Interface.py 33 KB
Newer Older
1 2 3 4 5 6 7 8
#
#
import numpy as np
import os
import pickle
from netCDF4 import Dataset
import RPPtools as RPP
from mpi4py import MPI
9
import gc
10 11
#
import sys
12 13 14 15 16
from inspect import currentframe, getframeinfo
#
localdir=os.path.dirname(getframeinfo(currentframe()).filename)
sys.path.append(localdir+'/F90subroutines')
F90=localdir+'/F90subroutines'
17
if MPI.COMM_WORLD.Get_rank() == 0 :
18
    err=os.system("cd "+F90+"; make all")
19 20 21 22 23 24 25 26 27 28
    if err != 0 :
        print("Compilation error in the FORTRAN interface")
        sys.exit()
else :
    print("Not compiling on other cores")
MPI.COMM_WORLD.Barrier()
#
import routing_interface
#
import configparser
29
config = configparser.ConfigParser({'Documentation':'false', 'nbxmax':'63', 'ROUTING_RIVERS':'50'})
30
config.read("run.def")
31 32 33
gendoc = config.get("OverAll", "Documentation")
nbxmax = config.getint("OverAll", "nbxmax")
largest_pos = config.getint("OverAll", "ROUTING_RIVERS")
34 35
#
undef_int = 999999999.9
36 37
# Order of magnitude for the area precision in m^2.
prec = 100.0
38 39 40
#
# Print the documentation for the FORTRAN interface
#
41
if gendoc.lower() == "true" :
42 43 44 45 46 47 48 49 50 51 52 53 54
    docwrapper = open('DocumentationInterface', 'w')
    docwrapper.write(routing_interface.initatmgrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.gethydrogrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.findbasins.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.globalize.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.linkup.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.fetch.__doc__)
    docwrapper.write("====================================================================\n")
55 56 57 58
    docwrapper.write(routing_interface.finish_truncate.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.killbas.__doc__)

59 60 61 62 63 64 65
    docwrapper.close
#
# Functions to access the interfaces
#
#
# initatmgrid : Initialises the grid.f90 module and passes the description of the atmospheric grid.
#
66
def initatmgrid(rank, nbcore, nbpt, modelgrid) :
67 68 69
    print("INITATMGRID corners", np.array(modelgrid.polyll).shape)
    print("INITATMGRID area", np.array(modelgrid.area).shape)
    print("INITATMGRID neighbours", np.array(modelgrid.neighbours).shape)
70 71 72 73 74 75 76 77
    routing_interface.initatmgrid(rank, nbcore, modelgrid.polyll, modelgrid.coordll, modelgrid.area, modelgrid.contfrac, modelgrid.neighbours)
    return
#
#
#
def closeinterface(comm) :
    comm.Barrier()
    routing_interface.closeinterface()
78 79 80
    return
#
#
81
#
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind) :
    #
    # Longitude
    longitude = part.gather(procgrid.lon_full)
    if part.rank == 0 :
        lon=outnf.createVariable("lon", vtyp, ('y','x'), fill_value=NCFillValue)
        lon.units="grid box centre degrees east"
        lon.title="Longitude"
        lon.axis="X"
        lon[:,:] = longitude[:,:]
    #
    # Latitude
    latitude = part.gather(procgrid.lat_full)
    if part.rank == 0 :
        lat=outnf.createVariable("lat", vtyp, ('y','x'), fill_value=NCFillValue)
        lat.units="grid box centre degrees north"
        lat.standard_name="grid latitude"
        lat.title="Latitude"
        lat.axis="Y"
        lat[:] = latitude[:,:]
    #
    # Bounds of grid box
    #
    llonpoly=np.zeros((nbcorners,procgrid.nbland))
    llatpoly=np.zeros((nbcorners,procgrid.nbland))
    for i in range(procgrid.nbland) :
        llonpoly[:,i] = [procgrid.polyll[i][ic][0] for ic in cornerind]
        llatpoly[:,i] = [procgrid.polyll[i][ic][1] for ic in cornerind]
        lon_bnd = procgrid.landscatter(llonpoly)
        lat_bnd = procgrid.landscatter(llatpoly)
    if part.rank == 0 :
        lonbnd=outnf.createVariable("lon_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        lonbnd.units="grid box corners degrees east"
        lonbnd.title="Longitude of Corners"
        latbnd=outnf.createVariable("lat_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        latbnd.units="grid box corners degrees north"
        latbnd.title="Latitude of Corners"
    else :
        lonbnd= np.zeros((1,1,1))
        latbnd= np.zeros((1,1,1))
    lonbnd[:,:,:] = part.gather(lon_bnd[:,:,:])
    latbnd[:,:,:] = part.gather(lat_bnd[:,:,:])
    #
    # Land sea mask
    #
    if part.rank == 0 :
        land=outnf.createVariable("land", vtyp, ('y','x'), fill_value=NCFillValue)
        land.units="Land Sea mask"
        land.standard_name="landsea mask"
        land.title="Land"
        land[:,:] = globalgrid.land[:,:]
    # Area
    areas = procgrid.landscatter(np.array(procgrid.area, dtype=np.float64))
    areas[np.isnan(areas)] = NCFillValue
    if part.rank == 0 :
        area=outnf.createVariable("area", vtyp, ('y','x'), fill_value=NCFillValue)
        area.units="m^2"
        area.standard_name="grid area"
        area.title="Area"
    else :
        area = np.zeros((1,1))
    area[:,:] = part.gather(areas[:,:])
    #
    return
#
# Add environment to netCDF file
#
def addenvironment(outnf, procgrid, part, vtyp, NCFillValue, nbpt) :
    #
    nbpt_proc = np.arange(1,nbpt+1, dtype=vtyp)
    proc = np.full(nbpt, part.rank, dtype=vtyp)
    # Environment
    # nbpt_proc
    subpt = procgrid.landscatter(nbpt_proc[:], order='F')
    subpt = subpt.astype(vtyp, copy=False)
    subpt[np.isnan(subpt)] = NCFillValue
    if part.rank == 0 :
        subptgrid = outnf.createVariable("nbpt_proc", vtyp, ('y','x'), fill_value=NCFillValue)
        subptgrid.title = "gridpoint reference inside each proc"
        subptgrid.units = "-"
    else :
        subptgrid = np.zeros((1,1))
    subptgrid[:,:] = part.gather(subpt)
    #
    # rank
    procnum = procgrid.landscatter(proc[:], order='F')
    procnum = procnum.astype(vtyp, copy=False)
    procnum[np.isnan(procnum)] = NCFillValue
    if part.rank == 0 :
        procn = outnf.createVariable("proc_num", vtyp, ('y','x'), fill_value=NCFillValue)
        procn.title = "rank"
        procn.units = "-"
    else :
        procn = np.zeros((1,1))
    procn[:,:] = part.gather(procnum)
    #
    return
#
#
#
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
def finalfetch(part, routing_area, basin_count, route_togrid, route_tobasin, fetch_in) :
    #
    fetch_out = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    partial_sum = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
    #
    maxdiff_sorted = prec*prec
    iter_count = 0
    #
    while iter_count < part.size*3 and maxdiff_sorted > prec :
        fetch_out[:,:] = 0.0
        outflow_uparea = routing_interface.finalfetch(part.landcorelist, routing_area, basin_count, route_togrid, \
                                                      route_tobasin, partial_sum, fetch_out)
        partial_sum = np.copy(fetch_out)
        part.landsendtohalo(partial_sum, order='F')
        partial_sum = part.zerocore(partial_sum, order='F')
        #
        # Find area the largest basins we need to have right.
        #
        xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
        # Precision in m^2 of the upstream areas when sorting.
        sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
        # If mono-proc no need to iterate as fetch produces the full result.
        if part.size == 1 :
            maxdiff_sorted = 0.0
        else :
            maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted))
        old_sorted[:] = sorted_outareas[0:largest_pos]
        iter_count += 1
211

212 213 214
    #
    fetch_error = np.sum(np.abs(fetch_out[part.landcorelist,:]-fetch_in[part.landcorelist,:]), axis=1)\
                                                    /np.sum(routing_area[part.landcorelist,:], axis=1)
215
    if np.max(fetch_error) > prec :
216
        print("Rank :"+str(part.rank)+" Too large fetch error (fraction of greid area) : ", fetch_error)
217

218 219 220 221 222 223
    print("Total fetch error in fraction of grid box : ", np.sum(fetch_error))
    #
    return fetch_out
#
#
#
224 225
class HydroOverlap :
#
Anthony Schrapffer's avatar
Anthony Schrapffer committed
226
    def __init__(self, nbpt, nbvmax, sub_pts, sub_index_in, sub_area_in, sub_lon_in, sub_lat_in, part, modelgrid, hydrodata) :
227 228 229 230 231 232 233 234 235 236 237 238
        #
        # Reshape stuff so that it fits into arrays
        #
        sub_index = np.zeros((nbpt,nbvmax,2), dtype=np.int8, order='F')
        sub_area = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lon = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lat = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        for ib in range(nbpt) :
            sub_area[ib,0:sub_pts[ib]] = sub_area_in[ib][:]
            sub_lon[ib,0:sub_pts[ib]] = sub_lon_in[ib][:]
            sub_lat[ib,0:sub_pts[ib]] = sub_lat_in[ib][:]
            for ip in range(sub_pts[ib]) :
239
                sub_index[ib,ip,:] = sub_index_in[ib][:,ip]
240
        #
241
        part.landsendtohalo(np.array(sub_area), order='F')
Anthony Schrapffer's avatar
Anthony Schrapffer committed
242
        #
243 244 245 246 247
        trip_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        basins_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        topoind_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        fac_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        hierarchy_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
248 249
        orog_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        floodp_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
250 251 252 253 254 255 256 257 258
        #
        trip_tmp[:,:] = np.nan
        basins_tmp[:,:] = np.nan
        for ib in range(nbpt) :
            trip_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.trip[ib][:])
            basins_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.basins[ib][:])
            topoind_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.topoind[ib][:])
            fac_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.fac[ib][:])
            hierarchy_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.disto[ib][:])
259 260
            orog_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.orog[ib][:])
            floodp_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.floodplains[ib][:])
261 262 263 264 265 266 267 268 269 270
        #
        trip_tmp[np.isnan(trip_tmp)] = undef_int
        basins_tmp[np.isnan(trip_tmp)] = undef_int
        #
        # Go to the call of the FORTRAN interface
        #
        print("GETHYDROGRID : nbpt = ", nbpt, nbvmax)
        print("GETHYDROGRID : nbvmax = ", nbvmax)
        print("GETHYDROGRID : nbxmax = ", nbxmax)
        self.nbi, self.nbj, self.area_bx, self.trip_bx, self.basin_bx, self.topoind_bx, self.fac_bx, self.hierarchy_bx, \
271
            self.orog_bx, self.floodp_bx, \
272
            self.lon_bx, self.lat_bx, self.lshead_bx = \
273
                    routing_interface.gethydrogrid(nbxmax, sub_pts, sub_index, sub_area, \
274 275
                    hydrodata.basinsmax, hydrodata.topoindmin, sub_lon, sub_lat, trip_tmp, basins_tmp, topoind_tmp, fac_tmp,\
                        hierarchy_tmp, orog_tmp, floodp_tmp)
276 277 278
        #
        # Plot some diagnostics for the hydrology grid within the atmospheric meshes.
        #
279
        self.nwbas = nbvmax
280 281 282 283
        # Clean-up these arrays so that they are easy to use in Python.
        self.lon_bx[self.lon_bx > 360.]=np.nan
        self.lat_bx[self.lat_bx > 90.]=np.nan
        #
284 285 286 287
        return
#
#
#
288
class HydroSuper :
289
    def __init__(self, nbvmax, hydrodata, hydrooverlap, nbasmax) :
290 291 292
        #
        # Keep largest possible number of HTUs
        #
293
        self.nbasmax = nbasmax
294
        self.nbhtuext = nbvmax
295
        self.nwbas = hydrooverlap.nwbas
296 297 298 299 300 301 302 303 304 305 306
        #
        # Call findbasins
        #
        nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, basin_bxout, basin_bbout, self.basin_pts, basin_lshead, coast_pts = \
                    routing_interface.findbasins(nbvmax, hydrooverlap.nbi, hydrooverlap.nbj, hydrooverlap.trip_bx, \
                                                 hydrooverlap.basin_bx, hydrooverlap.fac_bx, hydrooverlap.hierarchy_bx, \
                                                 hydrooverlap.topoind_bx, hydrooverlap.lshead_bx, \
                                                 hydrooverlap.lon_bx, hydrooverlap.lat_bx)
        #
        # Call Globalize
        #
307 308 309 310
        lon_bx_tmp = hydrooverlap.lon_bx
        lon_bx_tmp[np.isnan(lon_bx_tmp)] = undef_int
        lat_bx_tmp = hydrooverlap.lat_bx
        lat_bx_tmp[np.isnan(lat_bx_tmp)] = undef_int
311 312
        self.basin_count, self.basin_notrun, self.basin_area, self.basin_cg, self.basin_hierarchy, \
            self.basin_orog, self.basin_floodp, self.basin_fac, self.basin_topoind, \
313
            self.basin_id, self.basin_outcoor, self.basin_type, self.basin_flowdir, \
314
            self.basin_lshead, self.outflow_grid, self.outflow_basin, self.nbcoastal, self.coastal_basin = \
315
                    routing_interface.globalize(hydrooverlap.area_bx, lon_bx_tmp, lat_bx_tmp, hydrooverlap.trip_bx, \
316 317
                                                hydrooverlap.hierarchy_bx, hydrooverlap.orog_bx, hydrooverlap.floodp_bx,\
                                                hydrooverlap.fac_bx, hydrooverlap.topoind_bx, hydrodata.topoindmin, \
318
                                                nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, self.basin_pts, basin_bxout, \
319
                                                basin_bbout, basin_lshead, coast_pts, hydrooverlap.nwbas)
320

321
        self.nbpt = self.basin_count.shape[0]
322

323 324
        return
    #
325 326 327 328 329 330 331 332 333
    def linkup(self, hydrodata) :
        #
        # Call the linkup routine in routing_reg.
        #
        print("Invented basins =", hydrodata.basinsmax)
        self.inflow_number,self.inflow_grid,self.inflow_basin = routing_interface.linkup(nbxmax, self.basin_count, self.basin_area, self.basin_id, \
                                                                       self.basin_flowdir, self.basin_lshead, self.basin_hierarchy, \
                                                                       self.basin_fac, self.outflow_grid, self.outflow_basin, \
                                                                       self.nbcoastal, self.coastal_basin, float(hydrodata.basinsmax))
334
        self.nbxmax_in = self.inflow_number.shape[1]
335 336
        return
    #
337

POLCHER Jan's avatar
POLCHER Jan committed
338
    def fetch(self, part) :
339
        #
340
        fetch_basin = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
341
        #
342
        self.basin_area = routing_interface.areanorm(self.basin_count, self.basin_area, self.outflow_grid)
343
        partial_sum = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
344
        #
345
        old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
346 347 348 349 350
        #
        maxdiff_sorted = prec*prec
        iter_count = 0
        #
        while iter_count < part.size*3 and maxdiff_sorted > prec :
351
            fetch_basin[:,:] = 0.0
352
            outflow_uparea = routing_interface.fetch(part.landcorelist, self.basin_count, self.basin_area, self.basin_id, self.basin_hierarchy, \
353
                                                         self.basin_fac, self.outflow_grid, self.outflow_basin, partial_sum, fetch_basin)
354 355
            partial_sum = np.copy(fetch_basin)
            part.landsendtohalo(partial_sum, order='F')
356 357
            partial_sum = part.zerocore(partial_sum, order='F')
            #
358 359 360 361 362 363 364 365 366
            # Find area the largest basins need at least to have.
            #
            xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
            # Precision in m^2 of the upstream areas when sorting.
            sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
            # If mono-proc no need to iterate as fetch produces the full result.
            if part.size == 1 :
                maxdiff_sorted = 0.0
            else :
367 368 369
                l = min(sorted_outareas.shape[0],largest_pos)
                maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted[0:l]))
            old_sorted[:l] = sorted_outareas[0:largest_pos]
370
            iter_count += 1
371

372 373
        self.fetch_basin = np.copy(fetch_basin)
        #
374
        # Upstream area of the smalest river we call largest rivers.
375
        #
376
        self.largest_rivarea = sorted_outareas[l-1]
377 378 379
        #
        #
        #
380 381 382
        self.num_largest =  routing_interface.rivclassification( part.landcorelist, self.basin_count, self.outflow_grid, self.outflow_basin, \
                   self.fetch_basin, self.largest_rivarea)
        #print("Rank :"+str(part.rank)+" Area of smallest large rivers : ", self.largest_rivarea, " Nb of Large rivers on proc : ",self.num_largest)
383
        return
384 385 386 387 388

    def check_fetch(self):

        routing_interface.checkfetch(nbpt = self.nbpt, nwbas = self.nwbas, fetch_basin = self.fetch_basin, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, basin_count = self.basin_count)

389
        return
390 391 392 393 394

    def check_routing(self):

        routing_interface.checkrouting(nbpt = self.nbpt, nwbas = self.nwbas, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, basin_count = self.basin_count)

395 396
        return
    #
397
    #
398
    def killbas(self, tokill, totakeover, numops):
399 400 401 402 403 404 405 406 407 408
        ops = tokill.shape[1]

        routing_interface.killbas(nbpt = self.nbpt, nbxmax_in = self.nbxmax_in, \
                nbasmax = self.nbasmax, nwbas = self.nwbas, ops = ops, tokill = tokill,\
                totakeover = totakeover, numops = numops, basin_count = self.basin_count,\
                basin_area = self.basin_area, basin_orog = self.basin_orog, basin_floodp = self.basin_floodp, \
                basin_cg = self.basin_cg, basin_topoind = self.basin_topoind, fetch_basin = self.fetch_basin,\
                basin_id = self.basin_id, basin_coor = self.basin_outcoor, basin_type = self.basin_type,\
                basin_flowdir = self.basin_flowdir, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, \
                inflow_number = self.inflow_number, inflow_grid = self.inflow_grid, inflow_basin = self.inflow_basin)
409

410
    #
411 412 413 414 415 416 417 418 419 420
    def add_variable(self,outnf, procgrid, NCFillValue, part, coord, name, title, units, data, vtyp):
        var = procgrid.landscatter(data.astype(vtyp), order='F')
        var[np.isnan(var)] = NCFillValue
        if part.rank == 0 :
            ncvar = outnf.createVariable(name, vtyp, coord, fill_value=NCFillValue)
            ncvar.title = title
            ncvar.units = units
        else :
            ncvar = np.zeros((1,1,1))
        ncvar[:] = part.gather(var)
421

422 423 424 425 426
    #
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
427
        inflow_size = 100
428 429 430 431 432 433 434 435 436 437
        cornerind=[0,2,4,6]
        nbcorners = len(cornerind)
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htuext', self.nbhtuext)
438 439
            outnf.createDimension('htu', self.inflow_number.shape[1])
            outnf.createDimension('in',inflow_size )
440 441 442 443 444 445
            outnf.createDimension('bnd', nbcorners)
        else :
            outnf = None
        #
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
446
        #
447 448 449
        # Variables
        # Once gathered on root_proc we transform them into float64. Careful, Integer variables do not have NaN !
        #
450 451 452 453 454 455
        # nbpt_glo
        nbpt_loc = np.zeros((self.nbpt,1)).astype(np.int32)
        nbpt_loc[:,0] = np.arange(1, self.nbpt+1)
        nbpt_glo = part.l2glandindex(nbpt_loc)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "nbpt_glo", "Grid point Global", "-", nbpt_glo[:,0], vtyp)
        #
Anthony's avatar
Anthony committed
456
        # contfrac
457 458 459 460 461
        contfrac = np.array(procgrid.contfrac)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "contfrac", "Land fraction", "-", np.array(procgrid.contfrac), vtyp)
        #
        # basin_id
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_id", "ID for each HTU", "-", self.basin_id, vtyp)
462 463
        #
        #self.basin_count
464
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "basin_count", "HTU count", "-", self.basin_count, vtyp)
465
        #
466 467 468 469 470 471
        # self.basin_notrun
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "basin_notrun", "Not run", "-", self.basin_notrun, vtyp)
        #
        # self.basin_area
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_area", "Basin area", "-", self.basin_area, vtyp)
        #
472 473 474 475 476 477
        # self.basin_orog
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_orog", "Basin orography", "-", self.basin_orog, vtyp)
        #
        # self.basin_floodp
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_floodp", "Basin floodplains", "-", self.basin_floodp, vtyp)
        #
478 479 480 481 482 483
        # self.basin_cg
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "CG_lon", "CG lon", "-", self.basin_cg[:,:,1], vtyp)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "CG_lat", "CG lat", "-", self.basin_cg[:,:,0], vtyp)
        #
        # self.topoind
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_topoind", "Topoindex", "-", self.basin_topoind, vtyp)
484
        #
485 486 487
        # outcoor
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "outcoor_lon", "outcoor lon", "-", self.basin_outcoor[:,:,1], vtyp)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "outcoor_lat", "outcoor lat", "-", self.basin_outcoor[:,:,0], vtyp)
488
        #
489 490
        # type
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_type", "type", "-", self.basin_type, vtyp)
491
        #
492 493 494
        # flowdir
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_flowdir", "flowdir", "-", self.basin_flowdir, vtyp)
        #
495
        #
496
        #self.outflow_grid
497 498 499 500 501 502
        grgrid = part.l2glandindex(self.outflow_grid)
        grgrid[self.outflow_grid == 0 ] = -2 # in case it flows out of the domain, the 0 should not remain
        grgrid[self.outflow_grid == -1 ] = -1
        grgrid[self.outflow_grid == -2 ] = -2
        grgrid[self.outflow_grid == -3 ] = -3
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "HTUoutgrid", "HTU outflow grid", "-", grgrid, vtyp)
503 504
        #
        #self.outflow_basin
505 506 507 508 509 510 511 512
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "HTUoutbasin", "Outflow HTU of grid", "-", self.outflow_basin, vtyp)
        #
        # self.inflow_number
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "HTUinnum", "Inflow number", "-", self.inflow_number, vtyp)
        #
        # Inflow Grid -> convert to global
        gingrid = part.l2glandindex(self.inflow_grid[:,:,:inflow_size])
        self.add_variable(outnf, procgrid, NCFillValue, part, ('in','htu','y','x'), "HTUingrid", "Inflow grid", "-", gingrid, vtyp)
Anthony's avatar
Anthony committed
513 514
        #
        # Inflow Basin
515
        self.add_variable(outnf, procgrid, NCFillValue, part, ('in','htu','y','x'), "HTUinbas", "Inflow basin", "-", self.inflow_basin[:,:,:inflow_size], vtyp)
516 517 518
        #
        # Save the fetch of each basin
        #
519
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "fetch_basin", "Fetch contributing to each HTU", "m^2", self.fetch_basin, vtyp)
520 521 522 523 524 525 526
        #
        # Close file
        #
        if part.rank == 0 :
            outnf.close()
        #
        return
527 528 529
#
#
#
530
class HydroGraph :
531
    def __init__(self, nbasmax, hydrosuper, part, modelgrid) :
532
        #
533
        self.nbasmax = nbasmax
534
        self.nbpt = hydrosuper.basin_count.shape[0]
535 536
        nwbas = hydrosuper.basin_topoind.shape[1]
        nbxmax_in = hydrosuper.inflow_grid.shape[1]
537
        #
538 539 540
        self.routing_area, self.routing_orog, self.routing_floodp, self.routing_cg, self.topo_resid, self.route_nbbasin,\
            self.route_togrid, self.route_tobasin, self.route_nbintobas, self.global_basinid, \
            self.route_outlet, self.route_type, self.origin_nbintobas, self.routing_fetch = \
541
                                    routing_interface.finish_truncate(nbpt = self.nbpt, nbxmax_in = nbxmax_in, nbasmax = nbasmax, nwbas = nwbas, num_largest = hydrosuper.num_largest, gridarea = modelgrid.area, cfrac = modelgrid.contfrac, basin_count = hydrosuper.basin_count, \
542 543
                                                               basin_notrun = hydrosuper.basin_notrun, basin_area = hydrosuper.basin_area, \
                                                               basin_orog = hydrosuper.basin_orog, basin_floodp = hydrosuper.basin_floodp, basin_cg = hydrosuper.basin_cg, \
544 545 546 547 548
                                                               basin_topoind = hydrosuper.basin_topoind, fetch_basin = hydrosuper.fetch_basin, basin_id = hydrosuper.basin_id, \
                                                               basin_coor = hydrosuper.basin_outcoor, basin_type = hydrosuper.basin_type, basin_flowdir = hydrosuper.basin_flowdir, \
                                                               outflow_grid = hydrosuper.outflow_grid, outflow_basin = hydrosuper.outflow_basin, \
                                                               inflow_number = hydrosuper.inflow_number, inflow_grid = hydrosuper.inflow_grid, inflow_basin = hydrosuper.inflow_basin)

549 550
        #
        self.routing_fetch = finalfetch(part, self.routing_area, self.route_nbbasin, self.route_togrid, self.route_tobasin, self.routing_fetch)
551
        #
552
        self.num_largest = routing_interface.finalrivclass(part.landcorelist, self.route_togrid, self.route_tobasin, self.routing_fetch, \
553
                      hydrosuper.largest_rivarea)
554
        #
555 556 557 558 559
        # Inflows
        self.max_inflow = part.domainmax(np.max(hydrosuper.inflow_number))
        gingrid = part.l2glandindex( hydrosuper.inflow_grid[:,:,:self.max_inflow])
        self.route_innum, self.route_ingrid, self.route_inbasin = routing_interface.finish_inflows(nbpt = self.nbpt, nbxmax_in = nbxmax_in, nbasmax = nbasmax, inf_max = self.max_inflow, basin_count = hydrosuper.basin_count, inflow_number = hydrosuper.inflow_number, inflow_grid = gingrid, inflow_basin = hydrosuper.inflow_basin[:,:,:self.max_inflow])

560
        return
561 562 563 564 565 566 567 568 569
    #
    #
    #
    def add_variable(self,outnf, procgrid, NCFillValue, part, coord, name, title, units, data, vtyp, orig_type = "float"):
        var = procgrid.landscatter(data.astype(vtyp), order='F')

        if orig_type == "float":
            var[np.isnan(var)] = NCFillValue
        elif orig_type == "int":
570
            var[var>=np.abs(RPP.IntFillValue)] = NCFillValue
571 572 573 574 575 576 577 578

        if part.rank == 0:
            ncvar = outnf.createVariable(name, vtyp, coord, fill_value=NCFillValue)
            ncvar.title = title
            ncvar.units = units
        else :
            ncvar = np.zeros((1,1,1))
        ncvar[:] = part.gather(var)
579
    #
580
    #
581
    #
582 583 584 585 586
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
        cornerind=[0,2,4,6]
587
        nbcorners = len(cornerind)
588 589 590 591 592 593 594 595
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htu', self.nbasmax)
596
            outnf.createDimension('bnd', nbcorners)
597
            outnf.createDimension('inflow', self.max_inflow)
598
        else :
599
            outnf = None
600
        #
601 602
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
603
        #
604
        # land grid index -> to facilitate the analyses of the routing
605
        #
606 607 608 609
        nbpt_loc = np.zeros((self.nbpt,1)).astype(np.int32)
        nbpt_loc[:,0] = np.arange(1, self.nbpt+1)
        nbpt_glo = part.l2glandindex(nbpt_loc)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "nbpt_glo", "Grid point Global", "-", nbpt_glo[:,0], vtyp)
610
        #
611
        ################
612
        #
613
        # TEST: l2glandindex
614 615 616 617 618 619 620
        itarget=-1
        for il in range(procgrid.nbland) :
            lo = procgrid.lon_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            la = procgrid.lat_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            d=np.sqrt((lo-3.13)**2+(la-39.70)**2)
            if d < 0.05 :
                itarget = il
621

622
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
623
            print(part.rank, itarget, " Before route_togrid = ", self.route_togrid[itarget,:])
624
        # Conversion
625
        grgrid = part.l2glandindex(self.route_togrid[:,:])
626
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
627
            print(part.rank, itarget, " After route_togrid = ", self.route_togrid[itarget,:])
628 629
        ################
        #
630
        # The field route_togrid is with indices on the local grid. That needs to be converted to the global grid.
631 632 633 634 635 636 637 638
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "routetogrid", "Grid into which the basin flows", "-", grgrid, vtyp, "int")
        # route to basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "routetobasin", "Basin in to which the water goes", "-", self.route_tobasin[:,:], vtyp, "int")
        # basin id
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "basinid", "ID of basin", "-", self.global_basinid[:,:], vtyp, "int")
        #
        # basin area
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "basin_area", "area of basin", "m^2", self.routing_area[:,:], vtyp, "float")
639 640 641 642 643

        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "basin_orog", "Mean orography", "m", self.routing_orog[:,:], vtyp, "float")

        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu', 'y','x'), "basin_floodp", "area of floodplains", "m^2", self.routing_floodp[:,:], vtyp, "float")

644 645
        # route number into basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "routenbintobas", "Number of basin into current one", "-", self.route_nbintobas[:], vtyp, "int")
646
        #
647 648
        # original number into basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ( 'y','x'), "originnbintobas", "Number of sub-grid basin into current one before truncation", "-", self.origin_nbintobas[:], vtyp, "int")
649
        #
650 651 652 653 654
        # latitude of outlet
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "outletlat", "Latitude of Outlet", "degrees north", self.route_outlet[:,:,0], vtyp, "float")
        # longitude of outlet
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "outletlon", "Longitude of Outlet", "degrees east", self.route_outlet[:,:,1], vtyp, "float")
        # type of outlet
655
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "outlettype", "Type of outlet", "code", self.route_type[:,:], vtyp, "float")
656
        #
657 658
        # topographic index
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "topoindex", "Topographic index of the retention time", "m", self.topo_resid[:,:], vtyp, "float")
659
        #
660

661 662
        # Inflow number
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "route_innum", "Number of inflow", "-", self.route_innum[:,:], vtyp, "int")
663
        #
664 665 666
        # Inflow grid
        #gingrid = part.l2glandindex(self.inflow_grid[:,:,:inflow_size])
        self.add_variable(outnf, procgrid, NCFillValue, part, ('inflow', 'htu','y','x'), "route_ingrid", "Grid from which the water flows", "-", self.route_ingrid[:,:,:], vtyp, "int")
667
        #
668 669
        # Inflow basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ('inflow', 'htu','y','x'), "route_inbasin", "Basin from which the water flows", "-", self.route_inbasin[:,:,:], vtyp, "int")
670

671
        #
672 673
        # Save centre of gravity of HTU
        #
674 675
        # Check if it works
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "CG_lon", "Longitude of centre of gravity of HTU", "degrees east", self.routing_cg[:,:,1], vtyp, "float")
676 677

        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "CG_lat", "Latitude of centre of gravity of HTU", "degrees north", self.routing_cg[:,:,0], vtyp, "float")
678
        #
679 680
        # Save the fetch of each basin
        #
681
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "fetch", "Fetch contributing to each HTU", "m^2", self.routing_fetch[:,:], vtyp, "float")
682
        #
683 684
        # Close the file
        if part.rank == 0:
685
            outnf.close()
686 687
        #
        return