Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
IPSL
SIRTA
CL31
CL raw to 1a
Commits
192a0e5b
Commit
192a0e5b
authored
Jan 17, 2022
by
Marc-Antoine Drouin
Browse files
update SIRTA configuration files
parent
308dd9f0
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1114 additions
and
357 deletions
+1114
-357
conf_vaisala_cl31_p7R10mF30s.ini
conf_vaisala_cl31_p7R10mF30s.ini
+2
-2
conf_vaisala_cl31_roissy27R10mF30s.ini
conf_vaisala_cl31_roissy27R10mF30s.ini
+0
-3
conf_vaisala_cl31_sirtaLz1LpnR10mF30s.ini
conf_vaisala_cl31_sirtaLz1LpnR10mF30s.ini
+331
-0
conf_vaisala_cl31_sirtaLz1R10mF30s.ini
conf_vaisala_cl31_sirtaLz1R10mF30s.ini
+331
-0
conf_vaisala_cl31_sirtaLz1R5mF30s.ini
conf_vaisala_cl31_sirtaLz1R5mF30s.ini
+150
-112
conf_vaisala_cl31_sirtaLz1R5mF3s-h2off.ini
conf_vaisala_cl31_sirtaLz1R5mF3s-h2off.ini
+150
-120
conf_vaisala_cl31_sirtaLz1R5mF3s-h2on.ini
conf_vaisala_cl31_sirtaLz1R5mF3s-h2on.ini
+150
-120
No files found.
conf_vaisala_cl31_p7R10mF30s.ini
View file @
192a0e5b
...
...
@@ -91,11 +91,11 @@ geospatial_lon_min = 2.380651
geospatial_lon_max
=
2.380651
geospatial_lon_units
=
degrees_east
geospatial_lon_resolution
=
0 degree
geospatial_vertical_min
=
5
geospatial_vertical_min
=
10
geospatial_vertical_max
=
7700
geospatial_vertical_positive
=
up
geospatial_vertical_units
=
m
geospatial_vertical_resolution
=
5
meters
geospatial_vertical_resolution
=
10
meters
time_coverage_start
=
time_coverage_end
=
time_coverage_duration
=
P0000-00-01T00:00:00
...
...
conf_vaisala_cl31_roissy27R10mF30s.ini
View file @
192a0e5b
...
...
@@ -31,9 +31,6 @@ missing_float = -999.
missing_int
=
-9
check_scale
=
true
; Variables required by TOPROF chosen format
;==============================================================================
; Global attribute of the netCDF file
;------------------------------------------------------------------------------
[global]
...
...
conf_vaisala_cl31_sirtaLz1LpnR10mF30s.ini
0 → 100644
View file @
192a0e5b
;------------------------------------------------------------------------------
; raw2l1 user configuration file
;
; ___ __ _ _ ___ _ __
; | _ \/ \ | | | |(_ | | / |
; | v / /\ || 'V' | / /| |_`7 |
; |_|_\_||_|!_/ \_!|___|___||_|
;
; version: 2.1.8
; SIRTA IPSL/CNRS/EP 2014-2016
;
; for TOPROF netCDF-CF format
;
;------------------------------------------------------------------------------
; General configuration of the processing
;------------------------------------------------------------------------------
[conf]
reader_dir
=
reader
reader
=
vaisala_cl
netcdf_format
=
NETCDF4
netcdf4_compression
=
true
netcdf4_compression_level
=
1
; Special option for the reader (optional)
;------------------------------------------------------------------------------
[reader_conf]
; time resolution in seconds
time_resolution
=
30
missing_float
=
-999.
missing_int
=
-9
check_scale
=
true
; Global attribute of the netCDF file
;------------------------------------------------------------------------------
[global]
site_location
=
PALAISEAU,FRANCE
instrument_id
=
A
wigos_station_id
=
0-250-1001-07151
wmo_id
=
07151
instrument_serial_number
=
$reader_data$, instrument_id
instrument_firmware_version
=
$reader_data$, software_id
overlap_function
=
false
history
=
hermes_history
=
overlap_is_corrected
=
true
principal_investigator
=
SIRTA/IPSL
title
=
PALAISEAU cl31 SIRTA
institution
=
IPSL
source
=
Ground Based Remote Sensing
references
=
E-PROFILE Data Format Description Document
comment
=
Conventions
=
CF-1.7, UKMO-1.0.2
instrument_type
=
CL31
keywords
=
GCMD:EARTH SCIENCE, GCMD:ATMOSPHERE, GCMD:CLOUDS, GCMD:CLOUD PROPERTIES, GCMD:CLOUD BASE HEIGHT, GCMD:AEROSOLS, GCMD:AEROSOL BACKSCATTER, GCMD:SPECTRAL/ENGINEERING, GCMD:LIDAR, GCMD:LIDAR BACKSCATTER
id
=
naming_authority
=
processing_level
=
1a raw data converted into normalized netCDF file
aknowledgement
=
license
=
SIRTA data are accessible freely and free of cost, for public research and teaching applications.
-
SIRTA
data
should
only
be
distributed
through
SIRTA
ftp
and
web
access.
SIRTA
data
not
available
online
can
be
distributed
by
SIRTA
instrument
PIs.
-
Distribution
of
SIRTA
data
by
third
parties
is
prohibited.
-
The
users
of
SIRTA
data
must
verify
that
the
data
they
are
using
is
intended
for
publication
refer
to
the
advice
of
instrument
PIs.
-
The
source
of
SIRTA
data
used
in
the
framework
of
a
publication
must
be
mentioned
in
an
explicit
way
in
the
acknowledgment
section
by
a
sentence
of
the
type:
«
The
authors
would
like
to
acknowledge
SIRTA
for
providing
the
lidar
data
used
in
this
study
».
-
When
mentioning
or
describing
the
SIRTA
observatory
in
a
publication,
use
the
following
reference:
(Haeffelin
et
al.,
2005)
-
For
the
use
of
SIRTA
data
requiring
a
specific
interpretation
work
and
discussions
essential
to
the
exploitation
of
the
data,
it
is
required
that
relevant
instrument
PIs
be
proposed
co-authorship
in
related
publications.
-
The
use
of
data,
in
synergy
with
SIRTA
data,
originating
from
another
organization
(e.g.
Meteo-France,
AERONET,
etc...)
requires
specific
mention
of
that
source
of
data
standard_name_vocabulary
=
CF Standard Name Table v36
date_created
=
creator_name
=
sirta
creator_email
=
sirtascience@lmd.polytechnique.fr
creator_url
=
https://sirta.ipsl.fr
creator_type
=
institution
creator_institution
=
SIRTA CNRS/Ecole Polytechnique
publisher_name
=
SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique)
publisher_email
=
sirtascience@ipsl.polytechnique.fr
publisher_url
=
http://www.sirta.fr
publisher_type
=
institution
publisher_institution
=
IPSL CNRS/Ecole Polytechnique
geospatial_bounds
=
POINT (48.71795, 2.208764)
geospatial_bounds_crs
=
EPSG:4326
geospatial_bounds_vertical_crs
=
EPSG:5829
geospatial_lat_min
=
48.71795
geospatial_lat_max
=
48.71795
geospatial_lat_units
=
degrees_north
geospatial_lat_resolution
=
0 degree_north
geospatial_lon_min
=
2.208764
geospatial_lon_max
=
2.208764
geospatial_lon_units
=
degrees_east
geospatial_lon_resolution
=
0 degree
geospatial_vertical_min
=
10
geospatial_vertical_max
=
7700
geospatial_vertical_positive
=
up
geospatial_vertical_units
=
m
geospatial_vertical_resolution
=
10 meters
time_coverage_start
=
time_coverage_end
=
time_coverage_duration
=
P0000-00-01T00:00:00
time_coverage_resolution
=
P0000-00-00T00:00:03
date_modified
=
date_issued
=
date_metadata_modified
=
2022-01-17T00:00:00Z
product_version
=
1
keywords_vocabulary
=
GCMD:GCMD Keywords, CF:NetCDF COARDS Climate and Forecast Standard Names
platform
=
In Situ Land-based Platforms, GROUND-BASED OBSERVATIONS
platform_vocabulary
=
GCMD:GCMD Keywords
instrument
=
GCMD:Earth Remote Sensing Instruments, GCMD:Active Remote Sensing, GCMD:Profilers/Sounders, GCMD:Lidar/Laser Sounders, GCMD:CLOUD LIDAR, GCMD: LIDAR
instrument_vocabulary
=
GCMD:GCMD Keywords
cdm_data_type
=
metadata_link
=
; Dimensions
;------------------------------------------------------------------------------
[time]
dim
=
time
type
=
$time$
standard_name
=
time
units
=
days since 1970-01-01 00:00:00
calendar
=
standard
value
=
$reader_data$, time
[range]
dim
=
range
type
=
$float$
long_name
=
range
units
=
m
value
=
$reader_data$, range
[layer]
dim
=
layer
type
=
$integer$
long_name
=
layer index of cloud base height
units
=
1
value
=
$reader_data$, cbh_layer
[layer_aerosol]
dim
=
layer_aerosol
type
=
$integer$
long_name
=
layer index of cloud layer height
units
=
1
value
=
$reader_data$, clh_layer
; variables
;------------------------------------------------------------------------------
[rcs_0]
dim
=
time, range
type
=
$double$
long_name
=
normalized range corrected signal
units
=
V*m^2
missing_value
=
-999.9
_FillValue
=
-999.9
value
=
$reader_data$, rcs_0
detection_mode
=
analog
[bckgrd_rcs_0]
dim
=
time
type
=
$double$
long_name
=
background light at internal ADC input
units
=
mV
missing_value
=
-999.9
_FillValue
=
-999.9
value
=
$reader_data$, bckgrd_rcs_0
[tilt_angle]
dim
=
time
type
=
$float$
long_name
=
instrument tilt angle from vertical
units
=
degree
missing_value
=
-999.9
_FillValue
=
-999.9
value
=
$reader_data$, tilt_angle
[cloud_base_height]
dim
=
time, layer
type
=
$integer$
long_name
=
cloud base height
units
=
m
missing_value
=
-9
_FillValue
=
-9
value
=
$reader_data$, cbh
[start_time]
dim
=
time
type
=
$time$
long_name
=
start time of measurements
units
=
days since 1970-01-01 00:00:00
value
=
$reader_data$, start_time
calendar
=
standard
[range_resol]
dim
=
$none$
type
=
$float$
long_name
=
range resolution
units
=
m
value
=
$reader_data$, range_resol
[l0_width]
dim
=
$none$
type
=
$float$
long_name
=
laser 0 line width
units
=
nm
value
=
-999.9
[l0_beam_div]
dim
=
$none$
type
=
$float$
long_name
=
laser 0 beam divergence
units
=
rad
value
=
-999.9
[t0_fov]
dim
=
$none$
type
=
$float$
long_name
=
telescope 0 field of view
units
=
rad
value
=
-999.9
[time_resol]
dim
=
$none$
type
=
$integer$
long_name
=
time resolution
units
=
s
value
=
$reader_data$, time_resolution
[l0_wavelength]
dim
=
$none$
type
=
$float$
long_name
=
laser 0 wavelength
units
=
nm
value
=
910
[l0_prf]
dim
=
$none$
type
=
$float$
long_name
=
laser 0 pulse repetition frequency
units
=
Hz
value
=
-999.9
[station_latitude]
dim
=
$none$
type
=
$float$
long_name
=
latitude
units
=
degrees_north
value
=
48.71795
standard_name
=
latitude
[station_longitude]
dim
=
$none$
type
=
$float$
long_name
=
longitude
units
=
degrees_east
value
=
2.208764
standard_name
=
longitude
[station_altitude]
dim
=
$none$
type
=
$float$
long_name
=
altitude
units
=
m
value
=
157
standard_name
=
altitude
[sum_rcs0]
dim
=
time
type
=
$float$
long_name
=
sum of detected and normalized backscatter
units
=
sr^-1
missing_value
=
-999.9
_FillValue
=
-999.9
value
=
$reader_data$, integrated_rcs_0
[laser_energy]
dim
=
time
type
=
$float$
long_name
=
laser pulse energy, percent of nominal factory setting
units
=
%%
missing_value
=
-999.9
_FillValue
=
-999.9
value
=
$reader_data$, laser_energy
[window_transmission]
dim
=
time
type
=
$float$
long_name
=
window transmission estimate
units
=
%%
missing_value
=
-999.9
_FillValue
=
-999.9
value
=
$reader_data$, window_transmission
[clh]
dim
=
time, layer_aerosol
type
=
$integer$
long_name
=
cloud layer height
units
=
m
missing_value
=
-9
_FillValue
=
-9
value
=
$reader_data$, clh
[cloud_amount]
dim
=
time, layer_aerosol
type
=
$short$
long_name
=
cloud fraction in eighths
units
=
1
missing_value
=
-9
_FillValue
=
-9
value
=
$reader_data$, cloud_amount
[temperature_laser]
dim
=
time
type
=
$float$
long_name
=
laser temperature
units
=
K
missing_value
=
-999.9
_FillValue
=
-999.9
value
=
$reader_data$, laser_temp
[vertical_visibility]
dim
=
time
type
=
$integer$
long_name
=
vertical visibility
units
=
m
missing_value
=
-9
_FillValue
=
-9
value
=
$reader_data$, vertical_visibility
[error_string]
dim
=
time
type
=
$string$
long_name
=
alarm or warning status
units
=
1
value
=
$reader_data$, info_flags
conf_vaisala_cl31_sirtaLz1R10mF30s.ini
.ini
→
conf_vaisala_cl31_sirtaLz1R10mF30s.ini
View file @
192a0e5b
...
...
@@ -31,26 +31,83 @@ missing_float = -999.
missing_int
=
-9
check_scale
=
true
; Variables required by TOPROF chosen format
;==============================================================================
; Global attribute of the netCDF file
;------------------------------------------------------------------------------
[global]
site_location
=
palaiseau
site_location
=
PALAISEAU,FRANCE
instrument_id
=
A
institution
=
IPSL (CNRS/ECole Polytechnique)
principal_investigator
=
SIRTA
instrument_type
=
CL31
title
=
PALAISEAU VAISALA CL31 SIRTA
history
=
instrument_firmware_version
=
toprof v2.05
wigos_station_id
=
0-250-1001-07151
wmo_id
=
07151
instrument_serial_number
=
$reader_data$, instrument_id
instrument_firmware_version
=
$reader_data$, software_id
overlap_function
=
false
history
=
hermes_history
=
overlap_is_corrected
=
true
source
=
SIRTA
references
=
principal_investigator
=
SIRTA/IPSL
title
=
PALAISEAU cl31 SIRTA
institution
=
IPSL
source
=
Ground Based Remote Sensing
references
=
E-PROFILE Data Format Description Document
comment
=
Conventions
=
CF-1.0, UKMO-1.0.2
Conventions
=
CF-1.7, UKMO-1.0.2
instrument_type
=
CL31
keywords
=
GCMD:EARTH SCIENCE, GCMD:ATMOSPHERE, GCMD:CLOUDS, GCMD:CLOUD PROPERTIES, GCMD:CLOUD BASE HEIGHT, GCMD:AEROSOLS, GCMD:AEROSOL BACKSCATTER, GCMD:SPECTRAL/ENGINEERING, GCMD:LIDAR, GCMD:LIDAR BACKSCATTER
id
=
naming_authority
=
processing_level
=
1a raw data converted into normalized netCDF file
aknowledgement
=
license
=
SIRTA data are accessible freely and free of cost, for public research and teaching applications.
-
SIRTA
data
should
only
be
distributed
through
SIRTA
ftp
and
web
access.
SIRTA
data
not
available
online
can
be
distributed
by
SIRTA
instrument
PIs.
-
Distribution
of
SIRTA
data
by
third
parties
is
prohibited.
-
The
users
of
SIRTA
data
must
verify
that
the
data
they
are
using
is
intended
for
publication
refer
to
the
advice
of
instrument
PIs.
-
The
source
of
SIRTA
data
used
in
the
framework
of
a
publication
must
be
mentioned
in
an
explicit
way
in
the
acknowledgment
section
by
a
sentence
of
the
type:
«
The
authors
would
like
to
acknowledge
SIRTA
for
providing
the
lidar
data
used
in
this
study
».
-
When
mentioning
or
describing
the
SIRTA
observatory
in
a
publication,
use
the
following
reference:
(Haeffelin
et
al.,
2005)
-
For
the
use
of
SIRTA
data
requiring
a
specific
interpretation
work
and
discussions
essential
to
the
exploitation
of
the
data,
it
is
required
that
relevant
instrument
PIs
be
proposed
co-authorship
in
related
publications.
-
The
use
of
data,
in
synergy
with
SIRTA
data,
originating
from
another
organization
(e.g.
Meteo-France,
AERONET,
etc...)
requires
specific
mention
of
that
source
of
data
standard_name_vocabulary
=
CF Standard Name Table v36
date_created
=
creator_name
=
sirta
creator_email
=
sirtascience@lmd.polytechnique.fr
creator_url
=
https://sirta.ipsl.fr
creator_type
=
institution
creator_institution
=
SIRTA CNRS/Ecole Polytechnique
publisher_name
=
SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique)
publisher_email
=
sirtascience@ipsl.polytechnique.fr
publisher_url
=
http://www.sirta.fr
publisher_type
=
institution
publisher_institution
=
IPSL CNRS/Ecole Polytechnique
geospatial_bounds
=
POINT (48.71811, 2.20753)
geospatial_bounds_crs
=
EPSG:4326
geospatial_bounds_vertical_crs
=
EPSG:5829
geospatial_lat_min
=
48.71811
geospatial_lat_max
=
48.71811
geospatial_lat_units
=
degrees_north
geospatial_lat_resolution
=
0 degree_north
geospatial_lon_min
=
2.20753
geospatial_lon_max
=
2.20753
geospatial_lon_units
=
degrees_east
geospatial_lon_resolution
=
0 degree
geospatial_vertical_min
=
10
geospatial_vertical_max
=
7700
geospatial_vertical_positive
=
up
geospatial_vertical_units
=
m
geospatial_vertical_resolution
=
10 meters
time_coverage_start
=
time_coverage_end
=
time_coverage_duration
=
P0000-00-01T00:00:00
time_coverage_resolution
=
P0000-00-00T00:00:03
date_modified
=
date_issued
=
date_metadata_modified
=
2022-01-17T00:00:00Z
product_version
=
1
keywords_vocabulary
=
GCMD:GCMD Keywords, CF:NetCDF COARDS Climate and Forecast Standard Names
platform
=
In Situ Land-based Platforms, GROUND-BASED OBSERVATIONS
platform_vocabulary
=
GCMD:GCMD Keywords
instrument
=
GCMD:Earth Remote Sensing Instruments, GCMD:Active Remote Sensing, GCMD:Profilers/Sounders, GCMD:Lidar/Laser Sounders, GCMD:CLOUD LIDAR, GCMD: LIDAR
instrument_vocabulary
=
GCMD:GCMD Keywords
cdm_data_type
=
metadata_link
=
; Dimensions
;------------------------------------------------------------------------------
...
...
@@ -76,8 +133,8 @@ long_name = layer index of cloud base height
units
=
1
value
=
$reader_data$, cbh_layer
[layer_
clh
]
dim
=
layer_
clh
[layer_
aerosol
]
dim
=
layer_
aerosol
type
=
$integer$
long_name
=
layer index of cloud layer height
units
=
1
...
...
@@ -89,20 +146,30 @@ value = $reader_data$, clh_layer
dim
=
time, range
type
=
$double$
long_name
=
normalized range corrected signal
units
=
1e-8 sr^-1.m^-1
missing_value
=
-999.
_FillValue
=
-999.
units
=
V*m^2
missing_value
=
-999.
9
_FillValue
=
-999.
9
value
=
$reader_data$, rcs_0
detection_mode
=
analog
[bckgrd_rcs_0]
dim
=
time
type
=
$double$
long_name
=
background light at internal ADC input
units
=
mV
missing_value
=
-999.
_FillValue
=
-999.
missing_value
=
-999.
9
_FillValue
=
-999.
9
value
=
$reader_data$, bckgrd_rcs_0
[tilt_angle]
dim
=
time
type
=
$float$
long_name
=
instrument tilt angle from vertical
units
=
degree
missing_value
=
-999.9
_FillValue
=
-999.9
value
=
$reader_data$, tilt_angle
[cloud_base_height]
dim
=
time, layer
type
=
$integer$
...
...
@@ -112,12 +179,13 @@ missing_value = -9
_FillValue
=
-9
value
=
$reader_data$, cbh
[time_resol]
dim
=
$none$
type
=
$integer$
long_name
=
time resolution
units
=
s
value
=
$reader_data$, time_resolution
[start_time]
dim
=
time
type
=
$time$
long_name
=
start time of measurements
units
=
days since 1970-01-01 00:00:00
value
=
$reader_data$, start_time
calendar
=
standard
[range_resol]
dim
=
$none$
...
...
@@ -126,139 +194,101 @@ long_name = range resolution
units
=
m
value
=
$reader_data$, range_resol
[tilt_angle]
dim
=
time
type
=
$float$
long_name
=
instrument tilt angle from vertical
units
=
degree
missing_value
=
-999.
_FillValue
=
-999.
value
=
$reader_data$, tilt_angle
[l0_wavelength]
dim
=
$none$
type
=
$float$
long_name
=
laser 0 wavelength
units
=
nm
value
=
910
[l0_width]
type
=
$float$
dim
=
$none$
type
=
$float$
long_name
=
laser 0 line width
units
=
nm
value
=
NAN
value
=
-999.9
[l0_beam_div]
type
=
$float$
dim
=
$none$
type
=
$float$
long_name
=
laser 0 beam divergence
units
=
rad
value
=
NAN
[l0_prf]
type
=
$float$
dim
=
$none$
long_name
=
laser 0 pulse repetition frequency
units
=
Hz
value
=
NAN
value
=
-999.9
[t0_fov]
type
=
$float$
dim
=
$none$
type
=
$float$
long_name
=
telescope 0 field of view
units
=
rad
value
=
NAN
value
=
-999.9
[t0_tilt]
type
=
$float$
[time_resol]
dim
=
$none$
long_name
=
telescope 0 tilt angle wrt nadir
units
=
degree
value
=
NAN
type
=
$integer$
long_name
=
time resolution
units
=
s
value
=
$reader_data$, time_resolution
[temperature_laser]
[l0_wavelength]
dim
=
$none$
type
=
$float$
long_name
=
laser temperature
units
=
K
dim
=
time
missing_value
=
-999.
_FillValue
=
-999.
value
=
$reader_data$, laser_temp
long_name
=
laser 0 wavelength
units
=
nm
value
=
910
[start_time]
dim
=
time
type
=
$time$
long_name
=
start time of measurements
units
=
days since 1970-01-01 00:00:00
calendar
=
standard
value
=
$reader_data$, start_time
[l0_prf]
dim
=
$none$
type
=
$float$
long_name
=
laser 0 pulse repetition frequency
units
=
Hz
value
=
-999.9
[station_latitude]
dim
=
$none$