# # Reads ans manages the model grid # import numpy as np from netCDF4 import Dataset # Doc : https://spacetelescope.github.io/spherical_geometry/api/spherical_geometry.polygon.SphericalPolygon.html from spherical_geometry import polygon import RPPtools as RPP import os import sys # import getargs config = getargs.SetupConfig() EarthRadius=config.getfloat("OverAll", "EarthRadius", fallback=6370000.0) FloodplainsFile=config.get("OverAll", "FloodplainsFile", fallback=None) # import getargs log_master, log_world = getargs.getLogger(__name__) INFO, DEBUG, ERROR = log_master.info, log_master.debug, log_world.error INFO_ALL, DEBUG_ALL = log_world.info, log_world.debug # def getbox(ncdf, corners) : # # Check that the domain fits in the data available. lonrange=[getattrcontaining(ncdf, "nav_lon", "min"), getattrcontaining(ncdf, "nav_lon", "max")] latrange=[getattrcontaining(ncdf, "nav_lat", "min"), getattrcontaining(ncdf, "nav_lat", "max")] if len(lonrange[0]) <= 0 : lonrange=[np.min(ncdf.variables["nav_lon"][:,:]),np.max(ncdf.variables["nav_lon"][:,:])] if len(latrange[0]) <= 0 : latrange=[np.min(ncdf.variables["nav_lat"][:,:]),np.max(ncdf.variables["nav_lat"][:,:])] if np.min(corners[0][:]) < np.min(lonrange) or \ np.max(corners[0][:]) > np.max(lonrange) or \ np.min(corners[1][:]) < np.min(latrange) or \ np.max(corners[1][:]) > np.max(latrange) : ERROR("The atmospheric domain does not fit inside the area covered by HydroFile. Please check the file.") sys.exit() # # Add a few points to tbe box to make sure to cover everything halo_pts=2 ii=[np.argmin(abs(ncdf.variables["nav_lon"][0,:]-np.min(corners[0][:]))), np.argmin(abs(ncdf.variables["nav_lon"][0,:]-np.max(corners[0][:])))] jj=[np.argmin(abs(ncdf.variables["nav_lat"][:,0]-np.min(corners[1][:]))), np.argmin(abs(ncdf.variables["nav_lat"][:,0]-np.max(corners[1][:])))] return min(ii)-halo_pts, max(ii)+halo_pts, min(jj)-halo_pts, max(jj)+halo_pts # # Get the corners for a regular lat/lon grid # def centers(lon, lat) : jjm,iim = lon.shape # index = [[j,i] for i in range(iim) for j in range(jjm)] centersll = [[lon[j,i], lat[j,i]] for j,i in index] return index, centersll def corners(subcentersll, hdlon, hdlat) : cornersll = [RPP.boxit(np.array([lo, la]), hdlon, hdlat, 2) for lo,la in subcentersll] Llats = [[0.0000001 if p[1] == 0 else np.sign(p[1])*89.99 if np.abs(p[1]) == 90 else p[1] for p in boxll] for boxll in cornersll] Llons = [[0.0000001 if p[0] == 0 else np.sign(p[0])*89.99 if np.abs(p[0]) == 90 else p[0] for p in boxll] for boxll in cornersll] cornerspoly = [ polygon.SphericalPolygon.from_lonlat(lons, lats, center=cent) for lons, lats, cent in zip(Llons, Llats, subcentersll)] #radiusll = [RPP.maxradius(np.array(cent), np.array(lons), np.array(lats)) for cent, lons, lats in zip(subcentersll,Llons,Llats)] # return cornersll, cornerspoly # def gather(x, index, default = 0) : y=[] for ia in index : try: if (ia[:,0] == [-1, -1]).all(): y.append([default]) else: y.append(list(x[ia[0,i],ia[1,i]] for i in range(ia.shape[1]) )) except: print("Error - the hydrological file may not recover all the domain", ia) sys.exit() return y # def getattrcontaining(nc, varname, substr) : att=[] for s in nc.variables[varname].ncattrs() : if s.lower().find(substr) >= 0 : att.append(nc.variables[varname].getncattr(s)) return att # def calctopoindex(nf, istr, iend, jstr, jend, index, hydrogrid) : # The routing code in Fortran (i=1, j=2) # 8 --- 1 --- 2 # | | | # 7 --- X --- 3 # | | | # 6 --- 5 --- 4 # inc = np.array([[0,1,1,1,0,-1,-1,-1],[-1,-1,0,1,1,1,0,-1]]) elevation_precision=0.1 # jlen,ilen = nf.variables["orog"].shape if "missing_value" in nf.variables["orog"].ncattrs() : missing = nf.variables["orog"].missing_value elif "_FillValue" in nf.variables["orog"].ncattrs() : missing = nf.variables["orog"]._FillValue else : print("No Missing values or Fill values in variable orography") sys.exit() land = np.where(nf.variables["orog"][jstr:jend,istr:iend] < missing) topoind=np.zeros((jend-jstr,iend-istr)) topoind[:,:] = np.nan # for j,i in zip(land[:][0],land[:][1]) : trip = int(nf.variables["trip"][jstr+j,istr+i]-1) if trip < 8 : inf=(istr+i+inc[0,trip])%ilen jnf=(jstr+j+inc[1,trip])%jlen dz=max(elevation_precision,nf.variables["orog"][jstr+j,istr+i]-nf.variables["orog"][jnf,inf]) dl=nf.variables["disto"][jstr+j,istr+i]-nf.variables["disto"][jnf,inf] else : if trip > 97 : # Going into the ocean which is at elevation 0 dz = max(elevation_precision,nf.variables["orog"][jstr+j,istr+i]) else : # Endorehic basin so we use thte lowest dz possible. dz = elevation_precision # if nf.variables["disto"][jstr+j,istr+i] > 0 : dl = nf.variables["disto"][jstr+j,istr+i] else : # Some other reasonable assumption rx,ry = hydrogrid.resolution(i,j) dl = (rx+ry)*0.5*0.5 topoind[j,i]=np.sqrt(dl**3./(dz*1.0e6)) # minitopo = np.nanmin(topoind) if minitopo <= np.finfo(float).eps : ERROR("Topoind close to zero encoutered.") sys.exit() # return gather(topoind, index, default = 10), "Topographic index which serves for the residence time", minitopo # class HydroGrid : def __init__(self, lolacorners, wfile) : # self.source=config.get("OverAll", "HydroFile") INFO("Opening in HydroGrid : "+self.source) self.ncfile=Dataset(self.source,'r') # # Test if floodplains is correct if FloodplainsFile is not None: try: nfp = Dataset(FloodplainsFile, "r") njgfp, nigfp = nfp.variables["floodplains"].shape njg, nig = self.ncfile.variables["nav_lon"].shape if ((njg != njgfp) or (nig != nigfp)): ERROR("Invalid FloodplainsFile format. Hydrogrod: {0} / FPfile: {1}".format((njg, nig),(njgfp, nigfp))) sys.exit() except: ERROR("Invalid FloodplainsFile :{0}".format(FloodplainsFile)) sys.exit() # istr, iend, jstr, jend = getbox(self.ncfile, lolacorners) self.hdlon = np.mean(np.abs(np.diff(self.ncfile.variables["nav_lon"][0,:]))) self.hdlat = np.mean(np.abs(np.diff(self.ncfile.variables["nav_lat"][:,0]))) self.hd = max(self.hdlon,self.hdlat) # In case the box is on the edge of the routing.nc file if istr<0: istr = 0 if iend >=self.ncfile.variables["nav_lon"][0,:].shape[0]: iend = self.ncfile.variables["nav_lon"][0,:].shape[0] if jstr<0: jstr = 0 if iend >=self.ncfile.variables["nav_lat"][0,:].shape[0]: iend = self.ncfile.variables["nav_lat"][0,:].shape[0] self.box=[istr, iend, jstr, jend] self.lon=np.copy(self.ncfile.variables["nav_lon"][jstr:jend,istr:iend]) self.lat=np.copy(self.ncfile.variables["nav_lat"][jstr:jend,istr:iend]) self.jjm,self.iim = self.lon.shape DEBUG("# Dimensions :"+str(self.iim)+" -- "+str(self.jjm)) if self.iim > 0 and self.jjm > 0 : DEBUG("# Range Lon :"+str(np.min(self.lon))+" -- "+str(np.max(self.lon))) DEBUG("# Range Lat :"+str(np.min(self.lat))+" -- "+str(np.max(self.lat))) # if wfile is None or not os.path.exists(wfile): self.index, self.centers = centers(self.lon, self.lat) def select(self, c, r) : indices = [i for i in range(len(self.centers)) if (RPP.loladist(np.array(c),np.array(self.centers[i])) <= r+1.1*self.hd)] subcenters = [self.centers[i] for i in indices] polyll, polylist = corners(subcenters, self.hdlon, self.hdlat) return indices, polylist def resolution(self,i,j) : if i+1 >= iim : inx=i-1 else : inx=i+1 if j+1 >= jjm : jnx=j-1 else : jnx=j+1 dlon = np.radians(np.abs(self.lon[j,i]-self.lon[j,inx])) alon = np.cos(np.radians(self.lat[j,i]))**2*(np.sin(dlon/2))**2 clon = 2*np.arctan2(np.sqrt(alon), np.sqrt(1-alon)) dlat = np.radians(np.abs(self.lat[j,i]-self.lat[jnx,i])) alat = (np.sin(dlat/2))**2 clat = 2*np.arctan2(np.sqrt(alat), np.sqrt(1-alat)) return EarthRadius*clon, EarthRadius*clat class HydroData : def __init__(self, nf, box, index, part, hydrogrid) : istr, iend, jstr, jend = box[:] # # Flow direction # self.trip=gather(nf.variables["trip"][jstr:jend,istr:iend].astype(np.float32), index, default = 98) self.tripdesc=nf.variables["trip"].long_name # # ID of basin # self.basins=gather(nf.variables["basins"][jstr:jend,istr:iend], index, 999) self.basinsdesc=nf.variables["basins"].long_name att = getattrcontaining(nf, "basins", "max") if len(att) > 0 : self.basinsmax=att[0] else : INFO("We need to scan full file to find the largest basin ID") # This variable seems not to be used further ##self.basinsmax = part.domainmax(np.ma.max(np.ma.masked_where(self.basins < 1.e10, self.basins))) ##self.basinsmax = part.domainmax(np.max(np.array(self.basins)[np.array(self.basins) < missing])) self.basinsmax = 999 # # Distance to ocean # self.disto=gather(nf.variables["disto"][jstr:jend,istr:iend].astype(np.float32), index, default = 500) self.distodesc=nf.variables["disto"].long_name # # Flow accumulation # self.fac=gather(nf.variables["fac"][jstr:jend,istr:iend].astype(np.float32), index, default = 0) self.facdesc=nf.variables["fac"].long_name # # If Orography is present in the file then we can compute the topographic index. # Else the topographic index needs to be present in the file. # if "orog" in nf.variables.keys() and "disto" in nf.variables.keys() : self.orog = gather(nf.variables["orog"][jstr:jend,istr:iend].astype(np.float32), index, default = 0) self.orogdesc=nf.variables["orog"].long_name self.topoind, self.topoinddesc, mintopo = calctopoindex(nf, istr, iend, jstr, jend, index, hydrogrid) self.topoindmin = part.domainmin(mintopo) elif "topoind" in nf.variables.keys() and "orog" in nf.variables.keys() : self.orog = gather(np.zeros((jend-jstr,iend-istr)).astype(np.float32), index) self.topoind=gather(nf.variables["topoind"][jstr:jend,istr:iend].astype(np.float32), index, default = 10) self.topoinddesc=nf.variables["topoind"].long_name att = getattrcontaining(nf, "topoind", "min") if len(att) > 0 : self.topoindmin=att[0] else : INFO("We need to scan full file to find minimum topoind over domain") self.topoindmin=np.min(np.where(nf.variables["topoind"][:,:] < 1.e15)) else : ERROR("Not enough information in the HydroFile in order to compute topographic residence time.") sys.exit() # # if FloodplainsFile is not None: nfp = Dataset(FloodplainsFile, "r") self.floodplains = gather(nfp.variables["floodplains"][jstr:jend,istr:iend].astype(np.float32), index, 0) #self.floodplainsdesc=nfp.variables["floodplains"].long_name elif "floodplains" in nf.variables.keys(): self.floodplains = gather(nf.variables["floodplains"][jstr:jend,istr:iend].astype(np.float32), index, 0) self.floodplainsdesc=nf.variables["floodplains"].long_name else: self.floodplains = gather(np.zeros((jend-jstr,iend-istr)).astype(np.float32), index) class HydroParameter : # Class to set, compute and manage the time constants of the routing scheme. def __init__(self, hydrogrid) : if hydrogrid.hd >= 0.5 : # Case of the Fekete/Vörösmarty hydrological data set self.stream_tcst = 0.24 self.fast_tcst = 3.0 self.slow_tcst = 25.0 self.flood_tcst = 4.0 self.swamp_cst = 0.2 elif hydrogrid.hd >= 0.016 : # Case for MERIT self.stream_tcst = 0.07 self.fast_tcst = 1.0 self.slow_tcst = 10.0 self.flood_tcst = 4.0 self.swamp_cst = 0.2 elif hydrogrid.hd >= 0.008 : # Case for HydroSEHDS self.stream_tcst = 0.01 self.fast_tcst = 0.5 self.slow_tcst = 7.0 self.flood_tcst = 4.0 self.swamp_cst = 0.2 else : print("For the resolution ",hydrogrid.hd," deg. we do not yet have a parameter set.") sys.exit