Interface.py 17.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#
#
import numpy as np
import os
import pickle
from netCDF4 import Dataset
import RPPtools as RPP
from mpi4py import MPI
#
import sys
sys.path.append(os.getcwd()+'/F90subroutines')
if MPI.COMM_WORLD.Get_rank() == 0 :
    err=os.system("cd F90subroutines; make all")
    if err != 0 :
        print("Compilation error in the FORTRAN interface")
        sys.exit()
else :
    print("Not compiling on other cores")
MPI.COMM_WORLD.Barrier()
#
import routing_interface
#
import configparser
config=configparser.ConfigParser({'Documentation':'false', 'nbxmax':'63'})
config.read("run.def")
gendoc=config.get("OverAll", "Documentation")
nbxmax=config.getint("OverAll", "nbxmax")
#
undef_int = 999999999.9
#
# Print the documentation for the FORTRAN interface
#
if gendoc.lower() == "true" : 
    docwrapper = open('DocumentationInterface', 'w')
    docwrapper.write(routing_interface.initatmgrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.gethydrogrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.findbasins.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.globalize.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.linkup.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.fetch.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.truncate.__doc__)
    docwrapper.close
#
# Functions to access the interfaces
#
#
# initatmgrid : Initialises the grid.f90 module and passes the description of the atmospheric grid.
#
def initatmgrid(nbpt, modelgrid) :
    print("INITATMGRID corners", np.array(modelgrid.polyll).shape)
    print("INITATMGRID area", np.array(modelgrid.area).shape)
    print("INITATMGRID neighbours", np.array(modelgrid.neighbours).shape)
    routing_interface.initatmgrid( modelgrid.polyll, modelgrid.coordll, modelgrid.area, modelgrid.contfrac, modelgrid.neighbours)
    return
#
#
63
#
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
class HydroOverlap :
#
    def __init__(self, nbpt, nbvmax, sub_pts, sub_index_in, sub_area_in, sub_lon_in, sub_lat_in,  modelgrid, hydrodata) :
        #
        # Reshape stuff so that it fits into arrays
        #
        sub_index = np.zeros((nbpt,nbvmax,2), dtype=np.int8, order='F')
        sub_area = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lon = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lat = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        for ib in range(nbpt) :
            sub_area[ib,0:sub_pts[ib]] = sub_area_in[ib][:]
            sub_lon[ib,0:sub_pts[ib]] = sub_lon_in[ib][:]
            sub_lat[ib,0:sub_pts[ib]] = sub_lat_in[ib][:]
            for ip in range(sub_pts[ib]) :
                sub_index[ib,ip,:] = [sub_index_in[ib][0][ip],sub_index_in[ib][1][ip]]
        #
        trip_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        basins_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        topoind_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        fac_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        hierarchy_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        #
        trip_tmp[:,:] = np.nan
        basins_tmp[:,:] = np.nan
        for ib in range(nbpt) :
            trip_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.trip[ib][:])
            basins_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.basins[ib][:])
            topoind_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.topoind[ib][:])
            fac_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.fac[ib][:])
            hierarchy_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.disto[ib][:])
        #
        trip_tmp[np.isnan(trip_tmp)] = undef_int
        basins_tmp[np.isnan(trip_tmp)] = undef_int
        #
        # Go to the call of the FORTRAN interface
        #
        print("GETHYDROGRID : nbpt = ", nbpt, nbvmax)
        print("GETHYDROGRID : nbvmax = ", nbvmax)
        print("GETHYDROGRID : nbxmax = ", nbxmax)
        self.nbi, self.nbj, self.area_bx, self.trip_bx, self.basin_bx, self.topoind_bx, self.fac_bx, self.hierarchy_bx, \
            self.lon_bx, self.lat_bx, self.lshead_bx, self.nwbas = \
                    routing_interface.gethydrogrid(nbxmax, sub_pts, sub_index, sub_area, \
                    hydrodata.basinsmax, hydrodata.topoindmin, sub_lon, sub_lat, trip_tmp, basins_tmp, topoind_tmp, fac_tmp, hierarchy_tmp)
        #
        # Plot some diagnostics for the hydrology grid within the atmospheric meshes.
        #
        # Clean-up these arrays so that they are easy to use in Python.
        self.lon_bx[self.lon_bx > 360.]=np.nan
        self.lat_bx[self.lat_bx > 90.]=np.nan
        #
115 116 117 118
        return
#
#
#
119 120 121 122 123 124 125 126 127 128 129 130 131
class HydroSuper :
    def __init__(self, nbvmax, hydrodata, hydrooverlap) :
        #
        # Call findbasins
        #
        nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, basin_bxout, basin_bbout, self.basin_pts, basin_lshead, coast_pts = \
                    routing_interface.findbasins(nbvmax, hydrooverlap.nbi, hydrooverlap.nbj, hydrooverlap.trip_bx, \
                                                 hydrooverlap.basin_bx, hydrooverlap.fac_bx, hydrooverlap.hierarchy_bx, \
                                                 hydrooverlap.topoind_bx, hydrooverlap.lshead_bx, \
                                                 hydrooverlap.lon_bx, hydrooverlap.lat_bx)
        #
        # Call Globalize
        #
132 133 134 135 136 137
        lon_bx_tmp = hydrooverlap.lon_bx
        lon_bx_tmp[np.isnan(lon_bx_tmp)] = undef_int
        lat_bx_tmp = hydrooverlap.lat_bx
        lat_bx_tmp[np.isnan(lat_bx_tmp)] = undef_int
        self.basin_count, self.basin_notrun, self.basin_area, self.basin_cg, self.basin_hierarchy, self.basin_fac, self.basin_topoind, \
            self.basin_id, self.basin_outcoor, self.basin_type, self.basin_flowdir, \
138
            self.basin_lshead, self.outflow_grid, self.outflow_basin, self.nbcoastal, self.coastal_basin = \
139 140 141
                    routing_interface.globalize(hydrooverlap.area_bx, lon_bx_tmp, lat_bx_tmp, hydrooverlap.trip_bx, \
                                                hydrooverlap.hierarchy_bx, hydrooverlap.fac_bx, hydrooverlap.topoind_bx, hydrodata.topoindmin, \
                                                nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, self.basin_pts, basin_bxout, \
142
                                                basin_bbout, basin_lshead, coast_pts, hydrooverlap.nwbas)
143 144
        return
    #
145 146 147 148 149 150 151 152 153
    def linkup(self, hydrodata) :
        #
        # Call the linkup routine in routing_reg.
        #
        print("Invented basins =", hydrodata.basinsmax)
        self.inflow_number,self.inflow_grid,self.inflow_basin = routing_interface.linkup(nbxmax, self.basin_count, self.basin_area, self.basin_id, \
                                                                       self.basin_flowdir, self.basin_lshead, self.basin_hierarchy, \
                                                                       self.basin_fac, self.outflow_grid, self.outflow_basin, \
                                                                       self.nbcoastal, self.coastal_basin, float(hydrodata.basinsmax))
154 155
        return
    #
156 157 158
    def fetch(self) :
        self.fetch_basin = routing_interface.fetch(self.basin_count, self.basin_area, self.basin_id, self.basin_hierarchy, \
                                                   self.basin_fac, self.outflow_grid, self.outflow_basin)
159 160 161 162
        return
#
#
#
163 164 165
class HydroGraph :
    def __init__(self, nbasmax, hydrosuper) :
        self.nbasmax = nbasmax
166
        self.routing_area, self.routing_cg, self.topo_resid, self.route_togrid, self.route_tobasin, self.route_nbintobas, self.global_basinid, \
167 168
            self.route_outlet, self.route_type, self.origin_nbintobas = \
                                    routing_interface.truncate(nbasmax, hydrosuper.basin_count, hydrosuper.basin_notrun, hydrosuper.basin_area, \
169 170
                                                                hydrosuper.basin_cg, hydrosuper.basin_topoind, hydrosuper.fetch_basin, hydrosuper.basin_id, \
                                                                hydrosuper.basin_outcoor, hydrosuper.basin_type, hydrosuper.basin_flowdir, \
171 172
                                                                hydrosuper.outflow_grid, hydrosuper.outflow_basin, \
                                                                hydrosuper.inflow_number,hydrosuper.inflow_grid,hydrosuper.inflow_basin)
173 174
        return
    #
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
        cornerind=[0,2,4,6]
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
            outnf.createDimension('htu', self.nbasmax)
            outnf.createDimension('bnd', 4)
        #
        # Coordinates
        #
        # Longitude
        longitude = part.gather(procgrid.lon_full)
        if part.rank == 0 :
            lon=outnf.createVariable("lon", vtyp, ('y','x'), fill_value=NCFillValue)
            lon.units="grid box centre degrees east"
            lon.title="Longitude"
            lon.axis="X"
            lon[:,:] = longitude[:,:]
        # # Longitude bounds
        # lonbnd=outnf.createVariable("lon_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        # lonbnd.units="grid box corners degrees east"
        # lonbnd.title="Longitude Corners"
        # lonbnd[:,:] = np.array(procgrid.polyll)[:,cornerind,0]
        #
        # Latitude
        latitude = part.gather(procgrid.lat_full)
        if part.rank == 0 :
            lat=outnf.createVariable("lat", vtyp, ('y','x'), fill_value=NCFillValue)
            lat.units="grid box centre degrees north"
            lat.standard_name="grid latitude"
            lat.title="Latitude"
            lat.axis="Y"
            lat[:] = latitude[:,:]
        # # Latitude bounds
        # latbnd=outnf.createVariable("lat_bnd", vtyp, ('bnd','land'), fill_value=NCFillValue)
        # latbnd.units="grid box corners degrees north"
        # latbnd.title="Latitude Corners"
        # latbnd[:,:] = np.array(procgrid.polyll)[:,cornerind,1]
        #
        #
        # Land sea mask
        #
        if part.rank == 0 :
                land=outnf.createVariable("land", vtyp, ('y','x'), fill_value=NCFillValue)
                land.units="Land Sea mask"
                land.standard_name="landsea mask"
                land.title="Land"
                land[:,:] = globalgrid.land[:,:]
        # Area
        areas = procgrid.landscatter(np.array(procgrid.area, dtype=np.float64))
        areas[np.isnan(areas)] = NCFillValue
        if part.rank == 0 :
            area=outnf.createVariable("area", vtyp, ('y','x'), fill_value=NCFillValue)
            area.units="m^2"
            area.standard_name="grid area"
            area.title="Area"
        else :
            area = np.zeros((1,1))
        area[:,:] = part.gather(areas[:,:])
        #
        # Variables
        # Once gathered on root_proc we transform them into float64. Careful, Integer variables do not have NaN ! 
        #
        rarea = procgrid.landscatter(self.routing_area[:,:], order='F')
246
        rarea = rarea.astype(vtyp, copy=False)
247 248 249 250 251 252 253 254 255 256
        rarea[np.isnan(rarea)] = NCFillValue
        if part.rank == 0 :
            routingarea = outnf.createVariable("routingarea", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routingarea.title = "Surface of basin"
            routingarea.units = "m^2"
        else :
            routingarea = np.zeros((1,1,1))
        routingarea[:,:,:] = part.gather(rarea)
        #
        rgrid = procgrid.landscatter(self.route_togrid[:,:], order='F')
257
        rgrid = rgrid.astype(vtyp, copy=False)
258 259 260 261 262 263 264 265 266 267
        rgrid[rgrid >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            routetogrid = outnf.createVariable("routetogrid", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routetogrid.title = "Grid into which the basin flows"
            routetogrid.units = "-"
        else :
            routetogrid = np.zeros((1,1,1))    
        routetogrid[:,:,:] = part.gather(rgrid)
        #
        rtobasin = procgrid.landscatter(self.route_tobasin[:,:], order='F')
268
        rtobasin = rtobasin.astype(vtyp, copy=False)
269 270 271 272 273 274 275 276 277 278
        rtobasin[rtobasin >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            routetobasin = outnf.createVariable("routetobasin", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            routetobasin.title = "Basin in to which the water goes"
            routetobasin.units = "-"
        else :
            routetobasin = np.zeros((1,1,1))
        routetobasin[:,:,:] = part.gather(rtobasin)
        #
        rid = procgrid.landscatter(self.global_basinid[:,:], order='F')
279
        rid = rid.astype(vtyp, copy=False)
280 281 282 283 284 285 286 287 288 289
        rid[rid >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :                           
            basinid = outnf.createVariable("basinid", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            basinid.title = "ID of basin"
            basinid.units = "-"
        else :
            basinid = np.zeros((1,1,1))
        basinid[:,:,:] = part.gather(rid)
        #
        rintobas = procgrid.landscatter(self.route_nbintobas[:])
290
        rintobas = rintobas.astype(vtyp, copy=False)
291 292 293 294 295 296 297 298 299 300
        rintobas[rintobas >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 : 
            routenbintobas = outnf.createVariable("routenbintobas", vtyp, ('y','x'), fill_value=NCFillValue)
            routenbintobas.title = "Number of basin into current one"
            routenbintobas.units = "-"
        else :
            routenbintobas = np.zeros((1,1))
        routenbintobas[:,:] = part.gather(rintobas)
        #
        onbintobas = procgrid.landscatter(self.origin_nbintobas[:])
301
        onbintobas = onbintobas.astype(vtyp, copy=False)
302 303 304 305 306 307 308 309 310 311
        onbintobas[onbintobas >= RPP.IntFillValue] = NCFillValue
        if part.rank == 0 :
            originnbintobas = outnf.createVariable("originnbintobas", vtyp, ('y','x'), fill_value=NCFillValue)
            originnbintobas.title = "Number of sub-grid basin into current one before truncation"
            originnbintobas.units = "-"
        else :
            originnbintobas = np.zeros((1,1))
        originnbintobas[:,:] = part.gather(onbintobas)
        #
        olat = procgrid.landscatter(self.route_outlet[:,:,0], order='F')
312
        olat = olat.astype(vtyp, copy=False)
313 314 315 316 317 318 319 320 321 322
        olat[np.isnan(olat)] = NCFillValue
        if part.rank == 0 :
            outletlat = outnf.createVariable("outletlat", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outletlat.title = "Latitude of Outlet"
            outletlat.title = "degrees north"
        else :
            outletlat = np.zeros((1,1,1))
        outletlat[:,:,:] = part.gather(olat)
        #
        olon = procgrid.landscatter(self.route_outlet[:,:,1], order='F')
323
        olon = olon.astype(vtyp, copy=False)
324 325 326 327 328 329 330 331 332 333
        olon[np.isnan(olon)] = NCFillValue
        if part.rank == 0 :
            outletlon = outnf.createVariable("outletlon", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outletlon.title = "Longitude of outlet"
            outletlon.units = "degrees east"
        else :
            outletlon = np.zeros((1,1,1))
        outletlon[:,:,:] = part.gather(olon)
        #
        otype = procgrid.landscatter(self.route_type[:,:], order='F')
334
        otype = otype.astype(vtyp, copy=False)
335 336 337 338 339 340 341 342 343 344
        otype[np.isnan(otype)] = NCFillValue
        if part.rank == 0 :
            outlettype = outnf.createVariable("outlettype", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            outlettype.title = "Type of outlet"
            outlettype.units = "code"
        else :
            outlettype = np.zeros((1,1,1))
        outlettype[:,:,:] = part.gather(otype)
        #
        tind = procgrid.landscatter(self.topo_resid[:,:], order='F')
345
        tind = tind.astype(vtyp, copy=False)
346 347 348 349 350 351 352 353 354
        tind[np.isnan(tind)] = NCFillValue
        if part.rank == 0 :
            topoindex = outnf.createVariable("topoindex", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            topoindex.title = "Topographic index of the retention time"
            topoindex.units = "m"
        else :
            topoindex = np.zeros((1,1,1))
        topoindex[:,:,:] = part.gather(tind)
        #
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        # Save centre of gravity of HTU
        #
        cg = procgrid.landscatter(self.routing_cg[:,:,:], order='F')
        cg = cg.astype(vtyp, copy=False)
        cg[np.isnan(cg)] = NCFillValue
        if part.rank == 0 :
            CG_lon = outnf.createVariable("CG_lon", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            CG_lon.title = "Longitude of centre of gravity of HTU"
            CG_lon.units = "degrees east"
            CG_lat = outnf.createVariable("CG_lat", vtyp, ('htu','y','x'), fill_value=NCFillValue)
            CG_lat.title = "Latitude of centre of gravity of HTU"
            CG_lat.units = "degrees north"
        else :
            CG_lon = np.zeros((1,1,1))
            CG_lat = np.zeros((1,1,1))
        CG_lon[:,:,:] = part.gather(cg[1,:,:,:])
        CG_lat[:,:,:] = part.gather(cg[0,:,:,:])
        #
373 374
        if part.rank == 0 :
            outnf.close()
375 376
        #
        return
377 378 379 380