, " Before route_togrid = ", self.route_togrid[itarget,:])
537
        grgrid = part.l2glandindex(self.route_togrid[:,:])
538
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
539
            print(part.rank, itarget, " After route_togrid = ", self.route_togrid[itarget,:])
540
        rgrid = procgrid.landscatter(grgrid.astype(vtyp), order='F')
541 542 543 544 545 546 547 548 549
        rgrid[rgrid >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            routetogrid = outnf.createVariable("routetogrid", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routetogrid.title = "Grid into which the basin flows"
            routetogrid.units = "-"
        else :
            routetogrid = np.zeros((1,1,1))    
        routetogrid[:,:,:] = part.gather(rgrid)
        #
550
        rtobasin = procgrid.landscatter(self.route_tobasin[:,:].astype(vtyp), order='F')
551
        rtobasin = rtobasin.astype(vtyp, copy=False)
552 553 554 555 556 557 558 559 560
        rtobasin[rtobasin >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            routetobasin = outnf.createVariable("routetobasin", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routetobasin.title = "Basin in to which the water goes"
            routetobasin.units = "-"
        else :
            routetobasin = np.zeros((1,1,1))
        routetobasin[:,:,:] = part.gather(rtobasin)
        #
561
        rid = procgrid.landscatter(self.global_basinid[:,:].astype(vtyp), order='F')
562 563 564 565 566 567 568 569 570
        rid[rid >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :                           
            basinid = outnf.createVariable("basinid", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            basinid.title = "ID of basin"
            basinid.units = "-"
        else :
            basinid = np.zeros((1,1,1))
        basinid[:,:,:] = part.gather(rid)
        #
571
        rintobas = procgrid.landscatter(self.route_nbintobas[:].astype(vtyp))
572 573 574 575 576 577 578 579 580
        rintobas[rintobas >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 : 
            routenbintobas = outnf.createVariable("routenbintobas", vtyp, ('y','x'), fill_value=NCFillValue)
            routenbintobas.title = "Number of basin into current one"
            routenbintobas.units = "-"
        else :
            routenbintobas = np.zeros((1,1))
        routenbintobas[:,:] = part.gather(rintobas)
        #
581
        onbintobas = procgrid.landscatter(self.origin_nbintobas[:].astype(vtyp))
582 583 584 585 586 587 588 589 590
        onbintobas[onbintobas >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            originnbintobas = outnf.createVariable("originnbintobas", vtyp, ('y','x'), fill_value=NCFillValue)
            originnbintobas.title = "Number of sub-grid basin into current one before truncation"
            originnbintobas.units = "-"
        else :
            originnbintobas = np.zeros((1,1))
        originnbintobas[:,:] = part.gather(onbintobas)
        #
591
        olat = procgrid.landscatter(self.route_outlet[:,:,0].astype(vtyp), order='F')
592 593 594 595 596 597 598 599 600
        olat[np.isnan(olat)] = NCFillValue
        if part.rank == 0 :
            outletlat = outnf.createVariable("outletlat", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outletlat.title = "Latitude of Outlet"
            outletlat.title = "degrees north"
        else :
            outletlat = np.zeros((1,1,1))
        outletlat[:,:,:] = part.gather(olat)
        #
601
        olon = procgrid.landscatter(self.route_outlet[:,:,1].astype(vtyp), order='F')
602 603 604 605 606 607 608 609 610
        olon[np.isnan(olon)] = NCFillValue
        if part.rank == 0 :
            outletlon = outnf.createVariable("outletlon", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outletlon.title = "Longitude of outlet"
            outletlon.units = "degrees east"
        else :
            outletlon = np.zeros((1,1,1))
        outletlon[:,:,:] = part.gather(olon)
        #
611
        otype = procgrid.landscatter(self.route_type[:,:].astype(vtyp), order='F')
612 613 614 615 616 617 618 619 620
        otype[np.isnan(otype)] = NCFillValue
        if part.rank == 0 :
            outlettype = outnf.createVariable("outlettype", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outlettype.title = "Type of outlet"
            outlettype.units = "code"
        else :
            outlettype = np.zeros((1,1,1))
        outlettype[:,:,:] = part.gather(otype)
        #
621
        tind = procgrid.landscatter(self.topo_resid[:,:].astype(vtyp), order='F')
622 623 624 625 626 627 628 629 630
        tind[np.isnan(tind)] = NCFillValue
        if part.rank == 0 :
            topoindex = outnf.createVariable("topoindex", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            topoindex.title = "Topographic index of the retention time"
            topoindex.units = "m"
        else :
            topoindex = np.zeros((1,1,1))
        topoindex[:,:,:] = part.gather(tind)
        #
631 632
        # Save centre of gravity of HTU
        #
633
        cg = procgrid.landscatter(self.routing_cg[:,:,:].astype(vtyp), order='F')
634 635 636 637 638 639 640 641 642 643 644 645 646 647
        cg[np.isnan(cg)] = NCFillValue
        if part.rank == 0 :
            CG_lon = outnf.createVariable("CG_lon", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            CG_lon.title = "Longitude of centre of gravity of HTU"
            CG_lon.units = "degrees east"
            CG_lat = outnf.createVariable("CG_lat", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            CG_lat.title = "Latitude of centre of gravity of HTU"
            CG_lat.units = "degrees north"
        else :
            CG_lon = np.zeros((1,1,1))
            CG_lat = np.zeros((1,1,1))
        CG_lon[:,:,:] = part.gather(cg[1,:,:,:])
        CG_lat[:,:,:] = part.gather(cg[0,:,:,:])
        #
648 649
        # Save the fetch of each basin
        #
650
        fe =  procgrid.landscatter(self.routing_fetch[:,:].astype(vtyp), order='F')
651 652 653 654 655 656 657 658 659
        fe[np.isnan(fe)] = NCFillValue
        if part.rank == 0 :
            fetch = outnf.createVariable("fetch", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            fetch.title = "Fetch contributing to each HTU"
            fetch.units = "m^2"
        else :
            fetch = np.zeros((1,1,1))
        fetch[:,:,:] = part.gather(fe)
        #
660 661
        if part.rank == 0 :
            outnf.close()
662 663
        #
        return
664 665 666 667