Interface.py 38 KB
Newer Older
1 2 3 4 5 6 7 8
#
#
import numpy as np
import os
import pickle
from netCDF4 import Dataset
import RPPtools as RPP
from mpi4py import MPI
9
import gc
10 11
#
import sys
12 13 14 15 16
from inspect import currentframe, getframeinfo
#
localdir=os.path.dirname(getframeinfo(currentframe()).filename)
sys.path.append(localdir+'/F90subroutines')
F90=localdir+'/F90subroutines'
17
if MPI.COMM_WORLD.Get_rank() == 0 :
18
    err=os.system("cd "+F90+"; make all")
19 20 21 22 23 24 25 26 27 28
    if err != 0 :
        print("Compilation error in the FORTRAN interface")
        sys.exit()
else :
    print("Not compiling on other cores")
MPI.COMM_WORLD.Barrier()
#
import routing_interface
#
import configparser
29
config = configparser.ConfigParser()
30
config.read("run.def")
31 32 33
gendoc = config.get("OverAll", "Documentation", fallback='false')
nbxmax = config.getint("OverAll", "nbxmax", fallback=63)
largest_pos = config.getint("OverAll", "ROUTING_RIVERS", fallback=50)
34 35
#
undef_int = 999999999.9
36 37
# Order of magnitude for the area precision in m^2.
prec = 100.0
38 39 40
#
# Print the documentation for the FORTRAN interface
#
41
if gendoc.lower() == "true" :
42 43 44 45 46 47 48 49 50 51 52 53 54
    docwrapper = open('DocumentationInterface', 'w')
    docwrapper.write(routing_interface.initatmgrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.gethydrogrid.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.findbasins.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.globalize.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.linkup.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.fetch.__doc__)
    docwrapper.write("====================================================================\n")
55 56 57 58
    docwrapper.write(routing_interface.finish_truncate.__doc__)
    docwrapper.write("====================================================================\n")
    docwrapper.write(routing_interface.killbas.__doc__)

59 60 61 62 63 64 65
    docwrapper.close
#
# Functions to access the interfaces
#
#
# initatmgrid : Initialises the grid.f90 module and passes the description of the atmospheric grid.
#
66
def initatmgrid(rank, nbcore, nbpt, modelgrid) :
67 68 69
    print("INITATMGRID corners", np.array(modelgrid.polyll).shape)
    print("INITATMGRID area", np.array(modelgrid.area).shape)
    print("INITATMGRID neighbours", np.array(modelgrid.neighbours).shape)
70 71 72 73 74 75 76 77
    routing_interface.initatmgrid(rank, nbcore, modelgrid.polyll, modelgrid.coordll, modelgrid.area, modelgrid.contfrac, modelgrid.neighbours)
    return
#
#
#
def closeinterface(comm) :
    comm.Barrier()
    routing_interface.closeinterface()
78 79 80
    return
#
#
81
#
82 83 84 85 86 87 88 89 90
def addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind) :
    #
    # Longitude
    longitude = part.gather(procgrid.lon_full)
    if part.rank == 0 :
        lon=outnf.createVariable("lon", vtyp, ('y','x'), fill_value=NCFillValue)
        lon.units="grid box centre degrees east"
        lon.title="Longitude"
        lon.axis="X"
91
        lon[:,:] = globalgrid.lonmat[:,:]
92 93 94 95 96 97 98 99 100
    #
    # Latitude
    latitude = part.gather(procgrid.lat_full)
    if part.rank == 0 :
        lat=outnf.createVariable("lat", vtyp, ('y','x'), fill_value=NCFillValue)
        lat.units="grid box centre degrees north"
        lat.standard_name="grid latitude"
        lat.title="Latitude"
        lat.axis="Y"
101
        lat[:,:] = globalgrid.latmat[:,:]
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    #
    # Bounds of grid box
    #
    llonpoly=np.zeros((nbcorners,procgrid.nbland))
    llatpoly=np.zeros((nbcorners,procgrid.nbland))
    for i in range(procgrid.nbland) :
        llonpoly[:,i] = [procgrid.polyll[i][ic][0] for ic in cornerind]
        llatpoly[:,i] = [procgrid.polyll[i][ic][1] for ic in cornerind]
        lon_bnd = procgrid.landscatter(llonpoly)
        lat_bnd = procgrid.landscatter(llatpoly)
    if part.rank == 0 :
        lonbnd=outnf.createVariable("lon_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        lonbnd.units="grid box corners degrees east"
        lonbnd.title="Longitude of Corners"
        latbnd=outnf.createVariable("lat_bnd", vtyp, ('bnd','y','x'), fill_value=NCFillValue)
        latbnd.units="grid box corners degrees north"
        latbnd.title="Latitude of Corners"
    else :
        lonbnd= np.zeros((1,1,1))
        latbnd= np.zeros((1,1,1))
    lonbnd[:,:,:] = part.gather(lon_bnd[:,:,:])
    latbnd[:,:,:] = part.gather(lat_bnd[:,:,:])
    #
    # Land sea mask
    #
    if part.rank == 0 :
        land=outnf.createVariable("land", vtyp, ('y','x'), fill_value=NCFillValue)
        land.units="Land Sea mask"
        land.standard_name="landsea mask"
        land.title="Land"
        land[:,:] = globalgrid.land[:,:]
    # Area
    areas = procgrid.landscatter(np.array(procgrid.area, dtype=np.float64))
    areas[np.isnan(areas)] = NCFillValue
    if part.rank == 0 :
        area=outnf.createVariable("area", vtyp, ('y','x'), fill_value=NCFillValue)
        area.units="m^2"
        area.standard_name="grid area"
        area.title="Area"
    else :
        area = np.zeros((1,1))
    area[:,:] = part.gather(areas[:,:])
    #
    return
#
# Add environment to netCDF file
#
def addenvironment(outnf, procgrid, part, vtyp, NCFillValue, nbpt) :
    #
    nbpt_proc = np.arange(1,nbpt+1, dtype=vtyp)
    proc = np.full(nbpt, part.rank, dtype=vtyp)
    # Environment
    # nbpt_proc
    subpt = procgrid.landscatter(nbpt_proc[:], order='F')
    subpt = subpt.astype(vtyp, copy=False)
    subpt[np.isnan(subpt)] = NCFillValue
    if part.rank == 0 :
        subptgrid = outnf.createVariable("nbpt_proc", vtyp, ('y','x'), fill_value=NCFillValue)
        subptgrid.title = "gridpoint reference inside each proc"
        subptgrid.units = "-"
    else :
        subptgrid = np.zeros((1,1))
    subptgrid[:,:] = part.gather(subpt)
    #
    # rank
    procnum = procgrid.landscatter(proc[:], order='F')
    procnum = procnum.astype(vtyp, copy=False)
    procnum[np.isnan(procnum)] = NCFillValue
    if part.rank == 0 :
        procn = outnf.createVariable("proc_num", vtyp, ('y','x'), fill_value=NCFillValue)
        procn.title = "rank"
        procn.units = "-"
    else :
        procn = np.zeros((1,1))
    procn[:,:] = part.gather(procnum)
    #
    return
#
#
#
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
def finalfetch(part, routing_area, basin_count, route_togrid, route_tobasin, fetch_in) :
    #
    fetch_out = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    partial_sum = np.zeros(routing_area.shape, dtype=np.float32, order='F')
    old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
    #
    maxdiff_sorted = prec*prec
    iter_count = 0
    #
    while iter_count < part.size*3 and maxdiff_sorted > prec :
        fetch_out[:,:] = 0.0
        outflow_uparea = routing_interface.finalfetch(part.landcorelist, routing_area, basin_count, route_togrid, \
                                                      route_tobasin, partial_sum, fetch_out)
        partial_sum = np.copy(fetch_out)
        part.landsendtohalo(partial_sum, order='F')
        partial_sum = part.zerocore(partial_sum, order='F')
        #
        # Find area the largest basins we need to have right.
        #
        xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
        # Precision in m^2 of the upstream areas when sorting.
        sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
204 205 206 207
        if sorted_outareas.shape[0]<largest_pos:
           s = sorted_outareas[:]
           sorted_outareas = np.zeros(largest_pos, dtype=np.float32, order='F')
           sorted_outareas[:s.shape[0]] = s[:]
208 209 210 211 212
        # If mono-proc no need to iterate as fetch produces the full result.
        if part.size == 1 :
            maxdiff_sorted = 0.0
        else :
            maxdiff_sorted = np.max(np.abs(sorted_outareas[0:largest_pos]-old_sorted))
213
            old_sorted[:] = sorted_outareas[0:largest_pos]
214
        iter_count += 1
215

216 217
    #
    fetch_error = np.sum(np.abs(fetch_out[part.landcorelist,:]-fetch_in[part.landcorelist,:]), axis=1)\
Anthony's avatar
Anthony committed
218
                                                    / np.ma.sum(routing_area[part.landcorelist,:], axis=1)
219
    if np.max(fetch_error) > prec :
220
        print("Rank :"+str(part.rank)+" Too large fetch error (fraction of greid area) : ", fetch_error)
221

222 223 224 225 226 227
    print("Total fetch error in fraction of grid box : ", np.sum(fetch_error))
    #
    return fetch_out
#
#
#
228 229
class HydroOverlap :
#
Anthony Schrapffer's avatar
Anthony Schrapffer committed
230
    def __init__(self, nbpt, nbvmax, sub_pts, sub_index_in, sub_area_in, sub_lon_in, sub_lat_in, part, modelgrid, hydrodata) :
231 232 233
        #
        # Reshape stuff so that it fits into arrays
        #
234
        sub_index = np.zeros((nbpt,nbvmax,2), dtype=np.int32, order='F')
235 236 237 238 239 240 241 242
        sub_area = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lon = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        sub_lat = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        for ib in range(nbpt) :
            sub_area[ib,0:sub_pts[ib]] = sub_area_in[ib][:]
            sub_lon[ib,0:sub_pts[ib]] = sub_lon_in[ib][:]
            sub_lat[ib,0:sub_pts[ib]] = sub_lat_in[ib][:]
            for ip in range(sub_pts[ib]) :
243
                sub_index[ib,ip,:] = sub_index_in[ib][:,ip]
244
        #
245
        part.landsendtohalo(np.array(sub_area), order='F')
Anthony Schrapffer's avatar
Anthony Schrapffer committed
246
        #
Anthony's avatar
Anthony committed
247 248 249 250 251 252 253 254 255 256 257 258
        ijdim=[]
        for ib in range(nbpt) :
            ijdim.append(max(np.max(sub_index[ib,:sub_pts[ib],0])-np.min(sub_index[ib,:sub_pts[ib],0])+1,np.max(sub_index[ib,:sub_pts[ib],1])-np.min(sub_index[ib,:sub_pts[ib],1])+1))
        ijdimmax = max(ijdim)
        #
        print("GETHYDROGRID : nbpt = {0}".format(nbpt))
        print("GETHYDROGRID : nbvmax = {0}".format(nbvmax))
        print("GETHYDROGRID : ijdimmax = {0}".format(ijdimmax))
        #
        del sub_area_in; del sub_lon_in; del sub_lat_in; del sub_index_in
        #
        #
259 260 261 262 263
        trip_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        basins_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        topoind_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        fac_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        hierarchy_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
264 265
        orog_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
        floodp_tmp = np.zeros((nbpt,nbvmax), dtype=np.float32, order='F')
266 267 268 269 270 271 272 273 274
        #
        trip_tmp[:,:] = np.nan
        basins_tmp[:,:] = np.nan
        for ib in range(nbpt) :
            trip_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.trip[ib][:])
            basins_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.basins[ib][:])
            topoind_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.topoind[ib][:])
            fac_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.fac[ib][:])
            hierarchy_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.disto[ib][:])
275 276
            orog_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.orog[ib][:])
            floodp_tmp[ib,0:sub_pts[ib]] = np.asarray(hydrodata.floodplains[ib][:])
277
        #
Anthony's avatar
Anthony committed
278 279 280 281
        del hydrodata.trip; del hydrodata.basins; del hydrodata.topoind
        del hydrodata.fac; del hydrodata.disto; del hydrodata.orog;
        del hydrodata.floodplains
        #
282 283 284 285 286 287
        trip_tmp[np.isnan(trip_tmp)] = undef_int
        basins_tmp[np.isnan(trip_tmp)] = undef_int
        #
        # Go to the call of the FORTRAN interface
        #
        self.nbi, self.nbj, self.area_bx, self.trip_bx, self.basin_bx, self.topoind_bx, self.fac_bx, self.hierarchy_bx, \
288
            self.orog_bx, self.floodp_bx, \
289
            self.lon_bx, self.lat_bx, self.lshead_bx = \
290
                    routing_interface.gethydrogrid(ijdimmax, sub_pts, sub_index, sub_area, \
291 292
                    hydrodata.basinsmax, hydrodata.topoindmin, sub_lon, sub_lat, trip_tmp, basins_tmp, topoind_tmp, fac_tmp,\
                        hierarchy_tmp, orog_tmp, floodp_tmp)
293
        #
Anthony's avatar
Anthony committed
294 295 296
        del trip_tmp; del basins_tmp; del topoind_tmp
        del fac_tmp; del hierarchy_tmp; del orog_tmp
        del floodp_tmp
297
        #
298
        self.nwbas = nbvmax
299 300 301 302
        # Clean-up these arrays so that they are easy to use in Python.
        self.lon_bx[self.lon_bx > 360.]=np.nan
        self.lat_bx[self.lat_bx > 90.]=np.nan
        #
303 304 305 306
        return
#
#
#
307
class HydroSuper :
308
    def __init__(self, nbvmax, hydrodata, hydrooverlap, nbasmax, part) :
309 310 311
        #
        # Keep largest possible number of HTUs
        #
312
        self.nbasmax = nbasmax
313
        self.nbhtuext = nbvmax
314 315 316 317
        self.nbpt = hydrooverlap.nbi.shape[0]
        #
        # nb_htu can be adjusted with self.nwbas
        # nb_htu can be lowered with a larger maxpercent (routing_reg.f90)
POLCHER Jan's avatar
POLCHER Jan committed
318
        nb_htu = nbvmax
319
        nbv = nbvmax
320 321 322 323
        #
        # Call findbasins
        #
        nb_basin, basin_inbxid, basin_outlet, basin_outtp, self.basin_sz, basin_bxout, basin_bbout, self.basin_pts, basin_lshead, coast_pts = \
324 325
                    routing_interface.findbasins(nbpt = self.nbpt, nb_htu = self.nbhtuext, nbv = nbv, nbi = hydrooverlap.nbi, \
                                                 nbj = hydrooverlap.nbj, trip_bx = hydrooverlap.trip_bx, \
POLCHER Jan's avatar
POLCHER Jan committed
326 327
                                                 basin_bx = hydrooverlap.basin_bx, fac_bx = hydrooverlap.fac_bx, \
                                                 hierarchy_bx = hydrooverlap.hierarchy_bx, \
328 329 330 331 332 333
                                                 topoind_bx = hydrooverlap.topoind_bx, lshead_bx = hydrooverlap.lshead_bx, \
                                                 lontmp = hydrooverlap.lon_bx, lattmp = hydrooverlap.lat_bx)
        #
        # Adjust nwbas to the maximum found over the domain
        #
        self.nwbas = part.domainmax(np.max(nb_basin))
334
        # Set the number of inflows per basin. For the moment twice the maximum number of basins.
335
        self.inflowmax = max(10, self.nwbas*2)
336
        print("Maximum number of basin created : {0}".format(self.nwbas))
337 338 339 340
        ijdim=[]
        for i in range(self.nbpt) :
            ijdim.append(max(hydrooverlap.area_bx[i,:,:].shape))
        self.ijdimmax = max(ijdim)
341 342 343
        #
        # Call Globalize
        #
344 345 346 347
        lon_bx_tmp = hydrooverlap.lon_bx
        lon_bx_tmp[np.isnan(lon_bx_tmp)] = undef_int
        lat_bx_tmp = hydrooverlap.lat_bx
        lat_bx_tmp[np.isnan(lat_bx_tmp)] = undef_int
348
        #
349 350
        self.basin_count, self.basin_notrun, self.basin_area, self.basin_cg, self.basin_hierarchy, \
            self.basin_orog, self.basin_floodp, self.basin_fac, self.basin_topoind, \
351
            self.basin_id, self.basin_outcoor, self.basin_type, self.basin_flowdir, \
352
            self.basin_lshead, self.outflow_grid, self.outflow_basin, self.nbcoastal, self.coastal_basin = \
353 354
                    routing_interface.globalize(nbpt = self.nbpt, nb_htu = self.nbhtuext, nbv = nbv, ijdimmax = self.ijdimmax, \
                                                area_bx = hydrooverlap.area_bx, lon_bx = lon_bx_tmp, lat_bx = lat_bx_tmp, trip_bx = hydrooverlap.trip_bx, \
355 356
                                                hierarchy_bx = hydrooverlap.hierarchy_bx, orog_bx = hydrooverlap.orog_bx, floodp_bx =  hydrooverlap.floodp_bx,\
                                                fac_bx = hydrooverlap.fac_bx, topoind_bx = hydrooverlap.topoind_bx, min_topoind = hydrodata.topoindmin, \
POLCHER Jan's avatar
POLCHER Jan committed
357 358
                                                nb_basin = nb_basin, basin_inbxid = basin_inbxid, basin_outlet = basin_outlet, basin_outtp = basin_outtp, \
                                                basin_sz = self.basin_sz, basin_pts = self.basin_pts, basin_bxout = basin_bxout, \
359
                                                basin_bbout = basin_bbout, lshead = basin_lshead, coast_pts = coast_pts, nwbas = self.nwbas)
360

361 362 363
        # Memory management
        del basin_bbout; del basin_lshead; del coast_pts; del basin_bxout; del self.basin_pts;
        del basin_outtp; del basin_outlet; del basin_inbxid; del nb_basin
364 365
        return
    #
366 367 368 369 370
    def linkup(self, hydrodata) :
        #
        # Call the linkup routine in routing_reg.
        #
        print("Invented basins =", hydrodata.basinsmax)
371 372 373 374 375
        self.inflow_number,self.inflow_grid,self.inflow_basin = \
            routing_interface.linkup(self.ijdimmax, self.inflowmax, self.basin_count, self.basin_area, \
                                     self.basin_id, self.basin_flowdir, self.basin_lshead, self.basin_hierarchy, \
                                     self.basin_fac, self.outflow_grid, self.outflow_basin, \
                                     self.nbcoastal, self.coastal_basin, float(hydrodata.basinsmax))
376
        self.nbxmax_in = self.inflow_number.shape[1]
377 378 379
        #
        #
        #
380 381
        return
    #
382

POLCHER Jan's avatar
POLCHER Jan committed
383
    def fetch(self, part) :
384
        #
385
        fetch_basin = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
386
        #
387
        self.basin_area = routing_interface.areanorm(self.basin_count, self.basin_area, self.outflow_grid)
388
        partial_sum = np.zeros(self.basin_area.shape, dtype=np.float32, order='F')
389
        #
390
        old_sorted = np.zeros(largest_pos, dtype=np.float32, order='F')
391 392 393 394 395
        #
        maxdiff_sorted = prec*prec
        iter_count = 0
        #
        while iter_count < part.size*3 and maxdiff_sorted > prec :
396
            fetch_basin[:,:] = 0.0
397
            outflow_uparea = routing_interface.fetch(part.landcorelist, self.basin_count, self.basin_area, self.basin_id, self.basin_hierarchy, \
398
                                                         self.basin_fac, self.outflow_grid, self.outflow_basin, partial_sum, fetch_basin)
399 400
            partial_sum = np.copy(fetch_basin)
            part.landsendtohalo(partial_sum, order='F')
401 402
            partial_sum = part.zerocore(partial_sum, order='F')
            #
403 404 405 406 407 408
            # Find area the largest basins need at least to have.
            #
            xtmp = np.hstack(part.comm.allgather(outflow_uparea[np.where(outflow_uparea > 0.0)]))
            # Precision in m^2 of the upstream areas when sorting.
            sorted_outareas = (np.unique(np.rint(np.array(xtmp)/prec))*prec)[::-1]
            # If mono-proc no need to iterate as fetch produces the full result.
409
            l = min(sorted_outareas.shape[0],largest_pos)
410 411 412
            if part.size == 1 :
                maxdiff_sorted = 0.0
            else :
413
                maxdiff_sorted = np.max(np.abs(sorted_outareas[0:l]-old_sorted[0:l]))
414
                old_sorted[:l] = sorted_outareas[0:largest_pos]
415
            iter_count += 1
416

417 418
        self.fetch_basin = np.copy(fetch_basin)
        #
419
        # Upstream area of the smalest river we call largest rivers.
420
        #
421
        self.largest_rivarea = sorted_outareas[l-1]
422 423 424
        #
        #
        #
425 426 427
        self.num_largest =  routing_interface.rivclassification( part.landcorelist, self.basin_count, self.outflow_grid, self.outflow_basin, \
                   self.fetch_basin, self.largest_rivarea)
        #print("Rank :"+str(part.rank)+" Area of smallest large rivers : ", self.largest_rivarea, " Nb of Large rivers on proc : ",self.num_largest)
428
        return
429 430 431

    def check_fetch(self):

POLCHER Jan's avatar
POLCHER Jan committed
432 433
        routing_interface.checkfetch(nbpt = self.nbpt, nwbas = self.nwbas, fetch_basin = self.fetch_basin, outflow_grid = self.outflow_grid, \
                                     outflow_basin = self.outflow_basin, basin_count = self.basin_count)
434

435
        return
436 437 438

    def check_routing(self):

POLCHER Jan's avatar
POLCHER Jan committed
439 440
        routing_interface.checkrouting(nbpt = self.nbpt, nwbas = self.nwbas, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, \
                                       basin_count = self.basin_count)
441

442
        return
443

444 445 446 447 448 449 450 451 452
    def correct_outflows(self, part):
        # Global index of the proc domain
        nbpt_loc = np.zeros((self.nbpt,1)).astype(np.int32)
        nbpt_loc[:,0] = np.arange(1, self.nbpt+1)
        nbpt_glo = part.l2glandindex(nbpt_loc)
        # Halo points
        fhalo = np.array([pt+1 for pt in range(self.nbpt) if pt not in part.landcorelist], order = "F")
        #
        # Outflow grid in global index and send to halo
Anthony's avatar
Anthony committed
453
        hg = np.copy(self.outflow_grid)
454 455 456 457 458
        hg = part.l2glandindex(self.outflow_grid)
        part.landsendtohalo(hg, order='F')
        # Convert to local index
        outflows = np.unique(hg)
        outflows_out = [a for a in outflows if (a not in nbpt_glo and a>0)]
Anthony's avatar
Anthony committed
459 460
        # Work in a copy to avoid error
        hg1 = np.copy(hg)
461
        for a in outflows_out:
Anthony's avatar
Anthony committed
462 463 464 465 466
          hg1[hg == a] = 0
        for loc, glo in zip(nbpt_loc,nbpt_glo):
          hg1[hg == glo[0]] = loc[0]
        hg = hg1
        del hg1
467 468 469 470 471 472 473 474 475 476 477 478 479
        # Send Outflow basin to the halo and adapt it
        hb = np.copy(self.outflow_basin)
        part.landsendtohalo(hb, order='F')
        hb[hg <= 0] = 999999999
        for ig in range(self.nbpt):
            hb[ig,self.basin_count[ig]:] = 0
        #
        # Correct the routing graph in the halo
        routing_interface.correct_outflows(nbpt = self.nbpt, nwbas = self.nwbas, nbhalo = fhalo.shape[0], \
                    outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, \
                    basin_count = self.basin_count, hg = hg, hb = hb, halopts = fhalo)
        #
        # Correct the inflows
480
        nbxmax_tmp = self.inflow_grid.shape[2]
481 482 483 484 485
        routing_interface.correct_inflows(nbpt = self.nbpt, nwbas = self.nwbas, inflowmax = nbxmax_tmp, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, basin_count = self.basin_count, inflow_number = self.inflow_number, inflow_grid = self.inflow_grid, inflow_basin = self.inflow_basin)

        return


486
    def killbas(self, tokill, totakeover, numops):
487
        ops = tokill.shape[1]
488 489 490 491
        #
        nbxmax_tmp = self.inflow_grid.shape[2]
        #
        routing_interface.killbas(nbpt = self.nbpt, inflowmax = nbxmax_tmp, \
492 493 494 495 496 497 498
                nbasmax = self.nbasmax, nwbas = self.nwbas, ops = ops, tokill = tokill,\
                totakeover = totakeover, numops = numops, basin_count = self.basin_count,\
                basin_area = self.basin_area, basin_orog = self.basin_orog, basin_floodp = self.basin_floodp, \
                basin_cg = self.basin_cg, basin_topoind = self.basin_topoind, fetch_basin = self.fetch_basin,\
                basin_id = self.basin_id, basin_coor = self.basin_outcoor, basin_type = self.basin_type,\
                basin_flowdir = self.basin_flowdir, outflow_grid = self.outflow_grid, outflow_basin = self.outflow_basin, \
                inflow_number = self.inflow_number, inflow_grid = self.inflow_grid, inflow_basin = self.inflow_basin)
499

500
    #
501 502 503 504 505 506 507 508 509 510
    def add_variable(self,outnf, procgrid, NCFillValue, part, coord, name, title, units, data, vtyp):
        var = procgrid.landscatter(data.astype(vtyp), order='F')
        var[np.isnan(var)] = NCFillValue
        if part.rank == 0 :
            ncvar = outnf.createVariable(name, vtyp, coord, fill_value=NCFillValue)
            ncvar.title = title
            ncvar.units = units
        else :
            ncvar = np.zeros((1,1,1))
        ncvar[:] = part.gather(var)
511

512 513 514 515 516
    #
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
517
        inflow_size = 100
518 519 520 521 522 523 524 525 526
        cornerind=[0,2,4,6]
        nbcorners = len(cornerind)
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
527
            outnf.createDimension('htuext', self.basin_id.shape[1])
528 529
            outnf.createDimension('htu', self.inflow_number.shape[1])
            outnf.createDimension('in',inflow_size )
530 531 532 533 534 535
            outnf.createDimension('bnd', nbcorners)
        else :
            outnf = None
        #
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
536
        #
537 538 539
        # Variables
        # Once gathered on root_proc we transform them into float64. Careful, Integer variables do not have NaN !
        #
540 541 542 543 544 545
        # nbpt_glo
        nbpt_loc = np.zeros((self.nbpt,1)).astype(np.int32)
        nbpt_loc[:,0] = np.arange(1, self.nbpt+1)
        nbpt_glo = part.l2glandindex(nbpt_loc)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "nbpt_glo", "Grid point Global", "-", nbpt_glo[:,0], vtyp)
        #
Anthony's avatar
Anthony committed
546
        # contfrac
547 548 549 550 551
        contfrac = np.array(procgrid.contfrac)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "contfrac", "Land fraction", "-", np.array(procgrid.contfrac), vtyp)
        #
        # basin_id
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_id", "ID for each HTU", "-", self.basin_id, vtyp)
552 553
        #
        #self.basin_count
554
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "basin_count", "HTU count", "-", self.basin_count, vtyp)
555
        #
556 557 558 559 560 561
        # self.basin_notrun
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "basin_notrun", "Not run", "-", self.basin_notrun, vtyp)
        #
        # self.basin_area
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_area", "Basin area", "-", self.basin_area, vtyp)
        #
562 563 564 565 566 567
        # self.basin_orog
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_orog", "Basin orography", "-", self.basin_orog, vtyp)
        #
        # self.basin_floodp
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_floodp", "Basin floodplains", "-", self.basin_floodp, vtyp)
        #
568 569 570 571 572 573
        # self.basin_cg
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "CG_lon", "CG lon", "-", self.basin_cg[:,:,1], vtyp)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "CG_lat", "CG lat", "-", self.basin_cg[:,:,0], vtyp)
        #
        # self.topoind
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_topoind", "Topoindex", "-", self.basin_topoind, vtyp)
574
        #
575 576 577
        # outcoor
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "outcoor_lon", "outcoor lon", "-", self.basin_outcoor[:,:,1], vtyp)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "outcoor_lat", "outcoor lat", "-", self.basin_outcoor[:,:,0], vtyp)
578
        #
579 580
        # type
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_type", "type", "-", self.basin_type, vtyp)
581
        #
582 583 584
        # flowdir
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "basin_flowdir", "flowdir", "-", self.basin_flowdir, vtyp)
        #
585
        #
586
        #self.outflow_grid
587 588 589 590 591 592
        grgrid = part.l2glandindex(self.outflow_grid)
        grgrid[self.outflow_grid == 0 ] = -2 # in case it flows out of the domain, the 0 should not remain
        grgrid[self.outflow_grid == -1 ] = -1
        grgrid[self.outflow_grid == -2 ] = -2
        grgrid[self.outflow_grid == -3 ] = -3
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "HTUoutgrid", "HTU outflow grid", "-", grgrid, vtyp)
593 594
        #
        #self.outflow_basin
595 596 597 598 599 600 601 602
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "HTUoutbasin", "Outflow HTU of grid", "-", self.outflow_basin, vtyp)
        #
        # self.inflow_number
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htu','y','x'), "HTUinnum", "Inflow number", "-", self.inflow_number, vtyp)
        #
        # Inflow Grid -> convert to global
        gingrid = part.l2glandindex(self.inflow_grid[:,:,:inflow_size])
        self.add_variable(outnf, procgrid, NCFillValue, part, ('in','htu','y','x'), "HTUingrid", "Inflow grid", "-", gingrid, vtyp)
Anthony's avatar
Anthony committed
603 604
        #
        # Inflow Basin
605
        self.add_variable(outnf, procgrid, NCFillValue, part, ('in','htu','y','x'), "HTUinbas", "Inflow basin", "-", self.inflow_basin[:,:,:inflow_size], vtyp)
606 607 608
        #
        # Save the fetch of each basin
        #
609
        self.add_variable(outnf, procgrid, NCFillValue, part, ('htuext','y','x'), "fetch_basin", "Fetch contributing to each HTU", "m^2", self.fetch_basin, vtyp)
610 611 612 613 614 615 616
        #
        # Close file
        #
        if part.rank == 0 :
            outnf.close()
        #
        return
617 618 619
#
#
#
620
class HydroGraph :
621
    def __init__(self, nbasmax, hydrosuper, part, modelgrid) :
622
        #
623
        self.nbasmax = nbasmax
624
        self.nbpt = hydrosuper.basin_count.shape[0]
625
        nwbas = hydrosuper.basin_topoind.shape[1]
626 627
        nbxmax_in = hydrosuper.inflow_grid.shape[2]
        #
628
        #
629 630 631
        self.routing_area, self.routing_orog, self.routing_floodp, self.routing_cg, self.topo_resid, self.route_nbbasin,\
            self.route_togrid, self.route_tobasin, self.route_nbintobas, self.global_basinid, \
            self.route_outlet, self.route_type, self.origin_nbintobas, self.routing_fetch = \
632
                                    routing_interface.finish_truncate(nbpt = self.nbpt, inflowmax = nbxmax_in, nbasmax = nbasmax, nwbas = nwbas, \
POLCHER Jan's avatar
POLCHER Jan committed
633
                                                                      num_largest = hydrosuper.num_largest, gridarea = modelgrid.area, \
634 635
                                                                      cfrac = modelgrid.contfrac, gridcenters = np.array(modelgrid.centers), \
                                                                      basin_count = hydrosuper.basin_count, \
POLCHER Jan's avatar
POLCHER Jan committed
636 637 638 639 640 641 642 643 644 645
                                                                      basin_notrun = hydrosuper.basin_notrun, basin_area = hydrosuper.basin_area, \
                                                                      basin_orog = hydrosuper.basin_orog, basin_floodp = hydrosuper.basin_floodp, \
                                                                      basin_cg = hydrosuper.basin_cg, \
                                                                      basin_topoind = hydrosuper.basin_topoind, fetch_basin = hydrosuper.fetch_basin, \
                                                                      basin_id = hydrosuper.basin_id, \
                                                                      basin_coor = hydrosuper.basin_outcoor, basin_type = hydrosuper.basin_type, \
                                                                      basin_flowdir = hydrosuper.basin_flowdir, \
                                                                      outflow_grid = hydrosuper.outflow_grid, outflow_basin = hydrosuper.outflow_basin, \
                                                                      inflow_number = hydrosuper.inflow_number, inflow_grid = hydrosuper.inflow_grid, \
                                                                      inflow_basin = hydrosuper.inflow_basin)
646

647 648
        #
        self.routing_fetch = finalfetch(part, self.routing_area, self.route_nbbasin, self.route_togrid, self.route_tobasin, self.routing_fetch)
649
        #
650
        self.num_largest = routing_interface.finalrivclass(part.landcorelist, self.route_togrid, self.route_tobasin, self.routing_fetch, \
651
                      hydrosuper.largest_rivarea)
652
        #
653 654 655
        # Inflows
        self.max_inflow = part.domainmax(np.max(hydrosuper.inflow_number))
        gingrid = part.l2glandindex( hydrosuper.inflow_grid[:,:,:self.max_inflow])
656 657 658 659
        self.route_innum, self.route_ingrid, self.route_inbasin = \
            routing_interface.finish_inflows(nbpt = self.nbpt, nwbas = nwbas, nbasmax = nbasmax, inf_max = self.max_inflow, \
                                             basin_count = hydrosuper.basin_count, inflow_number = hydrosuper.inflow_number, \
                                             inflow_grid = gingrid, inflow_basin = hydrosuper.inflow_basin[:,:,:self.max_inflow])
660

661
        return
662 663 664 665 666 667 668 669 670
    #
    #
    #
    def add_variable(self,outnf, procgrid, NCFillValue, part, coord, name, title, units, data, vtyp, orig_type = "float"):
        var = procgrid.landscatter(data.astype(vtyp), order='F')

        if orig_type == "float":
            var[np.isnan(var)] = NCFillValue
        elif orig_type == "int":
Anthony's avatar
Anthony committed
671
            var[np.isnan(var)] = RPP.IntFillValue
672
            var[var==RPP.IntFillValue] = NCFillValue
673 674 675 676 677 678 679 680

        if part.rank == 0:
            ncvar = outnf.createVariable(name, vtyp, coord, fill_value=NCFillValue)
            ncvar.title = title
            ncvar.units = units
        else :
            ncvar = np.zeros((1,1,1))
        ncvar[:] = part.gather(var)
681
    #
682
    #
683
    #
684 685 686 687 688
    def dumpnetcdf(self, filename, globalgrid, procgrid, part) :
        #
        NCFillValue=1.0e20
        vtyp=np.float64
        cornerind=[0,2,4,6]
689
        nbcorners = len(cornerind)
690 691 692 693 694 695 696
        #
        if part.rank == 0 :
            outnf=Dataset(filename, 'w', format='NETCDF4_CLASSIC')
            # Dimensions
            outnf.createDimension('x', globalgrid.ni)
            outnf.createDimension('y', globalgrid.nj)
            outnf.createDimension('land', len(procgrid.area))
697
            outnf.createDimension('z', self.nbasmax)
698
            outnf.createDimension('bnd', nbcorners)
699
            outnf.createDimension('inflow', self.max_inflow)
700
        else :
701
            outnf = None
702
        #
703 704
        addcoordinates(outnf, globalgrid, procgrid, part, vtyp, NCFillValue, nbcorners, cornerind)
        addenvironment(outnf, procgrid, part, vtyp, NCFillValue, self.nbpt)
705
        #
706
        # land grid index -> to facilitate the analyses of the routing
707
        #
708 709 710 711
        nbpt_loc = np.zeros((self.nbpt,1)).astype(np.int32)
        nbpt_loc[:,0] = np.arange(1, self.nbpt+1)
        nbpt_glo = part.l2glandindex(nbpt_loc)
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "nbpt_glo", "Grid point Global", "-", nbpt_glo[:,0], vtyp)
712
        #
713
        ################
714
        #
715
        # TEST: l2glandindex
716 717 718 719 720 721 722
        itarget=-1
        for il in range(procgrid.nbland) :
            lo = procgrid.lon_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            la = procgrid.lat_full[procgrid.indP[il][0],procgrid.indP[il][1]]
            d=np.sqrt((lo-3.13)**2+(la-39.70)**2)
            if d < 0.05 :
                itarget = il
723

724
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
725
            print(part.rank, itarget, " Before route_togrid = ", self.route_togrid[itarget,:])
726
        # Conversion
727
        grgrid = part.l2glandindex(self.route_togrid[:,:])
728
        if itarget >+ 0 :
POLCHER Jan's avatar
POLCHER Jan committed
729
            print(part.rank, itarget, " After route_togrid = ", self.route_togrid[itarget,:])
730 731
        ################
        #
732
        # The field route_togrid is with indices on the local grid. That needs to be converted to the global grid.
733
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z', 'y','x'), "routetogrid", "Grid into which the basin flows", "-", grgrid, vtyp, "int")
734
        # route to basin
735
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z', 'y','x'), "routetobasin", "Basin in to which the water goes", "-", self.route_tobasin[:,:], vtyp, "int")
736
        # basin id
737
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z', 'y','x'), "basinid", "ID of basin", "-", self.global_basinid[:,:], vtyp, "int")
738 739
        #
        # basin area
740
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z', 'y','x'), "basin_area", "area of basin", "m^2", self.routing_area[:,:], vtyp, "float")
741

742
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z', 'y','x'), "basin_orog", "Mean orography", "m", self.routing_orog[:,:], vtyp, "float")
743

744
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z', 'y','x'), "basin_floodp", "area of floodplains", "m^2", self.routing_floodp[:,:], vtyp, "float")
745

746 747
        # route number into basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ('y','x'), "routenbintobas", "Number of basin into current one", "-", self.route_nbintobas[:], vtyp, "int")
748
        #
749 750
        # original number into basin
        self.add_variable(outnf, procgrid, NCFillValue, part, ( 'y','x'), "originnbintobas", "Number of sub-grid basin into current one before truncation", "-", self.origin_nbintobas[:], vtyp, "int")
751
        #
752
        # latitude of outlet
753
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z','y','x'), "outletlat", "Latitude of Outlet", "degrees north", self.route_outlet[:,:,0], vtyp, "float")
754
        # longitude of outlet
755
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z','y','x'), "outletlon", "Longitude of Outlet", "degrees east", self.route_outlet[:,:,1], vtyp, "float")
756
        # type of outlet
757
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z','y','x'), "outlettype", "Type of outlet", "code", self.route_type[:,:], vtyp, "float")
758
        #
759
        # topographic index
760
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z','y','x'), "topoindex", "Topographic index of the retention time", "m", self.topo_resid[:,:], vtyp, "float")
761
        #
762

763
        # Inflow number
764
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z','y','x'), "route_innum", "Number of inflow", "-", self.route_innum[:,:], vtyp, "int")
765
        #
766 767
        # Inflow grid
        #gingrid = part.l2glandindex(self.inflow_grid[:,:,:inflow_size])
768
        self.add_variable(outnf, procgrid, NCFillValue, part, ('inflow', 'z','y','x'), "route_ingrid", "Grid from which the water flows", "-", self.route_ingrid[:,:,:], vtyp, "int")
769
        #
770
        # Inflow basin
771
        self.add_variable(outnf, procgrid, NCFillValue, part, ('inflow', 'z','y','x'), "route_inbasin", "Basin from which the water flows", "-", self.route_inbasin[:,:,:], vtyp, "int")
772

773
        #
774 775
        # Save centre of gravity of HTU
        #
776
        # Check if it works
777
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z','y','x'), "CG_lon", "Longitude of centre of gravity of HTU", "degrees east", self.routing_cg[:,:,1], vtyp, "float")
778

779
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z','y','x'), "CG_lat", "Latitude of centre of gravity of HTU", "degrees north", self.routing_cg[:,:,0], vtyp, "float")
780
        #
781 782
        # Save the fetch of each basin
        #
783
        self.add_variable(outnf, procgrid, NCFillValue, part, ('z','y','x'), "fetch", "Fetch contributing to each HTU", "m^2", self.routing_fetch[:,:], vtyp, "float")
784
        #
785 786
        # Close the file
        if part.rank == 0:
787
            outnf.close()
788 789
        #
        return