/***************************************************************************** * Copyright (C) 2009-2016 this file is part of the NPTool Project * * * * For the licensing terms see $NPTOOL/Licence/NPTool_Licence * * For the list of contributors see $NPTOOL/Licence/Contributors * *****************************************************************************/ /***************************************************************************** * Original Author: Sandra GIRON contact address: giron@ipno.in2p3.fr * * Benjamin LE CROM lecrom@ipno.in2p3.fr * * Creation Date : march 2014 * * Last update : * *---------------------------------------------------------------------------* * Decription: * * This class hold exogam treated data * * * *---------------------------------------------------------------------------* * Comment: * * * *****************************************************************************/ #include "TExogamPhysics.h" using namespace EXOGAM_LOCAL; // STL #include <cmath> #include <iostream> #include <sstream> #include <stdlib.h> // NPL #include "NPDetectorFactory.h" #include "NPOptionManager.h" #include "NPVDetector.h" #include "RootInput.h" #include "RootOutput.h" // ROOT #include "TChain.h" /////////////////////////////////////////////////////////////////////////// ClassImp(TExogamPhysics) /////////////////////////////////////////////////////////////////////////// TExogamPhysics::TExogamPhysics() { EventMultiplicity = 0; ECC_Multiplicity = 0; GOCCE_Multiplicity = 0; NumberOfHitClover = 0; NumberOfHitCristal = 0; m_Spectra = NULL; NumberOfClover = 0; PreTreatedData = new TExogamData; EventData = new TExogamData; EventPhysics = this; NumberOfClover = 0; CloverMult = 0; } /////////////////////////////////////////////////////////////////////////// void TExogamPhysics::BuildSimplePhysicalEvent() { BuildPhysicalEvent(); } /////////////////////////////////////////////////////////////////////////// void TExogamPhysics::PreTreat() { /*ClearPreTreatedData(); //E for(unsigned int i = 0 ; i < EventData -> GetECCEMult(); i++) { UShort_t cristal_E = 10000 ; UShort_t cristal_T = 2000; //if(IsValidChannel) { int clover = EventData -> GetECCEClover(i); int cristal = EventData -> GetECCECristal(i); if(EventData -> GetECCEEnergy(i) < 3000) cristal_E = CalibrationManager::getInstance()-> ApplyCalibration("EXOGAM/Cl"+ NPL::itoa(clover)+"_Cr"+ NPL::itoa(cristal)+"_Elow", EventData -> GetECCEEnergy(i)); else cristal_E = CalibrationManager::getInstance()-> ApplyCalibration("EXOGAM/Cl"+ NPL::itoa(clover)+"_Cr"+ NPL::itoa(cristal)+"_Ehigh", EventData -> GetECCEEnergy(i)); if(cristal_E > Threshold_ECC) { PreTreatedData->SetECCEClover ( clover ) ; PreTreatedData->SetECCECristal( cristal ) ; PreTreatedData->SetECCEEnergy ( cristal_E ) ; bool checkT = false; for(unsigned int k = 0; k < EventData -> GetECCTMult(); k++){ if(clover == EventData -> GetECCTClover(k) && cristal == EventData -> GetECCTCristal(k)){ // cout << EventData -> GetECCTTime(k) << endl; if(EventData -> GetECCTTime(k) < 16383) cristal_T = CalibrationManager::getInstance()-> ApplyCalibration("EXOGAM/Cl"+ NPL::itoa(clover)+"_Cr"+ NPL::itoa(cristal)+"_T", EventData -> GetECCTTime(k)); else cristal_T = 2500; //if(cristal_T >5000 && cristal_T !=25000 ) cout << "PreTreat " << cristal_T << " " << EventData -> GetECCTTime(k) << " " << clover << " " << cristal << " " << EventData->GetECCTMult() << endl; checkT=true; PreTreatedData->SetECCTClover (clover ) ; PreTreatedData->SetECCTCristal( cristal ) ; PreTreatedData->SetECCTTime ( cristal_T ) ; ECC_Multiplicity ++; GOCCE_Multiplicity++; } } if(!checkT) { PreTreatedData->SetECCTClover (clover ) ; PreTreatedData->SetECCTCristal( cristal ) ; PreTreatedData->SetECCTTime ( -1000 ) ; } } } } //cout << PreTreatedData-> GetECCTMult() << " " << PreTreatedData-> GetECCEMult() << endl; //GOCCE //E for(unsigned int i = 0 ; i < EventData -> GetGOCCEEMult(); i++) { UShort_t segment_E = 25000; //if(IsValidChannel) { int clover = EventData -> GetGOCCEEClover(i); int cristal = EventData -> GetGOCCEECristal(i); int segment = EventData -> GetGOCCEESegment(i); if(EventData -> GetGOCCEEEnergy(i) > RawThreshold_GOCCE) { segment_E = CalibrationManager::getInstance()->ApplyCalibration("EXOGAM/Cl"+ NPL::itoa(clover)+"_Cr"+ NPL::itoa(cristal)+"_Seg"+ NPL::itoa(segment)+"_E", EventData -> GetGOCCEEEnergy(i)); if(segment_E > Threshold_GOCCE) { PreTreatedData->SetGOCCEEClover ( clover ) ; PreTreatedData->SetGOCCEECristal( cristal ) ; PreTreatedData->SetGOCCEESegment( segment ) ; PreTreatedData->SetGOCCEEEnergy ( segment_E ) ; } } else { } } } //cout << "EXOGAM pretreat ok!" << endl; return; */ } /////////////////////////////////////////////////////////////////////////// void TExogamPhysics::BuildPhysicalEvent() { /*PreTreat(); if(PreTreatedData -> GetECCEMult() != PreTreatedData -> GetECCTMult()) cout << PreTreatedData -> GetECCEMult() << " " << PreTreatedData -> GetECCTMult() << endl; for(unsigned int i = 0 ; i < PreTreatedData -> GetECCEMult(); i++) { // cout << i << " " << cristal_E << endl; // if(PreTreatedData->GetECCTTime(i) > 0) { ECC_E.push_back(PreTreatedData->GetECCEEnergy(i)); ECC_T.push_back(PreTreatedData->GetECCTTime(i)); ECC_CloverNumber.push_back(PreTreatedData->GetECCEClover(i)); ECC_CristalNumber.push_back(PreTreatedData->GetECCECristal(i)); // cout << "BuildPhys " << PreTreatedData->GetECCEClover(i) << " " << PreTreatedData->GetECCECristal(i)<< " " << PreTreatedData->GetECCTTime(i) << " " << endl; } } for(unsigned int j = 0 ; j < PreTreatedData -> GetGOCCEEMult(); j++) { GOCCE_E.push_back(PreTreatedData->GetGOCCEEEnergy(j)); GOCCE_CloverNumber.push_back(PreTreatedData->GetGOCCEEClover(j)); GOCCE_CristalNumber.push_back(PreTreatedData->GetGOCCEECristal(j)); GOCCE_SegmentNumber.push_back(PreTreatedData->GetGOCCEESegment(j)); } //int NumberOfHitClover = 0; int DetectorID = -1; for( unsigned short i = 0 ; i < PreTreatedData->GetECCEMult() ; i++ ) { // cout << PreTreatedData->GetECCEClover(i) << endl; if( PreTreatedData->GetECCEClover(i) != DetectorID) { if(i==0) { NumberOfHitClover++; } else if(PreTreatedData->GetECCEClover(i)!= PreTreatedData->GetECCEClover(i-1) ) { NumberOfHitClover++; } } if(NumberOfHitClover == 4) break; //clover_mult -> Fill(NumberOfHitClover); } //cout << "NumberOfHitClover " << NumberOfHitClover << endl; map<int, vector<int> > MapCristal; map<int, vector<int> > MapSegment; map<int, vector<int> > :: iterator it; // iterator used with MapCristal map<int, vector<int> > :: iterator at; // iterator used with MapSegment vector<int> PositionOfCristal_Buffer_ECC; vector<int> PositionOfSegment_Buffer_GOCCE; //Fill map Cristal for(int clo = 0; clo < NumberOfClover; clo++) { for(unsigned int k = 0; k < ECC_CloverNumber.size(); k++) { if(ECC_CloverNumber.at(k) == clo) // && ECC_CristalNumber.at(k)== cri ) PositionOfCristal_Buffer_ECC.push_back(k); } if(PositionOfCristal_Buffer_ECC.size() != 0) MapCristal[clo] = PositionOfCristal_Buffer_ECC; PositionOfCristal_Buffer_ECC.clear(); } //Fill map Segment for(int clo = 0; clo < NumberOfClover; clo++) { for(int cri = 0; cri < 4 ; cri++) { // for(int seg = 0; seg < 4 ; seg++) { for(unsigned int m = 0; m < GOCCE_CloverNumber.size(); m++) { if(GOCCE_CloverNumber.at(m) == clo && GOCCE_CristalNumber.at(m) == cri)// && GOCCE_SegmentNumber.at(m) == seg) { // PositionOfSegment_Buffer_GOCCE.push_back(4*clo+cri); PositionOfSegment_Buffer_GOCCE.push_back(m); } } } if(PositionOfSegment_Buffer_GOCCE.size() != 0) MapSegment[4*clo+cri] = PositionOfSegment_Buffer_GOCCE; PositionOfSegment_Buffer_GOCCE.clear(); } } // Treatment for(int clo = 0; clo < NumberOfClover ; clo++) { double E = 0; double T = 0; int mult_cristal = 0; int cristal = -1 , segment; int cristal_Emax = 0; int cristal_Emin = 0; int Emax = 0, Emin = 1000000; int Tmin = 0, Tmax = 0; //ADD-BACK it = MapCristal.find(clo); int cristal_cond = 0; if(it != MapCristal.end()) { vector<int> PositionOfCristal = it -> second; mult_cristal = PositionOfCristal.size(); //if(mult_cristal!=0) cristal_mult -> Fill(mult_cristal); // ADD-BACK //cout << "boucle" << endl; for(unsigned int k = 0; k < PositionOfCristal.size(); k++) { int indice = PositionOfCristal.at(k); cristal_cond += ECC_CristalNumber.at(indice); // cout << ECC_CristalNumber.at(k) << " " ECC_E.at(k) << endl; if(mult_cristal < 3) { E+= ECC_E.at(indice); if(ECC_E.at(indice) < Emin) { cristal_Emin = ECC_CristalNumber.at(indice); Emin = ECC_E.at(indice); Tmin = ECC_T.at(indice); } if(ECC_E.at(indice) > Emax) { cristal_Emax = ECC_CristalNumber.at(indice); Emax = ECC_E.at(indice); Tmax = ECC_T.at(indice); } } else // case of multiplicity = 3 or 4 { E = -1; cristal_Emax = -1; cristal_Emin = -1; Tmax = -1; Tmin = -1; } // cout << ECC_E.at(indice) << " " << Emax << " " << cristal_Emax << " " << Emin << " " << cristal_Emin << endl; } if( (mult_cristal==1) || (mult_cristal ==2 && cristal_cond %2 == 1) ) { // cout << cristal_cond << endl; //cristal = cristal_Emax; T = Tmax; //cout << Emax << " " << cristal_Emax << " " << Emin << " " << cristal_Emin << endl; if(E > 500) { cristal = cristal_Emax; T = Tmax; } else { cristal = cristal_Emin; T = Tmin; } // DOPPLER CORRECTION at = MapSegment.find(4*clo+cristal); segment = -1; if(at != MapSegment.end()) { vector<int> PositionOfSegment = at -> second; // position of segment k in the vector int segment_max = -1, E_temp = -1; for(unsigned int m = 0; m < PositionOfSegment.size(); m++) // loop on hit segments of cristal cri of clover clo { int indice = PositionOfSegment.at(m); if(GOCCE_E.at(indice) > 0 && GOCCE_CristalNumber.at(indice) == cristal) { if( GOCCE_E.at(indice) > E_temp ) { segment_max = GOCCE_SegmentNumber.at(indice) ; E_temp = GOCCE_E.at(indice); } } } segment = segment_max; } } if(E > 0 && cristal != -1 && segment != -1) { TotalEnergy_lab.push_back(E); Time.push_back(T); CloverNumber.push_back(clo); CristalNumber.push_back(cristal); SegmentNumber.push_back(segment); double theta = GetSegmentAngleTheta(clo, cristal, segment); Theta.push_back(theta); double doppler_E = DopplerCorrection(E, theta); DopplerCorrectedEnergy.push_back(doppler_E); // cout << E << " " << clo << " " << cristal << " " << segment << " " << theta << " " << doppler_E << endl; } } // end of condition over CristalMap } // loop over NumberOfClover CloverMult = GetClover_Mult(); //cout << "Exogam fine" << endl; */ } double TExogamPhysics::DopplerCorrection(double E, double Theta) { double Pi = 3.141592654; TString filename = "configs/beta.txt"; ifstream file; // cout << filename << endl; file.open(filename); if (!file) cout << filename << " was not opened" << endl; double E_corr = 0; double beta = 0.; file >> beta; double gamma = 1. / sqrt(1 - beta * beta); E_corr = gamma * E * (1. - beta * cos(Theta * Pi / 180.)); return (E_corr); } /////////////////////////////////////////////////////////////////////////// void TExogamPhysics::Clear() { EventMultiplicity = 0; ECC_Multiplicity = 0; GOCCE_Multiplicity = 0; NumberOfHitClover = 0; NumberOfHitCristal = 0; ECC_CloverNumber.clear(); ECC_CristalNumber.clear(); GOCCE_CloverNumber.clear(); GOCCE_CristalNumber.clear(); GOCCE_SegmentNumber.clear(); // ECC ECC_E.clear(); ECC_T.clear(); // GOCCE GOCCE_E.clear(); CristalNumber.clear(); SegmentNumber.clear(); CloverNumber.clear(); TotalEnergy_lab.clear(); Time.clear(); DopplerCorrectedEnergy.clear(); Position.clear(); Theta.clear(); } /////////////////////////////////////////////////////////////////////////// //// Innherited from VDetector Class //// // Read stream at ConfigFile to pick-up parameters of detector (Position,...) using Token void TExogamPhysics::ReadConfiguration(NPL::InputParser parser) { vector<NPL::InputBlock*> blocks = parser.GetAllBlocksWithToken("Exogam"); if (NPOptionManager::getInstance()->GetVerboseLevel()) cout << "//// " << blocks.size() << " detectors found " << endl; vector<string> token = {"ANGLE_FILE"}; for (unsigned int i = 0; i < blocks.size(); i++) { if (blocks[i]->HasTokenList(token)) { string AngleFile = blocks[i]->GetString("ANGLE_FILE"); AddClover(AngleFile); } else { cout << "ERROR: check your input file formatting " << endl; exit(1); } } } /////////////////////////////////////////////////////////////////////////// void TExogamPhysics::InitSpectra() { m_Spectra = new TExogamSpectra(NumberOfClover); } /////////////////////////////////////////////////////////////////////////// void TExogamPhysics::FillSpectra() { m_Spectra->FillRawSpectra(EventData); m_Spectra->FillPreTreatedSpectra(PreTreatedData); m_Spectra->FillPhysicsSpectra(EventPhysics); } /////////////////////////////////////////////////////////////////////////// void TExogamPhysics::CheckSpectra() { m_Spectra->CheckSpectra(); } /////////////////////////////////////////////////////////////////////////// void TExogamPhysics::ClearSpectra() { // To be done } /////////////////////////////////////////////////////////////////////////// map<string, TH1*> TExogamPhysics::GetSpectra() { if (m_Spectra) return m_Spectra->GetMapHisto(); else { map<string, TH1*> empty; return empty; } } ////////////////////////////////////////////////////////////////////////// void TExogamPhysics::AddClover(string AngleFile) { ifstream file; // TString filename = Form("posBaptiste/angles_exogam_clover%d.txt",NumberOfClover); // TString filename = Form("posz42_simu50mm/angles_exogam_clover%d.txt",NumberOfClover); // TString filename = Form("posz42_exp_stat_demiring/angles_exogam_clover%d.txt",NumberOfClover); string path = "configs/"; TString filename = path + AngleFile; cout << filename << endl; file.open(filename); if (!file) cout << filename << " was not opened" << endl; vector<double> Angles; vector<vector<double>> Segment_angles; vector<vector<vector<double>>> Cristal_angles; Cristal_angles.clear(); double angle; string buffer; for (int i = 0; i < 4; i++) { Segment_angles.clear(); for (int j = 0; j < 4; j++) { Angles.clear(); for (int k = 0; k < 2; k++) { file >> buffer >> angle; Angles.push_back(angle); // Theta (k = 0) Phi (k = 1) // cout << angle << endl; if (Angles.size() == 2) cout << "Clover " << NumberOfClover << ": Theta=" << Angles[0] << " Phi=" << Angles[1] << endl; } Segment_angles.push_back(Angles); } Cristal_angles.push_back(Segment_angles); } Clover_Angles_Theta_Phi.push_back(Cristal_angles); file.close(); NumberOfClover++; } // Add Parameter to the CalibrationManger void TExogamPhysics::AddParameterToCalibrationManager() { CalibrationManager* Cal = CalibrationManager::getInstance(); for (int i = 0; i < NumberOfClover; i++) { for (int j = 0; j < 4; j++) { Cal->AddParameter("EXOGAM", "Cl" + NPL::itoa(i) + "_Cr" + NPL::itoa(j) + "_Elow", "EXOGAM_Cl" + NPL::itoa(i) + "_Cr" + NPL::itoa(j) + "_Elow"); Cal->AddParameter("EXOGAM", "Cl" + NPL::itoa(i) + "_Cr" + NPL::itoa(j) + "_Ehigh", "EXOGAM_Cl" + NPL::itoa(i) + "_Cr" + NPL::itoa(j) + "_Ehigh"); Cal->AddParameter("EXOGAM", "Cl" + NPL::itoa(i) + "_Cr" + NPL::itoa(j) + "_T", "EXOGAM_Cl" + NPL::itoa(i) + "_Cr" + NPL::itoa(j) + "_T"); for (int k = 0; k < 4; k++) { Cal->AddParameter("EXOGAM", "Cl" + NPL::itoa(i) + "_Cr" + NPL::itoa(j) + "_Seg" + NPL::itoa(k) + "_E", "EXOGAM_Cl" + NPL::itoa(i) + "_Cr" + NPL::itoa(j) + "_Seg" + NPL::itoa(k) + "_E"); } } } } // Activated associated Branches and link it to the private member DetectorData address // In this method mother Branches (Detector) AND daughter leaf (fDetector_parameter) have to be activated void TExogamPhysics::InitializeRootInputRaw() { TChain* inputChain = RootInput::getInstance()->GetChain(); inputChain->SetBranchStatus("EXOGAM", true); inputChain->SetBranchStatus("fEXO_*", true); inputChain->SetBranchAddress("EXOGAM", &EventData); /* TList* outputList = RootOutput::getInstance()->GetList(); clover_mult = new TH1F("clover_mult","clover_mult",20,0,20); outputList->Add(clover_mult); cristal_mult = new TH1F("cristal_mult","cristal_mult",20,0,20); outputList->Add(cristal_mult); */ } ///////////////////////////////////////////////////////////////////// // Activated associated Branches and link it to the private member DetectorPhysics address // In this method mother Branches (Detector) AND daughter leaf (parameter) have to be activated void TExogamPhysics::InitializeRootInputPhysics() { TChain* inputChain = RootInput::getInstance()->GetChain(); inputChain->SetBranchStatus("EventMultiplicty", true); inputChain->SetBranchStatus("ECC_Multiplicity", true); inputChain->SetBranchStatus("GOCCE_Multiplicity", true); inputChain->SetBranchStatus("ECC_CloverNumber", true); inputChain->SetBranchStatus("ECC_CristalNumber", true); inputChain->SetBranchStatus("GOCCE_CloverNumber", true); inputChain->SetBranchStatus("GOCCE_CristalNumber", true); inputChain->SetBranchStatus("GOCCE_SegmentNumber", true); inputChain->SetBranchStatus("ECC_E", true); inputChain->SetBranchStatus("ECC_T", true); inputChain->SetBranchStatus("GOCCE_E", true); inputChain->SetBranchStatus("CristalNumber", true); inputChain->SetBranchStatus("SegmentNumber", true); inputChain->SetBranchStatus("CloverNumber", true); inputChain->SetBranchStatus("CloverMult", true); inputChain->SetBranchStatus("TotalEnergy_lab", true); inputChain->SetBranchStatus("Time", true); inputChain->SetBranchStatus("DopplerCorrectedEnergy", true); inputChain->SetBranchStatus("Position", true); inputChain->SetBranchStatus("Theta", true); inputChain->SetBranchAddress("EXOGAM", &EventPhysics); } ///////////////////////////////////////////////////////////////////// // Create associated branches and associated private member DetectorPhysics address void TExogamPhysics::InitializeRootOutput() { TTree* outputTree = RootOutput::getInstance()->GetTree(); outputTree->Branch("EXOGAM", "TExogamPhysics", &EventPhysics); // control histograms if needed /* TList* outputList = RootOutput::getInstance()->GetList(); controle = new TH1F("controle","histo de controle",20,0,20); outputList->Add(controle); */ } /////////////////////////////////////////////////////////////////////////// namespace EXOGAM_LOCAL { // tranform an integer to a string string itoa(int value) { std::ostringstream o; if (!(o << value)) return ""; return o.str(); } } // namespace EXOGAM_LOCAL ///////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Construct Method to be pass to the DetectorFactory // //////////////////////////////////////////////////////////////////////////////// NPL::VDetector* TExogamPhysics::Construct() { return (NPL::VDetector*)new TExogamPhysics(); } //////////////////////////////////////////////////////////////////////////////// // Registering the construct method to the factory // //////////////////////////////////////////////////////////////////////////////// extern "C" { class proxy_exogam { public: proxy_exogam() { NPL::DetectorFactory::getInstance()->AddToken("Exogam", "Exogam"); NPL::DetectorFactory::getInstance()->AddDetector("Exogam", TExogamPhysics::Construct); } }; proxy_exogam p; }