Commit 9c742502 authored by Grégoire Uhlrich's avatar Grégoire Uhlrich
Browse files

gamma5 couplings corrected

parent 295cbe14
......@@ -85,12 +85,12 @@ class Index{
*/
const Space* space = nullptr;
ID_type id;
/*!
* \brief Name of the index.
*/
char nameOrValue;
ID_type id;
/*!
* \brief Type of the index.
......
......@@ -33,8 +33,8 @@ namespace csl {
Index::Index()
:space(nullptr),
nameOrValue(0),
id(0),
nameOrValue(0),
type(cslIndex::Free)
{
setSign(false);
......@@ -57,8 +57,8 @@ Index::Index(const std::string& t_name,
const Space* t_space,
unsigned short t_id)
:space(t_space),
nameOrValue(-1),
id(t_id),
nameOrValue(-1),
type(cslIndex::Free)
{
setName(t_name);
......
......@@ -445,13 +445,13 @@ void PMSSM_LEM::initInteractions4()
, G({+i_C_1_1[ 0 ], i_Minko[ 0 ]}, X), csl::GetComplexConjugate(u({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), u({+i_C_1_0[ 1 ], +i_dirac[ 1 ]}, X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_c, e_em, csl::cos_s(beta), csl::pow_s(csl::sin_s(beta), (-1)), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(c({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), c({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_c, e_em, csl::cos_s(beta), csl::pow_s(csl::sin_s(beta), (-1)), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(c({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), c({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_t, e_em, csl::cos_s(beta), csl::pow_s(csl::sin_s(beta), (-1)), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(t({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), t({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_t, e_em, csl::cos_s(beta), csl::pow_s(csl::sin_s(beta), (-1)), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(t({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), t({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_u, e_em, csl::cos_s(beta), csl::pow_s(csl::sin_s(beta), (-1)), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(u({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), u({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_u, e_em, csl::cos_s(beta), csl::pow_s(csl::sin_s(beta), (-1)), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(u({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), u({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), csl::pow_s(M_W, (-1)), m_c, e_em, csl::pow_s(csl::sin_s(beta), (-1)), csl::sin_s(alpha), csl::pow_s(csl::sin_s(theta_W), (-1)), csl::GetComplexConjugate(c({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), c({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X), H0(X)}),
......@@ -687,13 +687,13 @@ void PMSSM_LEM::initInteractions6()
, G({+i_C_1_1[ 0 ], i_Minko[ 0 ]}, X), csl::GetComplexConjugate(s({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), s({+i_C_1_0[ 1 ], +i_dirac[ 1 ]}, X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_b, e_em, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(b({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), b({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_b, e_em, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(b({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), b({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_d, e_em, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(d({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), d({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_d, e_em, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(d({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), d({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_s, e_em, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(s({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), s({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_s, e_em, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(s({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), s({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), A0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), csl::pow_s(M_W, (-1)), m_b, e_em, csl::pow_s(csl::cos_s(beta), (-1)), csl::cos_s(alpha), csl::pow_s(csl::sin_s(theta_W), (-1)), csl::GetComplexConjugate(b({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), b({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X), H0(X)}),
......@@ -748,13 +748,13 @@ void PMSSM_LEM::initInteractions6()
void PMSSM_LEM::initInteractions7()
{
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_e, e_em, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(e({+i_dirac[ 0 ]}, X)), e({+i_dirac[ 1 ]}, X), A0(X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_e, e_em, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(e({+i_dirac[ 0 ]}, X)), e({+i_dirac[ 1 ]}, X), A0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), e_em, m_mu, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), A0(X), csl::GetComplexConjugate(mu({+i_dirac[ 0 ]}, X)), mu({+i_dirac[ 1 ]}, X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), e_em, m_mu, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), A0(X), csl::GetComplexConjugate(mu({+i_dirac[ 0 ]}, X)), mu({+i_dirac[ 1 ]}, X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), e_em, m_tau, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), A0(X), csl::GetComplexConjugate(tau({+i_dirac[ 0 ]}, X)), tau({+i_dirac[ 1 ]}, X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), e_em, m_tau, csl::pow_s(csl::cos_s(beta), (-1)), csl::sin_s(beta), csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), A0(X), csl::GetComplexConjugate(tau({+i_dirac[ 0 ]}, X)), tau({+i_dirac[ 1 ]}, X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), csl::pow_s(M_W, (-1)), m_e, e_em, csl::pow_s(csl::cos_s(beta), (-1)), csl::cos_s(alpha), csl::pow_s(csl::sin_s(theta_W), (-1)), csl::GetComplexConjugate(e({+i_dirac[ 0 ]}, X)), e({+i_dirac[ 0 ]}, X), H0(X)}),
......@@ -15877,31 +15877,31 @@ void PMSSM_LEM::initInteractions151()
, csl::pow_s(csl::cos_s(theta_W), (-2)), csl::pow_s(csl::sin_s(beta), 2), csl::pow_s(csl::sin_s(theta_W), (-2))})}), csl::pow_s(csl::sum_s({csl::prod_s({csl::pow_s(e_em, 2), csl::pow_s(csl::sin_s(theta_W), (-2))}) , csl::prod_s({csl::pow_s(e_em, 2), csl::pow_s(csl::sin_s(theta_W), (-2)), csl::pow_s(csl::tan_s(theta_W), 2)})}), (-1)), Z({+i_Minko[ 0 ]}, X), Z({i_Minko[ 0 ]}, X), csl::pow_s(G0(X), 2)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_c, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(c({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), c({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_c, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(c({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), c({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_t, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(t({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), t({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_t, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(t({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), t({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_u, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(u({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), u({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_u, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(u({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), u({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_b, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(b({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), b({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_b, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(b({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), b({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_d, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(d({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), d({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_d, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(d({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), d({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_s, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(s({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), s({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_s, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(s({+i_C_1_0[ 0 ], +i_dirac[ 0 ]}, X)), s({+i_C_1_0[ 0 ], +i_dirac[ 1 ]}, X), G0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_e, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(e({+i_dirac[ 0 ]}, X)), e({+i_dirac[ 1 ]}, X), G0(X)}),
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_e, e_em, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), csl::GetComplexConjugate(e({+i_dirac[ 0 ]}, X)), e({+i_dirac[ 1 ]}, X), G0(X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), e_em, m_mu, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), G0(X), csl::GetComplexConjugate(mu({+i_dirac[ 0 ]}, X)), mu({+i_dirac[ 1 ]}, X)}),
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), e_em, m_mu, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), G0(X), csl::GetComplexConjugate(mu({+i_dirac[ 0 ]}, X)), mu({+i_dirac[ 1 ]}, X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), e_em, m_tau, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), G0(X), csl::GetComplexConjugate(tau({+i_dirac[ 0 ]}, X)), tau({+i_dirac[ 1 ]}, X)}),
csl::prod_s({csl::intfraction_s(-1, 2), CSL_I, csl::pow_s(M_W, (-1)), e_em, m_tau, csl::pow_s(csl::sin_s(theta_W), (-1)), gamma5({+i_dirac[ 0 ], +i_dirac[ 1 ]}), G0(X), csl::GetComplexConjugate(tau({+i_dirac[ 0 ]}, X)), tau({+i_dirac[ 1 ]}, X)}),
false);
addLagrangianTerm(
csl::prod_s({csl::intfraction_s(1, 2), CSL_I, csl::pow_s(M_W, (-1)), m_c, e_em, mu_h, csl::cos_s(beta), csl::pow_s(csl::sin_s(beta), (-1)), csl::pow_s(csl::sin_s(theta_W), (-1)), G0(X), sc_L({+i_C_1_0[ 0 ]}, X), csl::GetComplexConjugate(sc_R({+i_C_1_0[ 0 ]}, X))}),
......@@ -285,7 +285,6 @@ void MSSM_Model::initHiggs()
Hd->setGroupRep("Y", {-1, 2});
m_sHd = csl::constant_s("m_sHd");
Hd->setMass(m_sHd);
addParticles({Hu, Hd});
}
void MSSM_Model::initHiggsinos()
......@@ -1161,7 +1160,6 @@ void MSSM_Model::diagonalize2By2Matrices()
true // diagonalize, no massless state
);
Replaced(*this,
getParticle("W")->getMass(),
sm_input::M_W);
......@@ -1414,7 +1412,7 @@ void MSSM_Model::promoteMajoranas()
void MSSM_Model::sortSfermions(std::vector<mty::Particle> &parts)
{
const static std::string order = "uct dsb emt";
const static std::string order = "em uct dsb"; // t is for top and tau
auto comp = [&](Particle const &A, Particle const &B) {
auto nameA = A->getName();
auto nameB = B->getName();
......
......@@ -56,6 +56,9 @@ PMSSM_Model::PMSSM_Model(
// std::cout << "Checking Hermiticity ..." << std::endl;
// checkHermiticity();
}
printSubPart({"H0", "u"});
printSubPart({"A0", "u"});
std::cin.get();
}
void PMSSM_Model::approximateYukawa()
......
......@@ -1343,14 +1343,18 @@ void ModelBuilder::applyDiracFermionEmbedding(
if (field->getParent_info() != leftWeyl.get()
and field->getParent_info() != rightWeyl.get())
return false;
// Chiralities have been flipped, so Right-handed
// is indeed to one that has a minus sign.
// gamma5 = PR - PL, with flipped chiralities L<->R
csl::Expr factor
= (field->getChirality() == Chirality::Right)
? CSL_M_1 : CSL_1;
field->setChirality(Chirality::None);
if (not expr->isComplexConjugate()) {
auto& structure = field->getIndexStructureView();
csl::Index alpha = structure[structure.size()-1];
csl::Index beta = dirac4.generateIndex();
structure[structure.size()-1] = beta;
csl::Expr factor = (field->getChirality() == Chirality::Left)
? CSL_M_1 : CSL_1;
expr = factor*dirac4.gamma_chir({alpha, beta})*expr;
}
return true;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment