set_injection_parameters.py 11.2 KB
Newer Older
Marc Arene's avatar
Marc Arene committed
1 2 3
import sys
# cf https://docs.python.org/3/tutorial/modules.html
sys.path.append('../')
4
import numpy as np
5 6
from configparser import ConfigParser

7
import bilby.gw.conversion as conv
8

9
from Headers.PN_Coefficients import * # Headers.Constants already imported in PN_Coeff
10
import Library.python_utils as pu
11
import Library.param_utils as paru
Marc Arene's avatar
Marc Arene committed
12

Marc Arene's avatar
Marc Arene committed
13
import Library.CONST as CONST
Marc Arene's avatar
Marc Arene committed
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
import Library.roq_utils as roqu


LAL_PI = 3.141592653589793238462643383279502884
LAL_MSUN_SI = 1.988546954961461467461011951140572744e30
LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6

def Compute_fISCO(Rmin, m1, m2):
    """
    Compute the frequency at the Innermost Stable Circular Orbit
    """

    vISCO = np.sqrt(1.0 / Rmin)
    Mt = m1 + m2
    fmax = vISCO**3 / (PI * GEOM * Mt)      # fmax signal
    return fmax

def Compute_LAL_fISCO(m1_SI, m2_SI):
    m1 = m1_SI / LAL_MSUN_SI
    m2 = m2_SI / LAL_MSUN_SI
    m_sec = (m1 + m2) * LAL_MTSUN_SI
    piM = LAL_PI * m_sec
    vISCO = 1 / np.sqrt(6)
    fISCO = vISCO**3 / piM

    return fISCO
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77


def ComputeChirpTime3p5PN(f_low, m1, m2):
    """
    Computes chirp times at 3.5 PN.

    Inputs:
    -------
        f_low: [float] low frequency cutoff of the detector
        sigpar: [array_like] parameters of the system
    Outputs:
    --------

    """
    Mt = m1 + m2
    Mt_sec = Mt * GEOM           # Total mass in s
    etaM = m1 * m2 / Mt**2
    etaM2 = etaM*etaM

    Tau_0 = tf1 * Mt_sec / etaM
    Tau_2 = tf2 + tf3 * etaM
    Tau_3 = tf4 * PI
    Tau_4 = tf5 + tf6 * etaM + tf7 * etaM2
    Tau_5 = PI*(tf9 + tf8*etaM)
    Tau_6 = tf11 + tf12*PI2 + tf10*(EULER + np.log(4.0)) + ( tf13 + tf14*PI2 )*etaM + tf15*etaM2 + tf16*etaM2*etaM
    Tau_6_log = tf10
    Tau_7 = PI*(tf19 + tf18*etaM + tf17*etaM2 )
    v_0 = pow(PI*Mt_sec*f_low,1.0/3.0)
    v_0_2 = v_0*v_0
    v_0_3 = v_0_2*v_0
    v_0_4 = v_0_3*v_0
    v_0_5 = v_0_4*v_0
    v_0_6 = v_0_5*v_0
    v_0_7 = v_0_6*v_0

    Tau_chirp = Tau_0*pow(v_0,-8.0)*(1.0 + Tau_2*v_0_2 + Tau_3*v_0_3 + Tau_4 *v_0_4 +  Tau_5 *v_0_5 +  (Tau_6 + Tau_6_log*np.log(v_0))*v_0_6 +  Tau_7 *v_0_7 )
    return Tau_chirp

Marc Arene's avatar
Marc Arene committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91
def compute_time_from_flow_to_fhigh_3p5PN(f_low, f_high, mass_1, mass_2):
    """
    Computes the time it takes for the binary to go from f_low to f_high, using 3.5 PN approximation.
    """

    # Compute the time it takes from flow to get to merger
    tc_flow = ComputeChirpTime3p5PN(f_low, mass_1, mass_2)

    # Compute the time it takes from fhigh to get to merger
    tc_fhigh = ComputeChirpTime3p5PN(f_high, mass_1, mass_2)

    # Substracting the two gives the time it take for the binary to go from f_low to f_high

    return tc_flow - tc_fhigh
92

Marc Arene's avatar
Marc Arene committed
93
def ini_file_to_dict(inj_file_path='../examples/injection_files/GW170817.ini'):
94
    config = ConfigParser()
95
    config.read(inj_file_path)
96 97 98
    injection_parameters = pu.config_parser_to_dict(config)['parameters']

    injection_parameters = conv.generate_mass_parameters(injection_parameters)
99 100
    injection_parameters['reduced_mass'] = paru.component_masses_to_reduced_mass(injection_parameters['mass_1'], injection_parameters['mass_2'])

Marc Arene's avatar
Marc Arene committed
101
    # These two lines have been added to be able to plot the injected value on phi_c on the corner plots. Otherwise the `phi_c` and `tc_3p5PN` keys are not used in the code.
102
    # injection_parameters['phi_c'] = (injection_parameters['phase'] * 2) % (2*np.pi)
Marc Arene's avatar
Marc Arene committed
103 104 105 106 107 108 109 110 111 112 113 114 115
    # injection_parameters['tc_3p5PN'] = tc_3p5PN
    return injection_parameters

def compute_extended_analysis_dict(mass_1, mass_2, geocent_time, chirp_mass, **analysis_kwargs):

    approximant = analysis_kwargs['approximant']
    roq = analysis_kwargs['roq']
    roq_directory = analysis_kwargs['roq_b_matrix_directory']
    minimum_frequency = analysis_kwargs['minimum_frequency']
    reference_frequency = analysis_kwargs['reference_frequency']
    maximum_frequency = analysis_kwargs['maximum_frequency']

    ext_analysis_dict = {}
116 117 118 119 120
    ifo_chosen = analysis_kwargs['ifos'].split(',')
    if set.intersection(set(CONST.IFOS_POSSIBLE), set(ifo_chosen)) != set(ifo_chosen):
        raise ValueError("IFOs wrongly chosen: you must choose between {}. Example: '--ifos=H1,V1'. ".format(CONST.IFOS_POSSIBLE))
    else:
        ext_analysis_dict['ifos'] = ifo_chosen
Marc Arene's avatar
Marc Arene committed
121 122 123 124 125
    # approximant = 'TaylorF2'
    # approximant = 'SpinTaylorF2'
    # approximant = 'IMRPhenomD'
    # approximant = 'IMRPhenomPv2'
    # approximant = 'IMRPhenomPv2_NRTidal'
126 127 128 129

    # Set the duration and sampling frequency of the data segment that we're going
    # to inject the signal into. For the
    # TaylorF2 waveform, we cut the signal close to the isco frequency
Marc Arene's avatar
Marc Arene committed
130
    tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency, mass_1, mass_2)
131 132 133 134
    # We integrate the signal up to the frequency of the "Innermost stable circular orbit (ISCO)"
    R_isco = 6.      # Orbital separation at ISCO, in geometric units. 6M for PN ISCO; 2.8M for EOB
    m1_min = 1
    m2_min = 1
Marc Arene's avatar
Marc Arene committed
135
    f_ISCO = Compute_fISCO(R_isco, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
136
    f_ISCO_run = Compute_fISCO(R_isco, m1_min, m2_min)
Marc Arene's avatar
Marc Arene committed
137
    # f_ISCO = Compute_LAL_fISCO(mass_1 * LAL_MSUN_SI, mass_2 * LAL_MSUN_SI)
Marc Arene's avatar
Marc Arene committed
138
    # f_ISCO_run = Compute_LAL_fISCO(m1_min * LAL_MSUN_SI, m2_min * LAL_MSUN_SI)
Marc Arene's avatar
Marc Arene committed
139
    if approximant == 'TaylorF2':
Marc Arene's avatar
Marc Arene committed
140 141
        f_high = f_ISCO
        f_high_run = f_ISCO_run
142
        maximum_frequency_injected_waveform = 0
143
        maximum_frequency_search_waveform = 0
144 145
        # maximum_frequency_ifo = min(4096 * 4, f_high_run)
        maximum_frequency_ifo = f_high_run
Marc Arene's avatar
Marc Arene committed
146
        sampling_frequency = 2 * f_high_run
Marc Arene's avatar
Marc Arene committed
147
        duration = int(tc_3p5PN) + 1 + 2
Marc Arene's avatar
Marc Arene committed
148 149
        # reference_frequency = 0
    elif approximant == 'IMRPhenomPv2' and roq:
Marc Arene's avatar
Marc Arene committed
150 151 152
        # cf:
        # - https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group___l_a_l_sim_i_m_r_phenom__c.html#gad3f98acfe9527259a7f73a8ef69a2f7b
        # - line 103 of https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_i_m_r_phenom_d_8c_source.html#l00103
Marc Arene's avatar
Marc Arene committed
153
        params_best_basis, scale_factor = roqu.get_best_segment_params_from_chirp_mass(chirp_mass, roq_directory=roq_directory)
Marc Arene's avatar
Marc Arene committed
154

Marc Arene's avatar
Marc Arene committed
155 156 157
        ext_analysis_dict['roq'] = {}
        ext_analysis_dict['roq']['directory'] = roq_directory + str(int(params_best_basis['seglen'])) + 's/'
        ext_analysis_dict['roq']['params_path'] = ext_analysis_dict['roq']['directory'] + 'params.dat'
Marc Arene's avatar
Marc Arene committed
158 159 160

        rescaled_params = roqu.rescale_params(params_best_basis, scale_factor)

Marc Arene's avatar
Marc Arene committed
161 162
        # minimum_frequency = max(minimum_frequency, rescaled_params['flow'])
        # maximum_frequency_ifo = min(int(maximum_frequency), int(rescaled_params['fhigh']))
Marc Arene's avatar
Marc Arene committed
163
        # sampling_frequency = 2 * maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
164
        # tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
165 166 167 168
        # # int() function because we need to make sure that sampling_freq * duration = integer to the 14 decimal precision
        # duration = min(int(tc_3p5PN + 2 + 1), int(rescaled_params['seglen']))
        # maximum_frequency_injected_waveform = rescaled_params['fhigh']
        # maximum_frequency_search_waveform = maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
169
        # reference_frequency = reference_frequency * scale_factor
Marc Arene's avatar
Marc Arene committed
170 171


Marc Arene's avatar
Marc Arene committed
172
        # Settings which give me consistent results between the classic and the roq compute logL
Marc Arene's avatar
Marc Arene committed
173
        minimum_frequency = rescaled_params['flow']
Marc Arene's avatar
Marc Arene committed
174 175
        maximum_frequency_injected_waveform = rescaled_params['fhigh']
        # maximum_frequency_injected_waveform = min(2048, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
176
        maximum_frequency_ifo = min(maximum_frequency, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
177 178
        maximum_frequency_search_waveform = maximum_frequency_injected_waveform
        # maximum_frequency_search_waveform = maximum_frequency_ifo
179
        # maximum_frequency_ifo = rescaled_params['fhigh']
Marc Arene's avatar
Marc Arene committed
180
        sampling_frequency = 2 * max(maximum_frequency, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
181
        duration = rescaled_params['seglen']
Marc Arene's avatar
Marc Arene committed
182
        reference_frequency = reference_frequency * scale_factor
Marc Arene's avatar
Marc Arene committed
183 184


Marc Arene's avatar
Marc Arene committed
185 186 187



Marc Arene's avatar
Marc Arene committed
188 189 190
        ext_analysis_dict['roq']['params'] = params_best_basis
        ext_analysis_dict['roq']['rescaled_params'] = rescaled_params
        ext_analysis_dict['roq']['scale_factor'] = scale_factor
Marc Arene's avatar
Marc Arene committed
191

Marc Arene's avatar
Marc Arene committed
192
        tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
193 194 195

        LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6
        f_CUT = 0.2
Marc Arene's avatar
Marc Arene committed
196
        M_sec = (mass_1 + mass_2) * LAL_MTSUN_SI
Marc Arene's avatar
Marc Arene committed
197 198 199 200
        M_min_sec = (m1_min + m2_min) * LAL_MTSUN_SI
        f_high = f_CUT / M_sec
        f_high_run = f_CUT / M_min_sec
    else:
Marc Arene's avatar
Marc Arene committed
201 202 203 204 205
        # cf:
        # - https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group___l_a_l_sim_i_m_r_phenom__c.html#gad3f98acfe9527259a7f73a8ef69a2f7b
        # - line 103 of https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_i_m_r_phenom_d_8c_source.html#l00103
        LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6
        f_CUT = 0.2
Marc Arene's avatar
Marc Arene committed
206
        M_sec = (mass_1 + mass_2) * LAL_MTSUN_SI
Marc Arene's avatar
Marc Arene committed
207 208 209
        M_min_sec = (m1_min + m2_min) * LAL_MTSUN_SI
        f_high = f_CUT / M_sec
        f_high_run = f_CUT / M_min_sec
210

Marc Arene's avatar
Marc Arene committed
211
        maximum_frequency_ifo = min(maximum_frequency, f_high_run)
212
        maximum_frequency_injected_waveform = maximum_frequency_ifo
213 214
        maximum_frequency_search_waveform = maximum_frequency_ifo

215
        sampling_frequency = 2 * maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
216 217
        # duration = 64
        duration = int(tc_3p5PN) + 1 + 2
Marc Arene's avatar
Marc Arene committed
218

Marc Arene's avatar
Marc Arene committed
219 220
    # Use an integer because frame files have an integer start_time
    # hence when extracting a subpart of it, the index will be exact
Marc Arene's avatar
Marc Arene committed
221
    start_time = geocent_time - tc_3p5PN
Marc Arene's avatar
Marc Arene committed
222
    # start_time = int(geocent_time - tc_3p5PN)
Marc Arene's avatar
Marc Arene committed
223 224

    ext_analysis_dict.update(
225
        minimum_frequency = minimum_frequency,
226
        maximum_frequency_injected_waveform = maximum_frequency_injected_waveform,
227
        maximum_frequency_search_waveform = maximum_frequency_search_waveform,
228
        maximum_frequency_ifo = maximum_frequency_ifo,
229
        maximum_frequency_generated_waveform = None,
Marc Arene's avatar
Marc Arene committed
230 231
        sampling_frequency = sampling_frequency,
        duration = duration,
232
        tc_3p5PN = tc_3p5PN,
Marc Arene's avatar
Marc Arene committed
233
        start_time = start_time,
234 235
        f_high = f_high,
        f_high_run = f_high_run,
Marc Arene's avatar
Marc Arene committed
236
        approximant = approximant,
Marc Arene's avatar
Marc Arene committed
237
        reference_frequency = reference_frequency
238 239
    )

Marc Arene's avatar
Marc Arene committed
240
    return ext_analysis_dict
241

Marc Arene's avatar
Marc Arene committed
242
def get_inj_parameters_and_analysis_dict(inj_file_path='../examples/injection_files/GW170817.ini', **analysis_kwargs):
243 244 245 246 247 248 249 250 251 252 253

    injection_parameters = ini_file_to_dict(inj_file_path)

    ext_analysis_dict = compute_extended_analysis_dict(injection_parameters['mass_1'], injection_parameters['mass_2'], injection_parameters['geocent_time'], injection_parameters['chirp_mass'], **analysis_kwargs)

    # These two lines have been added to be able to plot the injected value on phi_c on the corner plots. Otherwise the `phi_c` and `tc_3p5PN` keys are not used in the code.
    injection_parameters['phi_c'] = (injection_parameters['phase'] * 2) % (2*np.pi)
    injection_parameters['tc_3p5PN'] = ext_analysis_dict['tc_3p5PN']

    return injection_parameters, ext_analysis_dict

254 255

if __name__=='__main__':
Marc Arene's avatar
Marc Arene committed
256 257 258 259 260
    from optparse import OptionParser
    usage = """%prog [options]
    Plots the three waveforms in the time domain"""
    parser=OptionParser(usage)

Marc Arene's avatar
Marc Arene committed
261
    parser.add_option("--inj_file", default='../examples/injection_files/GW170817.ini', action="store", type="string", help="""Injection file path leading to the `.ini` file specifying the parameters of the injection.""")
262

Marc Arene's avatar
Marc Arene committed
263 264 265
    (opts,args)=parser.parse_args()

    injection_parameters = ini_file_to_dict(opts.inj_file)
266 267

    pu.print_dict(injection_parameters, indent=3, align_keys=True)
Marc Arene's avatar
Marc Arene committed
268 269

    breakpoint()