From fc15ada6c502437d3d37cd3bcb38239d422f8bd6 Mon Sep 17 00:00:00 2001 From: Jean-Baptiste Bayle <j2b.bayle@gmail.com> Date: Mon, 8 Mar 2021 14:27:37 +0100 Subject: [PATCH] Use module-level logger --- lisainstrument/containers.py | 8 +++--- lisainstrument/dsp.py | 22 ++++++++-------- lisainstrument/instrument.py | 50 +++++++++++++++++++----------------- lisainstrument/noises.py | 34 ++++++++++++------------ 4 files changed, 61 insertions(+), 53 deletions(-) diff --git a/lisainstrument/containers.py b/lisainstrument/containers.py index f8fb922..4bc0a4d 100644 --- a/lisainstrument/containers.py +++ b/lisainstrument/containers.py @@ -13,6 +13,8 @@ import numpy import h5py import matplotlib.pyplot +logger = logging.getLogger(__name__) + class ForEachObject(abc.ABC): """Abstract class which represents a dictionary holding a value for each object.""" @@ -70,7 +72,7 @@ class ForEachObject(abc.ABC): if size != 1 and len(value) != size: raise ValueError(f"incompatible sizes in dictionary '{size}' and '{len(size)}'") size = max(size, len(value)) - logging.debug("Writing dataset of size '%s' with '%s' columns", size, len(self.indices())) + logger.debug("Writing dataset of size '%s' with '%s' columns", size, len(self.indices())) # Write dataset dtype = numpy.dtype({'names': self.indices(), 'formats': len(self.indices()) * [numpy.float64]}) hdf5.create_dataset(dataset, (size,), dtype=dtype) @@ -109,7 +111,7 @@ class ForEachObject(abc.ABC): size = len(self) if len(self) > 1 else 100 t = t0 + numpy.arange(size) * dt # Plot signals - logging.info("Plotting signals for each object") + logger.info("Plotting signals for each object") matplotlib.pyplot.figure(figsize=(12, 4)) for key, signal in self.items(): matplotlib.pyplot.plot(t, numpy.broadcast_to(signal, size), label=key) @@ -120,7 +122,7 @@ class ForEachObject(abc.ABC): matplotlib.pyplot.title(title) # Save or show glitch if output is not None: - logging.info("Saving plot to %s", output) + logger.info("Saving plot to %s", output) matplotlib.pyplot.savefig(output, bbox_inches='tight') else: matplotlib.pyplot.show() diff --git a/lisainstrument/dsp.py b/lisainstrument/dsp.py index 38dc235..5db2e42 100644 --- a/lisainstrument/dsp.py +++ b/lisainstrument/dsp.py @@ -11,6 +11,8 @@ import logging import scipy.sparse import numpy +logger = logging.getLogger(__name__) + def timeshift(data, shifts, order=31): """Shift `data` in time by `shifts` samples. @@ -20,19 +22,19 @@ def timeshift(data, shifts, order=31): shifts: array of time shifts [samples] order: interpolation order """ - logging.debug("Time shifting data '%s' by '%s' samples (order=%d)", data, shifts, order) + logger.debug("Time shifting data '%s' by '%s' samples (order=%d)", data, shifts, order) # Handle constant input and vanishing shifts data = numpy.asarray(data) shifts = numpy.asarray(shifts) if data.size == 1: - logging.debug("Input data is constant, skipping time-shift operation") + logger.debug("Input data is constant, skipping time-shift operation") return data if numpy.all(shifts == 0): - logging.debug("Time shifts are vanishing, skipping time-shift operation") + logger.debug("Time shifts are vanishing, skipping time-shift operation") return data - logging.debug("Computing Lagrange coefficients") + logger.debug("Computing Lagrange coefficients") halfp = (order + 1) // 2 shift_ints = numpy.floor(shifts).astype(int) shift_fracs = shifts - shift_ints @@ -40,17 +42,17 @@ def timeshift(data, shifts, order=31): # Handle constant shifts if shifts.size == 1: - logging.debug("Constant shifts, using correlation method") + logger.debug("Constant shifts, using correlation method") i_min = shift_ints - (halfp - 1) i_max = shift_ints + halfp + data.size if i_max - 1 < 0: return numpy.repeat(data[0], data.size) if i_min > data.size - 1: return numpy.repeat(data[-1], data.size) - logging.debug("Padding data (left=%d, right=%d)", max(0, -i_min), max(0, i_max - data.size)) + logger.debug("Padding data (left=%d, right=%d)", max(0, -i_min), max(0, i_max - data.size)) data_trimmed = data[max(0, i_min):min(data.size, i_max)] data_padded = numpy.pad(data_trimmed, (max(0, -i_min), max(0, i_max - data.size)), mode='edge') - logging.debug("Computing correlation product") + logger.debug("Computing correlation product") return numpy.correlate(data_padded, taps[0], mode='valid') # Check that sizes or compatible @@ -58,7 +60,7 @@ def timeshift(data, shifts, order=31): raise ValueError(f"`data` and `shift` must be of the same size (got {data.size}, {shifts.size})") # Handle time-varying shifts - logging.debug("Time-varying shifts, using matrix method") + logger.debug("Time-varying shifts, using matrix method") indices = numpy.arange(data.size) i_min = numpy.min(shift_ints - (halfp - 1) + indices) i_max = numpy.max(shift_ints + halfp + indices + 1) @@ -66,10 +68,10 @@ def timeshift(data, shifts, order=31): + numpy.repeat(shift_ints + indices, order + 1) - (halfp - 1) csr_ptr = (order + 1) * numpy.arange(data.size + 1) mat = scipy.sparse.csr_matrix((taps.reshape(-1), csr_ind - i_min, csr_ptr), shape=(data.size, i_max - i_min)) - logging.debug("Padding data (left=%d, right=%d)", max(0, -i_min), max(0, i_max - data.size)) + logger.debug("Padding data (left=%d, right=%d)", max(0, -i_min), max(0, i_max - data.size)) data_trimmed = data[max(0, i_min):min(data.size, i_max)] data_padded = numpy.pad(data_trimmed, (max(0, -i_min), max(0, i_max - data.size))) - logging.debug("Computing matrix-vector product") + logger.debug("Computing matrix-vector product") return mat.dot(data_padded) diff --git a/lisainstrument/instrument.py b/lisainstrument/instrument.py index 916b68d..c13a260 100644 --- a/lisainstrument/instrument.py +++ b/lisainstrument/instrument.py @@ -189,7 +189,7 @@ class Instrument: parameters: see `interpolation` docstring in `__init__()` """ if interpolation is None: - logging.info("Disabling interpolation") + logger.info("Disabling interpolation") self.interpolation_order = None self.interpolate = lambda x, _: x elif callable(interpolation): @@ -201,7 +201,7 @@ class Instrument: method = str(interpolation[0]) if method == 'lagrange': self.interpolation_order = int(interpolation[1]) - logging.debug("Using Lagrange interpolation of order %s", self.interpolation_order) + logger.debug("Using Lagrange interpolation of order %s", self.interpolation_order) self.interpolate = lambda x, shift: x if numpy.isscalar(x) else \ dsp.timeshift(x, shift * self.physics_fs, self.interpolation_order) else: @@ -216,7 +216,7 @@ class Instrument: self.aafilter_coeffs = None self.aafilter = lambda _, x: x elif isinstance(aafilter, (list, numpy.ndarray)): - logging.info("Using user-provided antialiasing filter coefficients") + logger.info("Using user-provided antialiasing filter coefficients") self.aafilter_coeffs = aafilter self.aafilter = lambda _, x: x if numpy.isscalar(x) else \ scipy.signal.lfilter(self.aafilter_coeffs, 1, x) @@ -250,7 +250,7 @@ class Instrument: logger.debug("Designing finite-impulse response filter from Kaiser window") attenuation, freq1, freq2 = parameters[1], parameters[2], parameters[3] if attenuation == 0: - logging.debug("Vanishing filter attenuation, disabling filtering") + logger.debug("Vanishing filter attenuation, disabling filtering") return lambda x: x logger.debug("Filter attenuation is %s dB", attenuation) logger.debug("Filter transition band is [%s Hz, %s Hz]", freq1, freq2) @@ -265,7 +265,7 @@ class Instrument: def init_orbits(self, orbits): """Initialize orbits.""" if isinstance(orbits, str): - logging.info("Using orbit file '%s'", orbits) + logger.info("Using orbit file '%s'", orbits) self.orbit_file = orbits orbitf = h5py.File(self.orbit_file, 'r') logger.debug("Interpolating proper pseudo-ranges") @@ -410,7 +410,7 @@ class Instrument: logger.info("Simulating local beams") - logging.debug("Computing carrier offsets for local beams") + logger.debug("Computing carrier offsets for local beams") self.local_carrier_offsets = self.offsets_freqs logger.debug("Computing carrier fluctuations for local beams") @@ -471,7 +471,9 @@ class Instrument: - self.pprs[mosa] ) - logging.info("Propagating local beams to adjacent") + ## Propagation to adjacent MOSA + + logger.info("Propagating local beams to adjacent MOSAs") logger.debug("Propagating carrier offsets to adjacent MOSAs") self.adjacent_carrier_offsets = self.local_carrier_offsets.adjacent() @@ -533,7 +535,7 @@ class Instrument: self.tps_isc_carrier_fluctuations = \ self.distant_isc_carrier_fluctuations - self.local_isc_carrier_fluctuations - logging.debug("Computing inter-spacecraft upper sideband beatnote offsets on TPS") + logger.debug("Computing inter-spacecraft upper sideband beatnote offsets on TPS") self.tps_isc_usb_offsets = \ self.distant_isc_usb_offsets - self.local_isc_usb_offsets @@ -555,7 +557,7 @@ class Instrument: logger.debug("Propagating local carrier offsets to test-mass interferometer") self.local_tm_carrier_offsets = self.local_carrier_offsets - logging.debug("Propagating local carrier fluctuations to test-mass interferometer") + logger.debug("Propagating local carrier fluctuations to test-mass interferometer") self.local_tm_carrier_fluctuations = \ self.local_carrier_fluctuations \ + self.central_freq * (self.testmass_noises + self.glitch_tms / c) @@ -679,7 +681,7 @@ class Instrument: / (1 + self.clock_noise_offsets)**2 ).transformed(self.timestamped) - logging.debug("Sampling inter-spacecraft upper sideband beatnote offsets to THE grid") + logger.debug("Sampling inter-spacecraft upper sideband beatnote offsets to THE grid") self.the_isc_usb_offsets = ( self.tps_isc_usb_offsets / (1 + self.clock_noise_offsets) ).transformed(self.timestamped) @@ -715,7 +717,7 @@ class Instrument: self.tps_tm_usb_offsets / (1 + self.clock_noise_offsets) ).transformed(self.timestamped) - logging.debug("Sampling test-mass upper sideband beatnote fluctuations to THE grid") + logger.debug("Sampling test-mass upper sideband beatnote fluctuations to THE grid") self.the_tm_usb_fluctuations = ( self.tps_tm_usb_fluctuations / (1 + self.clock_noise_offsets) - self.tps_tm_usb_offsets * self.clock_noise_fluctuations @@ -849,7 +851,7 @@ class Instrument: logger.info("Generating laser noise") if self.three_lasers: - logging.debug("Generating laser noise per spacecraft") + logger.debug("Generating laser noise per spacecraft") self.laser_noises = ForEachSC(lambda sc: noises.laser(self.physics_fs, self.physics_size, self.laser_asds[sc]) ) @@ -861,7 +863,7 @@ class Instrument: ## Clock noise - logger.info("Generating clock noise time series") + logger.info("Generating clock noise") if self.clock_freqlindrifts == self.clock_freqquaddrifts == 0: # Optimize to use a scalar if we only have a constant frequency offset @@ -931,13 +933,13 @@ class Instrument: next_inverse = timer_deviations while not niter or error > self.clockinv_tolerance: if niter >= self.clockinv_maxiter: - logging.warning("Maximum number of iterations '%s' reached (error=%.2E)", niter, error) + logger.warning("Maximum number of iterations '%s' reached (error=%.2E)", niter, error) break logger.debug("Starting iteration #%s", niter) inverse = next_inverse next_inverse = self.interpolate(timer_deviations, -inverse * self.physics_fs) error = numpy.max(numpy.abs(inverse - next_inverse)) - logging.debug("End of iteration %s, with an error of %.2E s", niter, error) + logger.debug("End of iteration %s, with an error of %.2E s", niter, error) niter += 1 logger.debug("End of timer deviation inversion after %s iterations with an error of %.2E s", niter, error) return inverse @@ -955,7 +957,7 @@ class Instrument: try: hdf5.attrs[key] = str(value) except RuntimeError: - logging.warning("Cannot write metadata '%s' on '%s'", key, hdf5) + logger.warning("Cannot write metadata '%s' on '%s'", key, hdf5) def write(self, output='measurements.h5', mode='x', write_all=False): """Run a simulation. @@ -970,7 +972,7 @@ class Instrument: self.simulate(keep_all=write_all) logger.info("Writing simulation to '%s'", output) - logging.debug("Writing metadata and physics time dataset to '%s'", output) + logger.debug("Writing metadata and physics time dataset to '%s'", output) hdf5 = h5py.File(output, mode) self.write_metadata(hdf5) @@ -981,14 +983,14 @@ class Instrument: logger.debug("Writing laser noise to '%s'", output) self.laser_noises.write(hdf5, 'laser_noises') - logging.debug("Writing clock noise to '%s'", output) + logger.debug("Writing clock noise to '%s'", output) self.clock_noise_offsets.write(hdf5, 'clock_noise_offsets') self.clock_noise_fluctuations.write(hdf5, 'clock_noise_fluctuations') logger.debug("Writing modulation noise to '%s'", output) self.modulation_noises.write(hdf5, 'modulation_noises') - logging.debug("Writing local beams to '%s'", output) + logger.debug("Writing local beams to '%s'", output) self.local_carrier_offsets.write(hdf5, 'local_carrier_offsets') self.local_carrier_fluctuations.write(hdf5, 'local_carrier_fluctuations') self.local_usb_offsets.write(hdf5, 'local_usb_offsets') @@ -998,7 +1000,7 @@ class Instrument: logger.debug("Writing proper pseudo-ranges to '%s'", output) self.pprs.write(hdf5, 'pprs') - logging.debug("Writing proper pseudo-range derivatives to '%s'", output) + logger.debug("Writing proper pseudo-range derivatives to '%s'", output) self.d_pprs.write(hdf5, 'd_pprs') logger.debug("Writing propagated distant beams to '%s'", output) @@ -1050,7 +1052,7 @@ class Instrument: self.local_tm_usb_offsets.write(hdf5, 'local_tm_usb_offsets') self.local_tm_usb_fluctuations.write(hdf5, 'local_tm_usb_fluctuations') - logging.debug("Writing adjacent beams at test-mass interferometer to '%s'", output) + logger.debug("Writing adjacent beams at test-mass interferometer to '%s'", output) self.adjacent_tm_carrier_offsets.write(hdf5, 'adjacent_tm_carrier_offsets') self.adjacent_tm_carrier_fluctuations.write(hdf5, 'adjacent_tm_carrier_fluctuations') self.adjacent_tm_usb_offsets.write(hdf5, 'adjacent_tm_usb_offsets') @@ -1169,7 +1171,7 @@ class Instrument: if not self.simulated: self.simulate() # Plot signals - logging.info("Plotting beatnote frequency fluctuations") + logger.info("Plotting beatnote frequency fluctuations") _, axes = matplotlib.pyplot.subplots(3, 1, figsize=(12, 12)) plot = lambda axis, x, label: axis.plot(self.t[skip:], numpy.broadcast_to(x, self.size)[skip:], label=label) for mosa in self.MOSAS: @@ -1203,7 +1205,7 @@ class Instrument: if not self.simulated: self.simulate() # Plot signals - logging.info("Plotting beatnote frequency offsets") + logger.info("Plotting beatnote frequency offsets") _, axes = matplotlib.pyplot.subplots(3, 1, figsize=(12, 12)) plot = lambda axis, x, label: axis.plot(self.t[skip:], numpy.broadcast_to(x, self.size)[skip:], label=label) for mosa in self.MOSAS: @@ -1271,7 +1273,7 @@ class Instrument: if not self.simulated: self.simulate() # Plot signals - logging.info("Plotting measured pseudo-ranges") + logger.info("Plotting measured pseudo-ranges") _, axes = matplotlib.pyplot.subplots(2, 1, figsize=(12, 8)) plot = lambda axis, x, label: axis.plot(self.t[skip:], numpy.broadcast_to(x, self.size)[skip:], label=label) for mosa in self.MOSAS: diff --git a/lisainstrument/noises.py b/lisainstrument/noises.py index 91042e9..417a511 100644 --- a/lisainstrument/noises.py +++ b/lisainstrument/noises.py @@ -16,6 +16,8 @@ import pyplnoise from numpy import pi, sqrt from lisaconstants import c +logger = logging.getLogger(__name__) + def white(fs, size, asd): """Generate a white noise. @@ -25,9 +27,9 @@ def white(fs, size, asd): size: number of samples [samples] asd: amplitude spectral density [/sqrt(Hz)] """ - logging.debug("Generating white noise (fs=%s Hz, size=%s, asd=%s)", fs, size, asd) + logger.debug("Generating white noise (fs=%s Hz, size=%s, asd=%s)", fs, size, asd) if not asd: - logging.debug("Vanishing power spectral density, bypassing noise generation") + logger.debug("Vanishing power spectral density, bypassing noise generation") return 0 generator = pyplnoise.WhiteNoise(fs, asd**2 / 2) return generator.get_series(size) @@ -40,9 +42,9 @@ def violet(fs, size, asd): fs: sampling frequency [Hz] size: number of samples [samples] asd: amplitude spectral density [/sqrt(Hz)]""" - logging.debug("Generating violet noise (fs=%s Hz, size=%s, asd=%s)", fs, size, asd) + logger.debug("Generating violet noise (fs=%s Hz, size=%s, asd=%s)", fs, size, asd) if not asd: - logging.debug("Vanishing power spectral density, bypassing noise generation") + logger.debug("Vanishing power spectral density, bypassing noise generation") return 0 white_noise = white(fs, size, asd) return numpy.gradient(white_noise, 1 / fs) / (2 * pi) @@ -55,9 +57,9 @@ def pink(fs, size, asd): fs: sampling frequency [Hz] size: number of samples [samples] asd: amplitude spectral density [/sqrt(Hz)]""" - logging.debug("Generating pink noise (fs=%s Hz, size=%s, asd=%s)", fs, size, asd) + logger.debug("Generating pink noise (fs=%s Hz, size=%s, asd=%s)", fs, size, asd) if not asd: - logging.debug("Vanishing power spectral density, bypassing noise generation") + logger.debug("Vanishing power spectral density, bypassing noise generation") return 0 generator = pyplnoise.PinkNoise(fs, 1 / size, fs / 2) return asd / sqrt(2) * generator.get_series(size) @@ -70,9 +72,9 @@ def red(fs, size, asd): fs: sampling frequency [Hz] size: number of samples [samples] asd: amplitude spectral density [/sqrt(Hz)]""" - logging.debug("Generating red noise (fs=%s Hz, size=%s, asd=%s)", fs, size, asd) + logger.debug("Generating red noise (fs=%s Hz, size=%s, asd=%s)", fs, size, asd) if not asd: - logging.debug("Vanishing power spectral density, bypassing noise generation") + logger.debug("Vanishing power spectral density, bypassing noise generation") return 0 generator = pyplnoise.RedNoise(fs, 1 / size) return asd / sqrt(2) * generator.get_series(size) @@ -85,9 +87,9 @@ def infrared(fs, size, asd): fs: sampling frequency [Hz] size: number of samples [samples] asd: amplitude spectral density [/sqrt(Hz)]""" - logging.debug("Generating infrared noise (fs=%s Hz, size=%s, asd=%s)", fs, size, asd) + logger.debug("Generating infrared noise (fs=%s Hz, size=%s, asd=%s)", fs, size, asd) if not asd: - logging.debug("Vanishing power spectral density, bypassing noise generation") + logger.debug("Vanishing power spectral density, bypassing noise generation") return 0 red_noise = red(fs, size, asd) return numpy.cumsum(red_noise) * (2 * pi / fs) @@ -103,7 +105,7 @@ def laser(fs, size, asd=28.2): Args: asd: amplitude spectral density [Hz/sqrt(Hz)] """ - logging.debug("Generating laser noise (fs=%s Hz, size=%s, asd=%s Hz/sqrt(Hz))", fs, size, asd) + logger.debug("Generating laser noise (fs=%s Hz, size=%s, asd=%s Hz/sqrt(Hz))", fs, size, asd) return white(fs, size, asd) @@ -117,7 +119,7 @@ def clock(fs, size, asd=6.32E-14): Args: asd: amplitude spectral density [/sqrt(Hz)] """ - logging.debug("Generating clock noise fluctuations (fs=%s Hz, size=%s, asd=%s /sqrt(Hz))", fs, size, asd) + logger.debug("Generating clock noise fluctuations (fs=%s Hz, size=%s, asd=%s /sqrt(Hz))", fs, size, asd) return pink(fs, size, asd) @@ -137,7 +139,7 @@ def modulation(fs, size, asd=1E-14, fknee=1.5E-2): asd: amplitude spectral density [s/sqrt(Hz)] fknee: cutoff frequency [Hz] """ - logging.debug("Generating modulation noise (fs=%s Hz, size=%s, asd=%s s/sqrt(Hz), fknee=%s Hz)", + logger.debug("Generating modulation noise (fs=%s Hz, size=%s, asd=%s s/sqrt(Hz), fknee=%s Hz)", fs, size, asd, fknee) return white(fs, size, 2 * pi * asd * fknee) \ + violet(fs, size, 2 * pi * asd) @@ -162,7 +164,7 @@ def backlink(fs, size, asd=3E-12, fknee=2E-3): asd: amplitude spectral density [m/sqrt(Hz)] fknee: cutoff frequency [Hz] """ - logging.debug("Generating modulation noise (fs=%s Hz, size=%s, asd=%s m/sqrt(Hz), fknee=%s Hz)", + logger.debug("Generating modulation noise (fs=%s Hz, size=%s, asd=%s m/sqrt(Hz), fknee=%s Hz)", fs, size, asd, fknee) return violet(fs, size, 2 * pi * asd / c) \ + red(fs, size, 2 * pi * asd * fknee**2 / c) @@ -178,7 +180,7 @@ def ranging(fs, size, asd=3E-9): Args: asd: amplitude spectral density [s/sqrt(Hz)] """ - logging.debug("Generating ranging noise (fs=%s Hz, size=%s, asd=%s s/sqrt(Hz))", fs, size, asd) + logger.debug("Generating ranging noise (fs=%s Hz, size=%s, asd=%s s/sqrt(Hz))", fs, size, asd) return white(fs, size, asd) @@ -198,7 +200,7 @@ def testmass(fs, size, asd=2.4E-15, fknee=0.4E-3): asd: amplitude spectral density [ms^(-2)/sqrt(Hz)] fknee: cutoff frequency [Hz] """ - logging.debug("Generating test-mass noise (fs=%s Hz, size=%s, asd=%s ms^(-2)/sqrt(Hz), fknee=%s Hz)", + logger.debug("Generating test-mass noise (fs=%s Hz, size=%s, asd=%s ms^(-2)/sqrt(Hz), fknee=%s Hz)", fs, size, asd, fknee) return red(fs, size, asd / (2 * pi * c)) \ + infrared(fs, size, asd * fknee / (2 * pi * c)) -- GitLab