Docker-in-Docker (DinD) capabilities of public runners deactivated. More info

Commit bb78aed0 authored by TROUSSELLIER Laurent's avatar TROUSSELLIER Laurent
Browse files

Merge branch 'SplitAtelier1' into 'master'

Ajout Atelier3

See merge request !6
parents 4d54748a 8eba7617
Pipeline #151768 passed with stage
in 23 seconds
......@@ -132,8 +132,7 @@
"shell.execute_reply.started": "2021-10-12T11:48:01.046255Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -3938,7 +3937,6 @@
"execution_count": 13,
"id": "d4ca3545-b244-4662-8e0b-1a70598fac11",
"metadata": {
"collapsed": true,
"execution": {
"iopub.execute_input": "2021-10-12T11:49:26.636650Z",
"iopub.status.busy": "2021-10-12T11:49:26.633039Z",
......@@ -3947,7 +3945,6 @@
"shell.execute_reply.started": "2021-10-12T11:49:26.636587Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
},
"tags": []
......@@ -4143,8 +4140,7 @@
"shell.execute_reply.started": "2021-10-12T11:49:35.207003Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -5088,8 +5084,7 @@
"shell.execute_reply.started": "2021-10-12T11:50:37.290800Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -6049,8 +6044,7 @@
"shell.execute_reply.started": "2021-10-12T11:50:53.530387Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -6600,8 +6594,7 @@
"shell.execute_reply.started": "2021-10-12T11:51:09.621211Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -7053,15 +7046,31 @@
"id": "ff7166c0-443c-4d7c-9d62-12cc6775dfd5",
"metadata": {},
"source": [
"## Tracer"
"# Tracer"
]
},
{
"cell_type": "markdown",
"id": "5979a81f-057c-4fb6-b6dc-f11d0e60359c",
"metadata": {},
"source": [
"Afin de tracer sur une map monde, nous allons utiliser la librairie **geoview** (nous aurions pu utiliser matplotlib + cartopy). "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fb9e1f16-c557-4b25-bb69-7108ded363b6",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "61d728a1-32fa-4058-9809-15cb6274600f",
"metadata": {},
"source": [
"Afin de tracer sur une map monde, nous allons utiliser la librairie **geoview** (nous aurions pu utiliser matplotlib + cartopy). Pour cela il faut trasformer notre tableau **netcdf** en tableau compréhensible par géoview (**Dataset**), puis indiquer ce que l'on fait de ce dataset : **.to**. On l'envoie dans un **Quadmesh** (map), en lui indiquant les noms des coordonées longitute et latitude. \n",
"Pour cela il faut trasformer notre tableau **netcdf** en tableau compréhensible par géoview (**Dataset**), puis indiquer ce que l'on fait de ce dataset : **.to**. On l'envoie dans un **Quadmesh** (map), en lui indiquant les noms des coordonées longitute et latitude. \n",
"\n",
"<code> \n",
" \n",
......@@ -7133,7 +7142,6 @@
"execution_count": 28,
"id": "b403280b-82e7-4f1d-bd75-b3c605d73192",
"metadata": {
"collapsed": true,
"execution": {
"iopub.execute_input": "2021-10-12T11:54:18.840431Z",
"iopub.status.busy": "2021-10-12T11:54:18.840121Z",
......@@ -7142,7 +7150,6 @@
"shell.execute_reply.started": "2021-10-12T11:54:18.840398Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
},
"tags": []
......@@ -7312,8 +7319,7 @@
"shell.execute_reply.started": "2021-10-12T11:54:35.069642Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -7394,9 +7400,6 @@
"shell.execute_reply": "2021-10-12T11:54:52.674865Z",
"shell.execute_reply.started": "2021-10-12T11:54:52.671367Z"
},
"jupyter": {
"source_hidden": true
},
"tags": []
},
"outputs": [],
......@@ -7459,9 +7462,6 @@
"shell.execute_reply": "2021-10-12T11:55:13.409856Z",
"shell.execute_reply.started": "2021-10-12T11:55:13.403543Z"
},
"jupyter": {
"source_hidden": true
},
"tags": []
},
"outputs": [],
......@@ -7525,8 +7525,7 @@
"shell.execute_reply.started": "2021-10-12T11:55:18.200521Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -9207,7 +9206,6 @@
"execution_count": 34,
"id": "d47e1ff9-df92-4386-872f-4e6da9090e0f",
"metadata": {
"collapsed": true,
"execution": {
"iopub.execute_input": "2021-10-12T11:55:37.283153Z",
"iopub.status.busy": "2021-10-12T11:55:37.282863Z",
......@@ -9215,10 +9213,6 @@
"shell.execute_reply": "2021-10-12T11:55:37.289709Z",
"shell.execute_reply.started": "2021-10-12T11:55:37.283122Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
},
"tags": []
},
"outputs": [
......@@ -9339,8 +9333,7 @@
"shell.execute_reply.started": "2021-10-12T11:55:46.548707Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -9961,6 +9954,14 @@
"Obs_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e2c47ef5-a75e-490d-9bbf-0302c51e7e55",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "13d7053a-a8d6-444f-a941-9c44c413f09c",
......@@ -10016,8 +10017,7 @@
"shell.execute_reply.started": "2021-10-12T11:55:56.193627Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -10547,9 +10547,6 @@
"shell.execute_reply": "2021-10-12T11:56:05.970918Z",
"shell.execute_reply.started": "2021-10-12T11:56:05.964860Z"
},
"jupyter": {
"source_hidden": true
},
"tags": []
},
"outputs": [],
......@@ -10687,8 +10684,7 @@
"shell.execute_reply.started": "2021-10-12T11:56:25.910121Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -11279,7 +11275,6 @@
"execution_count": 40,
"id": "7fa78bf3-bc04-4bd1-92d0-71f1555e4c78",
"metadata": {
"collapsed": true,
"execution": {
"iopub.execute_input": "2021-10-12T11:56:38.722959Z",
"iopub.status.busy": "2021-10-12T11:56:38.722660Z",
......@@ -11287,9 +11282,6 @@
"shell.execute_reply": "2021-10-12T11:56:38.869517Z",
"shell.execute_reply.started": "2021-10-12T11:56:38.722927Z"
},
"jupyter": {
"outputs_hidden": true
},
"tags": []
},
"outputs": [
......@@ -11523,8 +11515,7 @@
"shell.execute_reply.started": "2021-10-08T10:40:54.769104Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -11715,7 +11706,6 @@
"execution_count": 32,
"id": "268030a4-3369-4974-be30-b5e5743b9aa3",
"metadata": {
"collapsed": true,
"execution": {
"iopub.execute_input": "2021-10-08T10:40:55.705869Z",
"iopub.status.busy": "2021-10-08T10:40:55.705526Z",
......@@ -11723,10 +11713,6 @@
"shell.execute_reply": "2021-10-08T10:40:56.655880Z",
"shell.execute_reply.started": "2021-10-08T10:40:55.705816Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
},
"tags": []
},
"outputs": [
......@@ -11842,8 +11828,7 @@
"shell.execute_reply.started": "2021-10-11T08:47:02.896312Z"
},
"jupyter": {
"outputs_hidden": true,
"source_hidden": true
"outputs_hidden": true
},
"tags": []
},
......@@ -3937,7 +3937,6 @@
"execution_count": 13,
"id": "d4ca3545-b244-4662-8e0b-1a70598fac11",
"metadata": {
"collapsed": true,
"execution": {
"iopub.execute_input": "2021-10-12T11:49:26.636650Z",
"iopub.status.busy": "2021-10-12T11:49:26.633039Z",
......@@ -3946,7 +3945,7 @@
"shell.execute_reply.started": "2021-10-12T11:49:26.636587Z"
},
"jupyter": {
"outputs_hidden": true
"source_hidden": true
},
"tags": []
},
......@@ -7047,7 +7046,15 @@
"id": "ff7166c0-443c-4d7c-9d62-12cc6775dfd5",
"metadata": {},
"source": [
"## Tracer"
"# Tracer"
]
},
{
"cell_type": "markdown",
"id": "5979a81f-057c-4fb6-b6dc-f11d0e60359c",
"metadata": {},
"source": [
"Afin de tracer sur une map monde, nous allons utiliser la librairie **geoview** (nous aurions pu utiliser matplotlib + cartopy). "
]
},
{
......@@ -7055,7 +7062,7 @@
"id": "61d728a1-32fa-4058-9809-15cb6274600f",
"metadata": {},
"source": [
"Afin de tracer sur une map monde, nous allons utiliser la librairie **geoview** (nous aurions pu utiliser matplotlib + cartopy). Pour cela il faut trasformer notre tableau **netcdf** en tableau compréhensible par géoview (**Dataset**), puis indiquer ce que l'on fait de ce dataset : **.to**. On l'envoie dans un **Quadmesh** (map), en lui indiquant les noms des coordonées longitute et latitude. \n",
"Pour cela il faut trasformer notre tableau **netcdf** en tableau compréhensible par géoview (**Dataset**), puis indiquer ce que l'on fait de ce dataset : **.to**. On l'envoie dans un **Quadmesh** (map), en lui indiquant les noms des coordonées longitute et latitude. \n",
"\n",
"<code> \n",
" \n",
......@@ -7134,9 +7141,6 @@
"shell.execute_reply": "2021-10-12T11:54:20.205913Z",
"shell.execute_reply.started": "2021-10-12T11:54:18.840398Z"
},
"jupyter": {
"source_hidden": true
},
"tags": []
},
"outputs": [
......@@ -11804,7 +11808,6 @@
"execution_count": 2,
"id": "72bfb672-7ea2-4fe9-861b-9961081e0592",
"metadata": {
"collapsed": true,
"execution": {
"iopub.execute_input": "2021-10-11T08:47:02.896361Z",
"iopub.status.busy": "2021-10-11T08:47:02.896031Z",
......@@ -11813,7 +11816,7 @@
"shell.execute_reply.started": "2021-10-11T08:47:02.896312Z"
},
"jupyter": {
"outputs_hidden": true
"source_hidden": true
},
"tags": []
},
......@@ -117,15 +117,15 @@
},
{
"cell_type": "code",
"execution_count": 26,
"execution_count": 1,
"id": "c327dd9a-af57-474b-9780-bc0f536df8ba",
"metadata": {
"execution": {
"iopub.execute_input": "2021-11-29T09:29:36.601716Z",
"iopub.status.busy": "2021-11-29T09:29:36.601266Z",
"iopub.status.idle": "2021-11-29T09:29:36.615633Z",
"shell.execute_reply": "2021-11-29T09:29:36.614684Z",
"shell.execute_reply.started": "2021-11-29T09:29:36.601669Z"
"iopub.execute_input": "2021-12-02T08:15:11.163534Z",
"iopub.status.busy": "2021-12-02T08:15:11.163150Z",
"iopub.status.idle": "2021-12-02T08:15:11.183520Z",
"shell.execute_reply": "2021-12-02T08:15:11.182798Z",
"shell.execute_reply.started": "2021-12-02T08:15:11.163435Z"
},
"tags": []
},
......@@ -296,7 +296,7 @@
"\n",
"Sauf q'en général les lignes n'ont pas de nom : si bien que l'on peut utiliser l'index de la ligne par : \n",
"\n",
"<code>nomDataframe.iloc[\"NomDeLaLigne\"] </code>"
"<code>nomDataframe.iloc[indexDelaLigne] </code>"
]
},
{
......@@ -552,7 +552,7 @@
"Autres fonctions utiles :\n",
"\n",
" .head()\n",
" .shape()\n",
" .shape\n",
" .min()\n",
" .max()\n",
" \n",
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment