diff --git a/R/MFx_ode.survFit.R b/R/MFx_ode.survFit.R index 4b44349f7ccd93a189b0aafcea947053e9fdb155..ba8c882f9c710bb3d3c941848a1eb4aad0c3f8ed 100644 --- a/R/MFx_ode.survFit.R +++ b/R/MFx_ode.survFit.R @@ -80,7 +80,6 @@ MFx_ode <- function(object, ...){ #' from computing survival probability for every profiles build from the vector of #' multiplication factors \code{MFx_tested}.} #' -#' #' @examples #' #' # (1) Load the data @@ -89,21 +88,6 @@ MFx_ode <- function(object, ...){ #' # (2) Create an object of class 'survData' #' dataset <- survData(propiconazole) #' -#' \donttest{ -#' # (3) Run the survFit function with model_type SD (or IT) -#' out_SD <- survFit(dataset, model_type = "SD") -#' -#' # (4) data to predict -#' data_4prediction <- data.frame(time = 1:10, conc = c(0,0.5,3,3,0,0,0.5,3,1.5,0)) -#' -#' # (5) estimate MF(x=30, t=4), that is for 30% reduction of survival at time 4 -#' MFx_SD_30.4 <- MFx_ode(out_SD, data_predict = data_4prediction , X = 30, time_MFx = 4) -#' -#' # (5bis) estimate MF(x,t) along the MF_range from 5 to 10 (50) (X = NULL) -#' MFx_SD_range <- MFx_ode(out_SD, data_predict = data_4prediction , -#' X = NULL, time_MFx = 4, MFx_range = seq(5, 10, length.out = 50)) -#' } -#' #' #' @export #' @@ -128,14 +112,14 @@ This can take a very long time to compute (minutes to hours).\n Prefer the function 'MFx' when possible.") ## Analyse data_predict data.frame - if(!all(colnames(data_predict) %in% c("conc", "time")) || ncol(data_predict) != 2){ + if (!all(colnames(data_predict) %in% c("conc", "time")) || ncol(data_predict) != 2) { stop("The argument 'data_predict' is a dataframe with two columns 'time' and 'conc'.") } ## Check time_MFx - if(is.null(time_MFx)) time_MFx = max(data_predict$time) + if (is.null(time_MFx)) time_MFx = max(data_predict$time) - if(!(time_MFx %in% data_predict$time)){ + if (!(time_MFx %in% data_predict$time)) { stop("Please provide a 'time_MFx' corresponding to a time-point at which concentration is provided. Interpolation of concentration is too specific to be automatized.") } diff --git a/R/morse.R b/R/morse.R index 39dcd4491ede8471d7de127864ab067d02d98c4b..411019dcc145eba8a61d84e31d590963b9f7f7f3 100644 --- a/R/morse.R +++ b/R/morse.R @@ -95,6 +95,7 @@ #' \emph{Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms} #' \url{https://www.efsa.europa.eu/en/efsajournal/pub/5377}. #' +#' @useDynLib morse, .registration = TRUE NULL @@ -416,8 +417,3 @@ NULL #' \item{\code{replicate}}{A vector of class \code{factor}.} } #' @keywords data set NULL - -## usethis namespace: start -#' @useDynLib morse, .registration = TRUE -## usethis namespace: end -NULL diff --git a/R/plot.LCx.R b/R/plot.LCx.R index f98faf22da1891f1aec5bcd60d4dc62033026183..746db221484a7c3e2b20629db375d8dbb628a7cb 100644 --- a/R/plot.LCx.R +++ b/R/plot.LCx.R @@ -1,7 +1,8 @@ -#' Plotting method for \code{LCx} objects +#' @title Plotting method for \code{LCx} objects #' -#' This is the generic \code{plot} S3 method for the -#' \code{LCx} class. It plots the survival probability as a function of concentration. +#' @description +#' This is the generic \code{plot} S3 method for the LCx class. +#' It plots the survival probability as a function of concentration. #' #' #' @param x An object of class \code{LCx}. @@ -52,7 +53,7 @@ plot.LCx <- function(x, time_LCx <- x$time_LCx # Check if df_LCx are not all NA: - if(all(is.na(df_LCx$LCx))){ + if (all(is.na(df_LCx$LCx))) { warning(paste0("No LCx can be computed at X=", 100-X_prop_provided*100, " and time_LCx=", time_LCx, "\nSee the grey dotted line on the graph does not cross zone of credible interval.", "\nUse LCx function 'LCx' with other values for arguments 'time_LCx' (default is the maximum time of the experimental data), diff --git a/R/plot.MFx.R b/R/plot.MFx.R index ade568efed5a995e7188af4d8c95d61e0c1c02ae..120ff54449a88160d41d55318f345b74f44e3778 100644 --- a/R/plot.MFx.R +++ b/R/plot.MFx.R @@ -1,214 +1,181 @@ -#' Plotting method for \code{MFx} objects -#' -#' This is the generic \code{plot} S3 method for the -#' \code{MFx} class. It plots the survival probability as a function of -#' the multiplication factor applied or as a function of time. -#' -#' -#' @param x An object of class \code{MFx}. -#' @param x_variable A character to define the variable for the \eqn{X}-axis, -#' either \code{"MFx"} or \code{"Time"}. The default is \code{"MFx"}. -#' @param xlab A label for the \eqn{X}-axis, by default \code{NULL} and depend on the -#' argument \code{x_variable}. -#' @param ylab A label for the \eqn{Y}-axis, by default \code{Survival probability median and 95 CI}. -#' @param main A main title for the plot. -#' @param log_scale If \code{TRUE}, the x-axis is log-scaled. Default is \code{FALSE}. -#' @param ncol An interger for the number of columns when several panels are plotted. -#' @param \dots Further arguments to be passed to generic methods. -#' -#' @keywords plot -#' -#' @return a plot of class \code{ggplot} -#' -#' @examples -#' -#' # (1) Load the data -#' data("propiconazole") -#' -#' # (2) Create an object of class 'survData' -#' dataset <- survData(propiconazole) -#' -#' \donttest{ -#' # (3) Run the survFit function with model_type SD (or IT) -#' out_SD <- survFit(dataset, model_type = "SD") -#' -#'# (4) data to predict -#' data_4prediction <- data.frame(time = 1:10, conc = c(0,0.5,3,3,0,0,0.5,3,1.5,0)) -#' -#' # (5) estimate MF for 30% reduction of survival at time 4 -#' MFx_SD_30.4 <- MFx(out_SD, data_predict = data_4prediction , X = 30, time_MFx = 4) -#' -#' # (6) plot the object of class 'MFx' -#' plot(MFx_SD_30.4) -#' -#' # (6bis) plot with log-scale of x-axis -#' plot(MFx_SD_30.4, log_scale = TRUE) -#' -#' # (6ter) plot with "Time" as the x-axis -#' plot(MFx_SD_30.4, x_variable = "Time") -#' -#' # (7) plot when X = NULL and along a MFx_range from 5 to 10: -#' MFx_SD_range <- MFx(out_SD, data_predict = data_4prediction , -#' X = NULL, time_MFx = 4, MFx_range = seq(5, 10, length.out = 50)) -#' plot(MFx_SD_range) -#' plot(MFx_SD_range, x_variable = "Time", ncol = 10) -#' } -#' -#' @export -#' -#' -#' -plot.MFx <- function(x, - x_variable = "MFx", # other option is "Time" - xlab = NULL, - ylab = "Survival probability \n median and 95 CI", - main = NULL, - log_scale = FALSE, - ncol = 3, - ...){ - - # definition of xlab and check x_variable - if(is.null(xlab)){ - if(x_variable == "MFx"){ - xlab = "Multiplication Factor" - } else if(x_variable == "Time"){ - xlab = "Time" - } else stop("the argument 'x_variable' must be 'MFx' or 'Time'. The default is 'MFx'.") - } - - - MFx_plt <- ggplot() + theme_minimal() + - theme(legend.position = "top", - legend.title = element_blank())+ - scale_y_continuous(limits = c(0,1)) - - if(x_variable == "MFx"){ - - if(is.null(main)){ - main <- paste("Multiplication Factor for MF", x$X_prop_provided*100, "% at time", x$time_MFx) - } - if(is.null(x$X_prop)) main <- paste("Survival over [", min(x$MFx_tested), ",", max(x$MFx_tested), "] MF range at time", x$time_MFx) - - MFx_plt <- MFx_plt + - scale_color_manual(values=c("orange", "black", "black")) + - labs(title = main, - x = xlab, - y = ylab) + - geom_ribbon(data = x$df_dose, - aes(x = MFx, ymin = qinf95, ymax = qsup95), - fill = "lightgrey") + - geom_point(data = x$df_dose, - aes(x = MFx, y = q50), color = "orange", shape = 4) + - geom_line(data = x$df_dose, - aes(x = MFx, y = q50), color = "orange") - - if(!is.null(x$X_prop)){ - - MFx_plt <- MFx_plt + - geom_point(data = dplyr::filter(x$df_dose, id == "q50"), - aes(x = MFx, y = q50), color = "orange", shape = 4) + - geom_point(data = dplyr::filter(x$df_dose, id == "qinf95"), - aes(x = MFx, y = qinf95), color = "grey", shape = 4) + - geom_point(data = dplyr::filter(x$df_dose, id == "qsup95"), - aes(x = MFx, y = qsup95), color = "grey", shape = 4) - - legend.point = data.frame( - x.pts = x$df_MFx$MFx, - y.pts = rep(x$X_prop, 3), - pts.leg = c(paste("median: ", round(x$df_MFx$MFx[1],digits = 2)), - paste("quantile 2.5%: ", round(x$df_MFx$MFx[2],digits = 2)), - paste("quantile 97.5%: ", round(x$df_MFx$MFx[3],digits = 2))) - ) - - - MFx_plt <- MFx_plt + - geom_hline(yintercept = x$X_prop, col="grey70", linetype=2) + - geom_point(data = legend.point, - aes(x = x.pts, y = y.pts, color = pts.leg)) - - warning("This is not an error message: -Just take into account that MFx has been estimated with a binary -search using the 'accuracy' argument. Cross points indicate the -position of evaluated time series. To improve the shape of the curve, you -can use X = NULL, and compute time series around the median MFx, with the - vector `MFx_range`.") - } - if(log_scale == TRUE){ - MFx_plt <- MFx_plt + - scale_x_log10() - } - - } - - if(x_variable == "Time"){ - - # Plot - if(is.null(main)) main <- paste("Survival over time. Multiplication Factor of", x$X_prop_provided*100, "percent") - if(is.null(x$X_prop)) main <- paste("Survival over time") - - MFx = x$MFx_tested - - k <- 1:length(x$ls_predict) - # - # Make a dataframe with quantile of all generated time series - # - ls_predict_quantile <- lapply(k, function(kit){ - df_quantile <- x$ls_predict[[kit]]$df_quantile - df_quantile$MFx <- rep(MFx[[kit]], nrow(x$ls_predict[[kit]]$df_quantile)) - return(df_quantile) - }) - predict_MFx_quantile <- do.call("rbind", ls_predict_quantile) - - - if(!is.null(x$X_prop)){ - - initial_predict <- dplyr::filter(predict_MFx_quantile, MFx == 1) - final_predict <- dplyr::filter(predict_MFx_quantile, MFx == x$df_MFx$MFx[1]) - - y_arrow <- as.numeric(dplyr::filter(initial_predict, time == x$time_MFx)$q50) - yend_arrow <- as.numeric(dplyr::filter(final_predict, time == x$time_MFx)$q50) - - MFx_plt <- MFx_plt + - labs(title = main, - x = xlab, - y = ylab) + - # final predict - geom_ribbon(data = final_predict, - aes(x = time, ymin = qinf95, ymax = qsup95), - fill = "grey30", alpha = 0.4) + - geom_line(data = final_predict, - aes(x = time, y = q50), - col="orange", size = 1) + - # initial predict - geom_ribbon(data = initial_predict, - aes(x = time, ymin = qinf95, ymax = qsup95), - fill = "grey60", alpha = 0.4) + - geom_line(data = initial_predict, - aes(x = time, y = q50), - col="orange", size = 0.3) + - # arrow - geom_segment(aes(x = x$time_MFx, y = y_arrow, - xend = x$time_MFx, yend = yend_arrow), - arrow = arrow(length = unit(0.2,"cm"))) - - } - if(is.null(x$X_prop)){ - - MFx_plt <- MFx_plt + - labs(title = main, - x = xlab, - y = ylab) + - geom_ribbon(data = predict_MFx_quantile, - aes(x = time, ymin = qinf95, ymax = qsup95), - fill = "grey30", alpha = 0.4) + - geom_line(data = predict_MFx_quantile, - aes(x = time, y = q50), - col="orange", size = 1) + - facet_wrap( ~ round(MFx, digits = 2), ncol = ncol) - } - } - - - return(MFx_plt) - -} +#' Plotting method for \code{MFx} objects +#' +#' This is the generic \code{plot} S3 method for the +#' \code{MFx} class. It plots the survival probability as a function of +#' the multiplication factor applied or as a function of time. +#' +#' +#' @param x An object of class \code{MFx}. +#' @param x_variable A character to define the variable for the \eqn{X}-axis, +#' either \code{"MFx"} or \code{"Time"}. The default is \code{"MFx"}. +#' @param xlab A label for the \eqn{X}-axis, by default \code{NULL} and depend on the +#' argument \code{x_variable}. +#' @param ylab A label for the \eqn{Y}-axis, by default \code{Survival probability median and 95 CI}. +#' @param main A main title for the plot. +#' @param log_scale If \code{TRUE}, the x-axis is log-scaled. Default is \code{FALSE}. +#' @param ncol An interger for the number of columns when several panels are plotted. +#' @param \dots Further arguments to be passed to generic methods. +#' +#' @keywords plot +#' +#' @return a plot of class \code{ggplot} +#' +#' +#' @export +#' +#' +#' +plot.MFx <- function(x, + x_variable = "MFx", # other option is "Time" + xlab = NULL, + ylab = "Survival probability \n median and 95 CI", + main = NULL, + log_scale = FALSE, + ncol = 3, + ...){ + + # definition of xlab and check x_variable + if(is.null(xlab)){ + if(x_variable == "MFx"){ + xlab = "Multiplication Factor" + } else if(x_variable == "Time"){ + xlab = "Time" + } else stop("the argument 'x_variable' must be 'MFx' or 'Time'. The default is 'MFx'.") + } + + + MFx_plt <- ggplot() + theme_minimal() + + theme(legend.position = "top", + legend.title = element_blank())+ + scale_y_continuous(limits = c(0,1)) + + if(x_variable == "MFx"){ + + if(is.null(main)){ + main <- paste("Multiplication Factor for MF", x$X_prop_provided*100, "% at time", x$time_MFx) + } + if(is.null(x$X_prop)) main <- paste("Survival over [", min(x$MFx_tested), ",", max(x$MFx_tested), "] MF range at time", x$time_MFx) + + MFx_plt <- MFx_plt + + scale_color_manual(values=c("orange", "black", "black")) + + labs(title = main, + x = xlab, + y = ylab) + + geom_ribbon(data = x$df_dose, + aes(x = MFx, ymin = qinf95, ymax = qsup95), + fill = "lightgrey") + + geom_point(data = x$df_dose, + aes(x = MFx, y = q50), color = "orange", shape = 4) + + geom_line(data = x$df_dose, + aes(x = MFx, y = q50), color = "orange") + + if(!is.null(x$X_prop)){ + + MFx_plt <- MFx_plt + + geom_point(data = dplyr::filter(x$df_dose, id == "q50"), + aes(x = MFx, y = q50), color = "orange", shape = 4) + + geom_point(data = dplyr::filter(x$df_dose, id == "qinf95"), + aes(x = MFx, y = qinf95), color = "grey", shape = 4) + + geom_point(data = dplyr::filter(x$df_dose, id == "qsup95"), + aes(x = MFx, y = qsup95), color = "grey", shape = 4) + + legend.point = data.frame( + x.pts = x$df_MFx$MFx, + y.pts = rep(x$X_prop, 3), + pts.leg = c(paste("median: ", round(x$df_MFx$MFx[1],digits = 2)), + paste("quantile 2.5%: ", round(x$df_MFx$MFx[2],digits = 2)), + paste("quantile 97.5%: ", round(x$df_MFx$MFx[3],digits = 2))) + ) + + + MFx_plt <- MFx_plt + + geom_hline(yintercept = x$X_prop, col="grey70", linetype=2) + + geom_point(data = legend.point, + aes(x = x.pts, y = y.pts, color = pts.leg)) + + warning("This is not an error message: +Just take into account that MFx has been estimated with a binary +search using the 'accuracy' argument. Cross points indicate the +position of evaluated time series. To improve the shape of the curve, you +can use X = NULL, and compute time series around the median MFx, with the + vector `MFx_range`.") + } + if(log_scale == TRUE){ + MFx_plt <- MFx_plt + + scale_x_log10() + } + + } + + if(x_variable == "Time"){ + + # Plot + if(is.null(main)) main <- paste("Survival over time. Multiplication Factor of", x$X_prop_provided*100, "percent") + if(is.null(x$X_prop)) main <- paste("Survival over time") + + MFx = x$MFx_tested + + k <- 1:length(x$ls_predict) + # + # Make a dataframe with quantile of all generated time series + # + ls_predict_quantile <- lapply(k, function(kit){ + df_quantile <- x$ls_predict[[kit]]$df_quantile + df_quantile$MFx <- rep(MFx[[kit]], nrow(x$ls_predict[[kit]]$df_quantile)) + return(df_quantile) + }) + predict_MFx_quantile <- do.call("rbind", ls_predict_quantile) + + + if(!is.null(x$X_prop)){ + + initial_predict <- dplyr::filter(predict_MFx_quantile, MFx == 1) + final_predict <- dplyr::filter(predict_MFx_quantile, MFx == x$df_MFx$MFx[1]) + + y_arrow <- as.numeric(dplyr::filter(initial_predict, time == x$time_MFx)$q50) + yend_arrow <- as.numeric(dplyr::filter(final_predict, time == x$time_MFx)$q50) + + MFx_plt <- MFx_plt + + labs(title = main, + x = xlab, + y = ylab) + + # final predict + geom_ribbon(data = final_predict, + aes(x = time, ymin = qinf95, ymax = qsup95), + fill = "grey30", alpha = 0.4) + + geom_line(data = final_predict, + aes(x = time, y = q50), + col="orange", size = 1) + + # initial predict + geom_ribbon(data = initial_predict, + aes(x = time, ymin = qinf95, ymax = qsup95), + fill = "grey60", alpha = 0.4) + + geom_line(data = initial_predict, + aes(x = time, y = q50), + col="orange", size = 0.3) + + # arrow + geom_segment(aes(x = x$time_MFx, y = y_arrow, + xend = x$time_MFx, yend = yend_arrow), + arrow = arrow(length = unit(0.2,"cm"))) + + } + if(is.null(x$X_prop)){ + + MFx_plt <- MFx_plt + + labs(title = main, + x = xlab, + y = ylab) + + geom_ribbon(data = predict_MFx_quantile, + aes(x = time, ymin = qinf95, ymax = qsup95), + fill = "grey30", alpha = 0.4) + + geom_line(data = predict_MFx_quantile, + aes(x = time, y = q50), + col="orange", size = 1) + + facet_wrap( ~ round(MFx, digits = 2), ncol = ncol) + } + } + + + return(MFx_plt) + +} diff --git a/tests/testthat/test-predict.R b/tests/testthat/test-predict.R index 0aded159a64bd84b02ed286aedc79ba58be830e7..b35d55191e4eacd2c725f334ea7de36b5b4b88f1 100644 --- a/tests/testthat/test-predict.R +++ b/tests/testthat/test-predict.R @@ -80,51 +80,6 @@ test_that("MCMC longer than one", { }) -test_that("predict_ode", { - - skip_on_cran() - - data("propiconazole") - fit_cstSD <- survFit(survData(propiconazole), quiet = TRUE, model_type = "SD") - - data_4prediction <- data.frame(time = c(1:10, 1:10), - conc = c(c(0,0,40,0,0,0,40,0,0,0), - c(21,19,18,23,20,14,25,8,13,5)), - replicate = c(rep("pulse", 10), rep("random", 10))) - - # check No ERROR - expect_error(predict_ode(object = fit_cstSD, data_predict = data_4prediction), NA) - - - data_4MFx <- data.frame(time = 1:10, - conc = c(0,0.5,8,3,0,0,0.5,8,3.5,0)) - # check No ERROR - expect_error(MFx(object = fit_cstSD, data_predict = data_4MFx, ode = TRUE), NA) - -}) - - -test_that("predict_Nsurv_ode internal", { - - skip_on_cran() - - data("propiconazole") - fit_cstSD <- survFit(survData(propiconazole), quiet = TRUE, model_type = "SD") - fit_cstIT <- survFit(survData(propiconazole), quiet = TRUE, model_type = "IT") - - data("FOCUSprofile") - FOCUSprofile$Nsurv = sort(round(runif(nrow(FOCUSprofile), 0, 100)), decreasing = TRUE) - - # check No ERROR - expect_error(predict_Nsurv_ode(object = fit_cstSD, data_predict = FOCUSprofile, mcmc_size = 10), NA) - expect_error(predict_Nsurv_ode(object = fit_cstIT, data_predict = FOCUSprofile, mcmc_size = 10), NA) - - data("propiconazole_pulse_exposure") - expect_error(predict_Nsurv_ode(fit_cstSD, propiconazole_pulse_exposure, mcmc_size = NULL, interpolate_length = NULL), NA) - expect_error(predict_Nsurv_ode(fit_cstSD, propiconazole_pulse_exposure, mcmc_size = NULL, interpolate_length = NULL), NA) - -}) - test_that("predict_interpolate", { data(FOCUSprofile) diff --git a/tests/testthat/test-repro.R b/tests/testthat/test-repro.R index f02e1ff6d09212eac53d068369ebf22145b881f9..d11840e619c1bf5f685c329d3c1c6630ad3a2140 100644 --- a/tests/testthat/test-repro.R +++ b/tests/testthat/test-repro.R @@ -3,7 +3,7 @@ datasets <- c("cadmium1", "copper", "chlordan", "zinc") -data(list=datasets) +data(list = datasets) failswith_id <- function(dataset, id) { gen_failswith_id(reproDataCheck, dataset, id) diff --git a/vignettes/modelling.Rmd b/vignettes/modelling.Rmd index f7df330af1b9680535a649c886ca2340a9eabb73..f746954b1062d94b74755ff3d8876e5ba2e92c7b 100644 --- a/vignettes/modelling.Rmd +++ b/vignettes/modelling.Rmd @@ -85,7 +85,9 @@ using the JAGS software [@rjags2016] with the following priors: - we assume the range of tested concentrations in an experiment is chosen to contain the $LC_{50}$ with high probability. More formally, we choose: - $$\log_{10} e \sim \mathcal{N}\left(\frac{\log_{10} (\min_i c_i) + \log_{10} (\max_i c_i)}{2}, \frac{\log_{10} (\max_i c_i) - \log_{10} (\min_i c_i)}{4} \right)$$ + $$\log_{10} e \sim \mathcal{N}\left(\frac{\log_{10} (\min_i c_i) + + \log_{10} (\max_i c_i)}{2}, \frac{\log_{10} (\max_i c_i) - + \log_{10} (\min_i c_i)}{4} \right)$$ which implies $e$ has a probability slightly higher than 0.95 to lie between the minimum and the maximum tested concentrations. - we choose a quasi non-informative prior distribution for the shape