diff --git a/R/MFx_ode.survFit.R b/R/MFx_ode.survFit.R
index 4b44349f7ccd93a189b0aafcea947053e9fdb155..ba8c882f9c710bb3d3c941848a1eb4aad0c3f8ed 100644
--- a/R/MFx_ode.survFit.R
+++ b/R/MFx_ode.survFit.R
@@ -80,7 +80,6 @@ MFx_ode <- function(object, ...){
 #' from computing survival probability for every profiles build from the vector of
 #' multiplication factors \code{MFx_tested}.}
 #' 
-#'    
 #' @examples 
 #' 
 #' # (1) Load the data
@@ -89,21 +88,6 @@ MFx_ode <- function(object, ...){
 #' # (2) Create an object of class 'survData'
 #' dataset <- survData(propiconazole)
 #' 
-#' \donttest{
-#' # (3) Run the survFit function with model_type SD (or IT)
-#' out_SD <- survFit(dataset, model_type = "SD")
-#' 
-#' # (4) data to predict
-#' data_4prediction <- data.frame(time = 1:10, conc = c(0,0.5,3,3,0,0,0.5,3,1.5,0))
-#' 
-#' # (5) estimate MF(x=30, t=4), that is for 30% reduction of survival at time 4
-#' MFx_SD_30.4 <- MFx_ode(out_SD, data_predict = data_4prediction , X = 30, time_MFx = 4)
-#' 
-#' # (5bis) estimate MF(x,t) along the MF_range from 5 to 10 (50) (X = NULL)
-#' MFx_SD_range <- MFx_ode(out_SD, data_predict = data_4prediction ,
-#'                     X = NULL, time_MFx = 4, MFx_range = seq(5, 10, length.out = 50))
-#' }
-#' 
 #' 
 #' @export
 #' 
@@ -128,14 +112,14 @@ This can take a very long time to compute (minutes to hours).\n
 Prefer the function 'MFx' when possible.")
   
   ## Analyse data_predict data.frame
-  if(!all(colnames(data_predict) %in% c("conc", "time")) || ncol(data_predict) != 2){
+  if (!all(colnames(data_predict) %in% c("conc", "time")) || ncol(data_predict) != 2) {
     stop("The argument 'data_predict' is a dataframe with two columns 'time' and 'conc'.")
   }
   
   ## Check time_MFx
-  if(is.null(time_MFx))  time_MFx = max(data_predict$time)
+  if (is.null(time_MFx))  time_MFx = max(data_predict$time)
   
-  if(!(time_MFx %in% data_predict$time)){
+  if (!(time_MFx %in% data_predict$time)) {
     stop("Please provide a 'time_MFx' corresponding to a time-point at which concentration is provided.
          Interpolation of concentration is too specific to be automatized.")
   }
diff --git a/R/morse.R b/R/morse.R
index 39dcd4491ede8471d7de127864ab067d02d98c4b..411019dcc145eba8a61d84e31d590963b9f7f7f3 100644
--- a/R/morse.R
+++ b/R/morse.R
@@ -95,6 +95,7 @@
 #' \emph{Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms}
 #' \url{https://www.efsa.europa.eu/en/efsajournal/pub/5377}.
 #' 
+#' @useDynLib morse, .registration = TRUE
 NULL
 
 
@@ -416,8 +417,3 @@ NULL
 #'  \item{\code{replicate}}{A vector of class \code{factor}.} }
 #' @keywords data set
 NULL
-
-## usethis namespace: start
-#' @useDynLib morse, .registration = TRUE
-## usethis namespace: end
-NULL
diff --git a/R/plot.LCx.R b/R/plot.LCx.R
index f98faf22da1891f1aec5bcd60d4dc62033026183..746db221484a7c3e2b20629db375d8dbb628a7cb 100644
--- a/R/plot.LCx.R
+++ b/R/plot.LCx.R
@@ -1,7 +1,8 @@
-#' Plotting method for \code{LCx} objects
+#' @title Plotting method for \code{LCx} objects
 #'
-#' This is the generic \code{plot} S3 method for the
-#' \code{LCx} class. It plots the survival probability as a function of concentration.
+#' @description
+#' This is the generic \code{plot} S3 method for the LCx class. 
+#' It plots the survival probability as a function of concentration.
 #'
 #'
 #' @param x An object of class \code{LCx}.
@@ -52,7 +53,7 @@ plot.LCx <- function(x,
   time_LCx <- x$time_LCx
   
   # Check if df_LCx are not all NA:
-  if(all(is.na(df_LCx$LCx))){
+  if (all(is.na(df_LCx$LCx))) {
     warning(paste0("No LCx can be computed at X=", 100-X_prop_provided*100, " and time_LCx=", time_LCx, 
                    "\nSee the grey dotted line on the graph does not cross zone of credible interval.",
                    "\nUse LCx function 'LCx' with other values for arguments 'time_LCx' (default is the maximum time of the experimental data),
diff --git a/R/plot.MFx.R b/R/plot.MFx.R
index ade568efed5a995e7188af4d8c95d61e0c1c02ae..120ff54449a88160d41d55318f345b74f44e3778 100644
--- a/R/plot.MFx.R
+++ b/R/plot.MFx.R
@@ -1,214 +1,181 @@
-#' Plotting method for \code{MFx} objects
-#'
-#' This is the generic \code{plot} S3 method for the
-#' \code{MFx} class. It plots the survival probability as a function of
-#' the multiplication factor applied or as a function of time.
-#'
-#'
-#' @param x An object of class \code{MFx}.
-#' @param x_variable A character to define the variable for the \eqn{X}-axis,
-#'  either \code{"MFx"} or \code{"Time"}. The default is \code{"MFx"}.
-#' @param xlab A label for the \eqn{X}-axis, by default \code{NULL} and depend on the
-#' argument \code{x_variable}.
-#' @param ylab A label for the \eqn{Y}-axis, by default \code{Survival probability median and 95 CI}.
-#' @param main A main title for the plot.
-#' @param log_scale If \code{TRUE}, the x-axis is log-scaled. Default is \code{FALSE}.
-#' @param ncol An interger for the number of columns when several panels are plotted.
-#' @param \dots Further arguments to be passed to generic methods.
-#'
-#' @keywords plot
-#' 
-#' @return a plot of class \code{ggplot}
-#' 
-#' @examples 
-#' 
-#' # (1) Load the data
-#' data("propiconazole")
-#' 
-#' # (2) Create an object of class 'survData'
-#' dataset <- survData(propiconazole)
-#' 
-#' \donttest{
-#' # (3) Run the survFit function with model_type SD (or IT)
-#' out_SD <- survFit(dataset, model_type = "SD")
-#' 
-#'# (4) data to predict
-#' data_4prediction <- data.frame(time = 1:10, conc = c(0,0.5,3,3,0,0,0.5,3,1.5,0))
-#' 
-#' # (5) estimate MF for 30% reduction of survival at time 4
-#' MFx_SD_30.4 <- MFx(out_SD, data_predict = data_4prediction , X = 30, time_MFx = 4)
-#' 
-#' # (6) plot the object of class 'MFx'
-#' plot(MFx_SD_30.4)
-#' 
-#' # (6bis) plot with log-scale of x-axis
-#' plot(MFx_SD_30.4, log_scale = TRUE)
-#' 
-#' # (6ter) plot with "Time" as the x-axis
-#' plot(MFx_SD_30.4, x_variable = "Time") 
-#' 
-#' # (7) plot when X = NULL and along a MFx_range from 5 to 10:
-#' MFx_SD_range <- MFx(out_SD, data_predict = data_4prediction ,
-#'                     X = NULL, time_MFx = 4, MFx_range = seq(5, 10, length.out = 50))
-#' plot(MFx_SD_range)
-#' plot(MFx_SD_range, x_variable = "Time", ncol = 10)
-#' }
-#'
-#' @export
-#'
-#'
-#'
-plot.MFx <- function(x,
-                     x_variable = "MFx", # other option is "Time"
-                     xlab = NULL,
-                     ylab = "Survival probability \n median and 95 CI",
-                     main = NULL,
-                     log_scale = FALSE,
-                     ncol = 3,
-                     ...){
-  
-  # definition of xlab and check x_variable
-  if(is.null(xlab)){
-    if(x_variable == "MFx"){
-      xlab = "Multiplication Factor"
-    } else if(x_variable == "Time"){
-      xlab = "Time"
-    } else stop("the argument 'x_variable' must be 'MFx' or 'Time'. The default is 'MFx'.")
-  }
-  
-  
-  MFx_plt <- ggplot() + theme_minimal() +
-    theme(legend.position = "top",
-          legend.title = element_blank())+
-    scale_y_continuous(limits = c(0,1)) 
-  
-  if(x_variable == "MFx"){
-    
-    if(is.null(main)){
-      main <- paste("Multiplication Factor for MF",  x$X_prop_provided*100, "% at time", x$time_MFx)
-    } 
-    if(is.null(x$X_prop))  main <- paste("Survival over [", min(x$MFx_tested), ",", max(x$MFx_tested), "] MF range at time", x$time_MFx) 
-    
-    MFx_plt <- MFx_plt +
-      scale_color_manual(values=c("orange", "black", "black")) +
-      labs(title = main,
-           x = xlab,
-           y = ylab) +
-      geom_ribbon(data = x$df_dose,
-                  aes(x = MFx, ymin = qinf95, ymax = qsup95),
-                     fill = "lightgrey") +
-      geom_point(data = x$df_dose,
-                 aes(x = MFx, y = q50), color = "orange", shape = 4) +
-      geom_line(data = x$df_dose,
-                aes(x = MFx, y = q50), color = "orange")
-    
-    if(!is.null(x$X_prop)){
-      
-      MFx_plt <- MFx_plt +
-        geom_point(data = dplyr::filter(x$df_dose, id == "q50"),
-                   aes(x = MFx, y = q50), color = "orange", shape = 4)  +
-        geom_point(data = dplyr::filter(x$df_dose, id == "qinf95"),
-                   aes(x = MFx, y = qinf95), color = "grey", shape = 4)  +
-        geom_point(data = dplyr::filter(x$df_dose, id == "qsup95"),
-                   aes(x = MFx, y = qsup95), color = "grey", shape = 4)
-      
-      legend.point = data.frame(
-        x.pts = x$df_MFx$MFx,
-        y.pts = rep(x$X_prop, 3),
-        pts.leg = c(paste("median: ", round(x$df_MFx$MFx[1],digits = 2)),
-                    paste("quantile 2.5%: ", round(x$df_MFx$MFx[2],digits = 2)),
-                    paste("quantile 97.5%: ", round(x$df_MFx$MFx[3],digits = 2)))
-      )
-      
-      
-      MFx_plt <- MFx_plt +
-        geom_hline(yintercept = x$X_prop, col="grey70", linetype=2) +
-        geom_point(data = legend.point,
-                   aes(x = x.pts, y = y.pts, color = pts.leg)) 
-      
-      warning("This is not an error message:
-Just take into account that MFx has been estimated with a binary
-search using the 'accuracy' argument. Cross points indicate the
-position of evaluated time series. To improve the shape of the curve, you 
-can use X = NULL, and compute time series around the median MFx, with the
-          vector `MFx_range`.")
-      }
-    if(log_scale == TRUE){
-      MFx_plt <- MFx_plt +
-        scale_x_log10()
-    }
-    
-  }
-  
-  if(x_variable == "Time"){
-    
-    # Plot
-    if(is.null(main))  main <- paste("Survival over time. Multiplication Factor of", x$X_prop_provided*100, "percent") 
-    if(is.null(x$X_prop))  main <- paste("Survival over time") 
-    
-    MFx = x$MFx_tested
-    
-    k <- 1:length(x$ls_predict)
-    #
-    # Make a dataframe with quantile of all generated time series
-    #
-    ls_predict_quantile <- lapply(k, function(kit){
-      df_quantile <- x$ls_predict[[kit]]$df_quantile
-      df_quantile$MFx <- rep(MFx[[kit]], nrow(x$ls_predict[[kit]]$df_quantile))
-      return(df_quantile)
-    })
-    predict_MFx_quantile <- do.call("rbind", ls_predict_quantile)
-    
-    
-    if(!is.null(x$X_prop)){
-      
-      initial_predict <- dplyr::filter(predict_MFx_quantile, MFx == 1)
-      final_predict <- dplyr::filter(predict_MFx_quantile, MFx == x$df_MFx$MFx[1])
-      
-      y_arrow <- as.numeric(dplyr::filter(initial_predict, time == x$time_MFx)$q50)
-      yend_arrow <- as.numeric(dplyr::filter(final_predict, time == x$time_MFx)$q50)
-      
-      MFx_plt <- MFx_plt +
-        labs(title = main,
-             x = xlab,
-             y = ylab) +
-        # final predict
-        geom_ribbon(data = final_predict,
-                    aes(x = time, ymin = qinf95, ymax = qsup95),
-                    fill = "grey30", alpha = 0.4) +
-        geom_line(data = final_predict,
-                  aes(x = time, y = q50),
-                  col="orange", size = 1) +
-        # initial predict
-        geom_ribbon(data = initial_predict,
-                    aes(x = time, ymin = qinf95, ymax = qsup95),
-                    fill = "grey60", alpha = 0.4) +
-        geom_line(data = initial_predict,
-                  aes(x = time, y = q50),
-                  col="orange", size = 0.3) +
-        # arrow
-        geom_segment(aes(x = x$time_MFx, y = y_arrow,
-                         xend = x$time_MFx, yend =  yend_arrow),
-                     arrow = arrow(length = unit(0.2,"cm")))
-      
-      }
-    if(is.null(x$X_prop)){
-      
-      MFx_plt <- MFx_plt +
-        labs(title = main,
-             x = xlab,
-             y = ylab) +
-        geom_ribbon(data = predict_MFx_quantile,
-                    aes(x = time, ymin = qinf95, ymax = qsup95),
-                    fill = "grey30", alpha = 0.4) +
-        geom_line(data = predict_MFx_quantile,
-                  aes(x = time, y = q50),
-                  col="orange", size = 1) +
-        facet_wrap( ~ round(MFx, digits = 2), ncol = ncol)
-    }
-  }
-  
-  
-  return(MFx_plt)
-  
-}
+#' Plotting method for \code{MFx} objects
+#'
+#' This is the generic \code{plot} S3 method for the
+#' \code{MFx} class. It plots the survival probability as a function of
+#' the multiplication factor applied or as a function of time.
+#'
+#'
+#' @param x An object of class \code{MFx}.
+#' @param x_variable A character to define the variable for the \eqn{X}-axis,
+#'  either \code{"MFx"} or \code{"Time"}. The default is \code{"MFx"}.
+#' @param xlab A label for the \eqn{X}-axis, by default \code{NULL} and depend on the
+#' argument \code{x_variable}.
+#' @param ylab A label for the \eqn{Y}-axis, by default \code{Survival probability median and 95 CI}.
+#' @param main A main title for the plot.
+#' @param log_scale If \code{TRUE}, the x-axis is log-scaled. Default is \code{FALSE}.
+#' @param ncol An interger for the number of columns when several panels are plotted.
+#' @param \dots Further arguments to be passed to generic methods.
+#'
+#' @keywords plot
+#' 
+#' @return a plot of class \code{ggplot}
+#' 
+#'
+#' @export
+#'
+#'
+#'
+plot.MFx <- function(x,
+                     x_variable = "MFx", # other option is "Time"
+                     xlab = NULL,
+                     ylab = "Survival probability \n median and 95 CI",
+                     main = NULL,
+                     log_scale = FALSE,
+                     ncol = 3,
+                     ...){
+  
+  # definition of xlab and check x_variable
+  if(is.null(xlab)){
+    if(x_variable == "MFx"){
+      xlab = "Multiplication Factor"
+    } else if(x_variable == "Time"){
+      xlab = "Time"
+    } else stop("the argument 'x_variable' must be 'MFx' or 'Time'. The default is 'MFx'.")
+  }
+  
+  
+  MFx_plt <- ggplot() + theme_minimal() +
+    theme(legend.position = "top",
+          legend.title = element_blank())+
+    scale_y_continuous(limits = c(0,1)) 
+  
+  if(x_variable == "MFx"){
+    
+    if(is.null(main)){
+      main <- paste("Multiplication Factor for MF",  x$X_prop_provided*100, "% at time", x$time_MFx)
+    } 
+    if(is.null(x$X_prop))  main <- paste("Survival over [", min(x$MFx_tested), ",", max(x$MFx_tested), "] MF range at time", x$time_MFx) 
+    
+    MFx_plt <- MFx_plt +
+      scale_color_manual(values=c("orange", "black", "black")) +
+      labs(title = main,
+           x = xlab,
+           y = ylab) +
+      geom_ribbon(data = x$df_dose,
+                  aes(x = MFx, ymin = qinf95, ymax = qsup95),
+                     fill = "lightgrey") +
+      geom_point(data = x$df_dose,
+                 aes(x = MFx, y = q50), color = "orange", shape = 4) +
+      geom_line(data = x$df_dose,
+                aes(x = MFx, y = q50), color = "orange")
+    
+    if(!is.null(x$X_prop)){
+      
+      MFx_plt <- MFx_plt +
+        geom_point(data = dplyr::filter(x$df_dose, id == "q50"),
+                   aes(x = MFx, y = q50), color = "orange", shape = 4)  +
+        geom_point(data = dplyr::filter(x$df_dose, id == "qinf95"),
+                   aes(x = MFx, y = qinf95), color = "grey", shape = 4)  +
+        geom_point(data = dplyr::filter(x$df_dose, id == "qsup95"),
+                   aes(x = MFx, y = qsup95), color = "grey", shape = 4)
+      
+      legend.point = data.frame(
+        x.pts = x$df_MFx$MFx,
+        y.pts = rep(x$X_prop, 3),
+        pts.leg = c(paste("median: ", round(x$df_MFx$MFx[1],digits = 2)),
+                    paste("quantile 2.5%: ", round(x$df_MFx$MFx[2],digits = 2)),
+                    paste("quantile 97.5%: ", round(x$df_MFx$MFx[3],digits = 2)))
+      )
+      
+      
+      MFx_plt <- MFx_plt +
+        geom_hline(yintercept = x$X_prop, col="grey70", linetype=2) +
+        geom_point(data = legend.point,
+                   aes(x = x.pts, y = y.pts, color = pts.leg)) 
+      
+      warning("This is not an error message:
+Just take into account that MFx has been estimated with a binary
+search using the 'accuracy' argument. Cross points indicate the
+position of evaluated time series. To improve the shape of the curve, you 
+can use X = NULL, and compute time series around the median MFx, with the
+          vector `MFx_range`.")
+      }
+    if(log_scale == TRUE){
+      MFx_plt <- MFx_plt +
+        scale_x_log10()
+    }
+    
+  }
+  
+  if(x_variable == "Time"){
+    
+    # Plot
+    if(is.null(main))  main <- paste("Survival over time. Multiplication Factor of", x$X_prop_provided*100, "percent") 
+    if(is.null(x$X_prop))  main <- paste("Survival over time") 
+    
+    MFx = x$MFx_tested
+    
+    k <- 1:length(x$ls_predict)
+    #
+    # Make a dataframe with quantile of all generated time series
+    #
+    ls_predict_quantile <- lapply(k, function(kit){
+      df_quantile <- x$ls_predict[[kit]]$df_quantile
+      df_quantile$MFx <- rep(MFx[[kit]], nrow(x$ls_predict[[kit]]$df_quantile))
+      return(df_quantile)
+    })
+    predict_MFx_quantile <- do.call("rbind", ls_predict_quantile)
+    
+    
+    if(!is.null(x$X_prop)){
+      
+      initial_predict <- dplyr::filter(predict_MFx_quantile, MFx == 1)
+      final_predict <- dplyr::filter(predict_MFx_quantile, MFx == x$df_MFx$MFx[1])
+      
+      y_arrow <- as.numeric(dplyr::filter(initial_predict, time == x$time_MFx)$q50)
+      yend_arrow <- as.numeric(dplyr::filter(final_predict, time == x$time_MFx)$q50)
+      
+      MFx_plt <- MFx_plt +
+        labs(title = main,
+             x = xlab,
+             y = ylab) +
+        # final predict
+        geom_ribbon(data = final_predict,
+                    aes(x = time, ymin = qinf95, ymax = qsup95),
+                    fill = "grey30", alpha = 0.4) +
+        geom_line(data = final_predict,
+                  aes(x = time, y = q50),
+                  col="orange", size = 1) +
+        # initial predict
+        geom_ribbon(data = initial_predict,
+                    aes(x = time, ymin = qinf95, ymax = qsup95),
+                    fill = "grey60", alpha = 0.4) +
+        geom_line(data = initial_predict,
+                  aes(x = time, y = q50),
+                  col="orange", size = 0.3) +
+        # arrow
+        geom_segment(aes(x = x$time_MFx, y = y_arrow,
+                         xend = x$time_MFx, yend =  yend_arrow),
+                     arrow = arrow(length = unit(0.2,"cm")))
+      
+      }
+    if(is.null(x$X_prop)){
+      
+      MFx_plt <- MFx_plt +
+        labs(title = main,
+             x = xlab,
+             y = ylab) +
+        geom_ribbon(data = predict_MFx_quantile,
+                    aes(x = time, ymin = qinf95, ymax = qsup95),
+                    fill = "grey30", alpha = 0.4) +
+        geom_line(data = predict_MFx_quantile,
+                  aes(x = time, y = q50),
+                  col="orange", size = 1) +
+        facet_wrap( ~ round(MFx, digits = 2), ncol = ncol)
+    }
+  }
+  
+  
+  return(MFx_plt)
+  
+}
diff --git a/tests/testthat/test-predict.R b/tests/testthat/test-predict.R
index 0aded159a64bd84b02ed286aedc79ba58be830e7..b35d55191e4eacd2c725f334ea7de36b5b4b88f1 100644
--- a/tests/testthat/test-predict.R
+++ b/tests/testthat/test-predict.R
@@ -80,51 +80,6 @@ test_that("MCMC longer than one", {
 })
 
 
-test_that("predict_ode", {
-  
-  skip_on_cran()
-  
-  data("propiconazole")
-  fit_cstSD <- survFit(survData(propiconazole), quiet = TRUE, model_type = "SD")
-  
-  data_4prediction <- data.frame(time = c(1:10, 1:10),
-                                 conc = c(c(0,0,40,0,0,0,40,0,0,0),
-                                          c(21,19,18,23,20,14,25,8,13,5)),
-                                 replicate = c(rep("pulse", 10), rep("random", 10)))
-  
-  # check No ERROR
-  expect_error(predict_ode(object = fit_cstSD, data_predict = data_4prediction), NA)
-
-
-  data_4MFx <- data.frame(time = 1:10,
-                          conc = c(0,0.5,8,3,0,0,0.5,8,3.5,0))
-  # check No ERROR
-  expect_error(MFx(object = fit_cstSD, data_predict = data_4MFx, ode = TRUE), NA)
-
-})
-
-
-test_that("predict_Nsurv_ode internal", {
-  
-  skip_on_cran()
-  
-  data("propiconazole")
-  fit_cstSD <- survFit(survData(propiconazole), quiet = TRUE, model_type = "SD")
-  fit_cstIT <- survFit(survData(propiconazole), quiet = TRUE, model_type = "IT")
-  
-  data("FOCUSprofile")  
-  FOCUSprofile$Nsurv = sort(round(runif(nrow(FOCUSprofile), 0, 100)), decreasing = TRUE)
-  
-  # check No ERROR
-  expect_error(predict_Nsurv_ode(object = fit_cstSD, data_predict = FOCUSprofile, mcmc_size = 10), NA)
-  expect_error(predict_Nsurv_ode(object = fit_cstIT, data_predict = FOCUSprofile, mcmc_size = 10), NA)
-
-  data("propiconazole_pulse_exposure")
-  expect_error(predict_Nsurv_ode(fit_cstSD, propiconazole_pulse_exposure, mcmc_size = NULL, interpolate_length = NULL), NA)
-  expect_error(predict_Nsurv_ode(fit_cstSD, propiconazole_pulse_exposure, mcmc_size = NULL, interpolate_length = NULL), NA)
-
-})
-
 test_that("predict_interpolate", {
   
   data(FOCUSprofile)
diff --git a/tests/testthat/test-repro.R b/tests/testthat/test-repro.R
index f02e1ff6d09212eac53d068369ebf22145b881f9..d11840e619c1bf5f685c329d3c1c6630ad3a2140 100644
--- a/tests/testthat/test-repro.R
+++ b/tests/testthat/test-repro.R
@@ -3,7 +3,7 @@ datasets <- c("cadmium1",
               "copper",
               "chlordan",
               "zinc")
-data(list=datasets)
+data(list = datasets)
 
 failswith_id <- function(dataset, id) {
     gen_failswith_id(reproDataCheck, dataset, id)
diff --git a/vignettes/modelling.Rmd b/vignettes/modelling.Rmd
index f7df330af1b9680535a649c886ca2340a9eabb73..f746954b1062d94b74755ff3d8876e5ba2e92c7b 100644
--- a/vignettes/modelling.Rmd
+++ b/vignettes/modelling.Rmd
@@ -85,7 +85,9 @@ using the JAGS software [@rjags2016] with the following priors:
 -   we assume the range of tested concentrations in an experiment is
     chosen to contain the $LC_{50}$ with high probability. More
     formally, we choose:
-    $$\log_{10} e \sim \mathcal{N}\left(\frac{\log_{10} (\min_i c_i) + \log_{10} (\max_i c_i)}{2}, \frac{\log_{10} (\max_i c_i) - \log_{10} (\min_i c_i)}{4} \right)$$
+    $$\log_{10} e \sim \mathcal{N}\left(\frac{\log_{10} (\min_i c_i) + 
+    \log_{10} (\max_i c_i)}{2}, \frac{\log_{10} (\max_i c_i) -
+    \log_{10} (\min_i c_i)}{4} \right)$$
     which implies $e$ has a probability slightly higher than 0.95 to lie
     between the minimum and the maximum tested concentrations.
 -   we choose a quasi non-informative prior distribution for the shape