diff --git a/src/dataprovider/conductcalibprovider.py b/src/dataprovider/conductcalibprovider.py index bc8e2453e58cc7f65f49a70811f7bebb1a454195..730309eb54f3c1b5e20037b40cd8d30c53112456 100644 --- a/src/dataprovider/conductcalibprovider.py +++ b/src/dataprovider/conductcalibprovider.py @@ -61,18 +61,34 @@ class CalibRun: def update_steps_df(self): config_df = self.instant_config_df.copy() + + # From long to wide format config_df = config_df.pivot(index='datetime', columns='name', values='value') + + # Forward fill NAs. Values not changing are not recorded in instant_config_df, so fill with previous value. + config_df = config_df.fillna(method='ffill') + + # Compute step number for each line config_df["step"] = np.arange(len(config_df)) + 1 + + # Set start/end datetime for each step config_df["start_datetime"] = config_df.index config_df["end_datetime"] = config_df["start_datetime"].shift(-1) + + # For the last step, compute the end_datetime from expected length written in User-defined config file. config_df.loc[config_df.index[-1], 'end_datetime'] = \ config_df.loc[config_df.index[-1], 'start_datetime'] \ + datetime.timedelta(seconds=int(self.user_config_df.loc[self.user_config_df.index[-1], 'length_sec'])) config_df.reset_index(drop=True, inplace=True) + + # Reshape: separate column for excite and headgain config_df = pd.wide_to_long(config_df, ["excite", "headgain"], i="step", j="channel", sep="_").reset_index() + + # Add "stable" timeframe limit for each step, i.e. remove transition phases at the beginning/end of each step. config_df["stable_start_datetime"] = config_df["start_datetime"] + datetime.timedelta(seconds=2) config_df["stable_end_datetime"] = config_df["end_datetime"] - datetime.timedelta(seconds=2) + # Compute mean, standard deviation and validity for each step/channelComment for channel in range(1, 6): channel_config_df = config_df[config_df["channel"] == channel].copy() for index, row in channel_config_df.iterrows():