set_injection_parameters.py 10.7 KB
Newer Older
Marc Arene's avatar
Marc Arene committed
1 2 3
import sys
# cf https://docs.python.org/3/tutorial/modules.html
sys.path.append('../')
4
import numpy as np
5 6
from configparser import ConfigParser

7
import bilby.gw.conversion as conv
8

9
from Headers.PN_Coefficients import * # Headers.Constants already imported in PN_Coeff
10
import Library.python_utils as pu
11
import Library.param_utils as paru
Marc Arene's avatar
Marc Arene committed
12

Marc Arene's avatar
Marc Arene committed
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
import Library.config as conf
import Library.roq_utils as roqu


LAL_PI = 3.141592653589793238462643383279502884
LAL_MSUN_SI = 1.988546954961461467461011951140572744e30
LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6

def Compute_fISCO(Rmin, m1, m2):
    """
    Compute the frequency at the Innermost Stable Circular Orbit
    """

    vISCO = np.sqrt(1.0 / Rmin)
    Mt = m1 + m2
    fmax = vISCO**3 / (PI * GEOM * Mt)      # fmax signal
    return fmax

def Compute_LAL_fISCO(m1_SI, m2_SI):
    m1 = m1_SI / LAL_MSUN_SI
    m2 = m2_SI / LAL_MSUN_SI
    m_sec = (m1 + m2) * LAL_MTSUN_SI
    piM = LAL_PI * m_sec
    vISCO = 1 / np.sqrt(6)
    fISCO = vISCO**3 / piM

    return fISCO
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77


def ComputeChirpTime3p5PN(f_low, m1, m2):
    """
    Computes chirp times at 3.5 PN.

    Inputs:
    -------
        f_low: [float] low frequency cutoff of the detector
        sigpar: [array_like] parameters of the system
    Outputs:
    --------

    """
    Mt = m1 + m2
    Mt_sec = Mt * GEOM           # Total mass in s
    etaM = m1 * m2 / Mt**2
    etaM2 = etaM*etaM

    Tau_0 = tf1 * Mt_sec / etaM
    Tau_2 = tf2 + tf3 * etaM
    Tau_3 = tf4 * PI
    Tau_4 = tf5 + tf6 * etaM + tf7 * etaM2
    Tau_5 = PI*(tf9 + tf8*etaM)
    Tau_6 = tf11 + tf12*PI2 + tf10*(EULER + np.log(4.0)) + ( tf13 + tf14*PI2 )*etaM + tf15*etaM2 + tf16*etaM2*etaM
    Tau_6_log = tf10
    Tau_7 = PI*(tf19 + tf18*etaM + tf17*etaM2 )
    v_0 = pow(PI*Mt_sec*f_low,1.0/3.0)
    v_0_2 = v_0*v_0
    v_0_3 = v_0_2*v_0
    v_0_4 = v_0_3*v_0
    v_0_5 = v_0_4*v_0
    v_0_6 = v_0_5*v_0
    v_0_7 = v_0_6*v_0

    Tau_chirp = Tau_0*pow(v_0,-8.0)*(1.0 + Tau_2*v_0_2 + Tau_3*v_0_3 + Tau_4 *v_0_4 +  Tau_5 *v_0_5 +  (Tau_6 + Tau_6_log*np.log(v_0))*v_0_6 +  Tau_7 *v_0_7 )
    return Tau_chirp

Marc Arene's avatar
Marc Arene committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91
def compute_time_from_flow_to_fhigh_3p5PN(f_low, f_high, mass_1, mass_2):
    """
    Computes the time it takes for the binary to go from f_low to f_high, using 3.5 PN approximation.
    """

    # Compute the time it takes from flow to get to merger
    tc_flow = ComputeChirpTime3p5PN(f_low, mass_1, mass_2)

    # Compute the time it takes from fhigh to get to merger
    tc_fhigh = ComputeChirpTime3p5PN(f_high, mass_1, mass_2)

    # Substracting the two gives the time it take for the binary to go from f_low to f_high

    return tc_flow - tc_fhigh
92

93
def ini_file_to_dict(inj_file_path='../examples/GW170817.ini'):
94
    config = ConfigParser()
95
    config.read(inj_file_path)
96 97 98
    injection_parameters = pu.config_parser_to_dict(config)['parameters']

    injection_parameters = conv.generate_mass_parameters(injection_parameters)
99 100
    injection_parameters['reduced_mass'] = paru.component_masses_to_reduced_mass(injection_parameters['mass_1'], injection_parameters['mass_2'])

Marc Arene's avatar
Marc Arene committed
101
    # These two lines have been added to be able to plot the injected value on phi_c on the corner plots. Otherwise the `phi_c` and `tc_3p5PN` keys are not used in the code.
102
    # injection_parameters['phi_c'] = (injection_parameters['phase'] * 2) % (2*np.pi)
Marc Arene's avatar
Marc Arene committed
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    # injection_parameters['tc_3p5PN'] = tc_3p5PN
    return injection_parameters

def compute_extended_analysis_dict(mass_1, mass_2, geocent_time, chirp_mass, **analysis_kwargs):

    approximant = analysis_kwargs['approximant']
    roq = analysis_kwargs['roq']
    roq_directory = analysis_kwargs['roq_b_matrix_directory']
    minimum_frequency = analysis_kwargs['minimum_frequency']
    reference_frequency = analysis_kwargs['reference_frequency']
    maximum_frequency = analysis_kwargs['maximum_frequency']

    ext_analysis_dict = {}

    # approximant = 'TaylorF2'
    # approximant = 'SpinTaylorF2'
    # approximant = 'IMRPhenomD'
    # approximant = 'IMRPhenomPv2'
    # approximant = 'IMRPhenomPv2_NRTidal'
122 123 124 125

    # Set the duration and sampling frequency of the data segment that we're going
    # to inject the signal into. For the
    # TaylorF2 waveform, we cut the signal close to the isco frequency
Marc Arene's avatar
Marc Arene committed
126
    tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency, mass_1, mass_2)
127 128 129 130
    # We integrate the signal up to the frequency of the "Innermost stable circular orbit (ISCO)"
    R_isco = 6.      # Orbital separation at ISCO, in geometric units. 6M for PN ISCO; 2.8M for EOB
    m1_min = 1
    m2_min = 1
Marc Arene's avatar
Marc Arene committed
131
    f_ISCO = Compute_fISCO(R_isco, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
132
    f_ISCO_run = Compute_fISCO(R_isco, m1_min, m2_min)
Marc Arene's avatar
Marc Arene committed
133
    # f_ISCO = Compute_LAL_fISCO(mass_1 * LAL_MSUN_SI, mass_2 * LAL_MSUN_SI)
Marc Arene's avatar
Marc Arene committed
134
    # f_ISCO_run = Compute_LAL_fISCO(m1_min * LAL_MSUN_SI, m2_min * LAL_MSUN_SI)
Marc Arene's avatar
Marc Arene committed
135
    if approximant == 'TaylorF2':
Marc Arene's avatar
Marc Arene committed
136 137
        f_high = f_ISCO
        f_high_run = f_ISCO_run
138
        maximum_frequency_injected_waveform = 0
139
        maximum_frequency_search_waveform = 0
140 141
        # maximum_frequency_ifo = min(4096 * 4, f_high_run)
        maximum_frequency_ifo = f_high_run
Marc Arene's avatar
Marc Arene committed
142 143
        sampling_frequency = 2 * f_high_run
        duration = tc_3p5PN + 2
Marc Arene's avatar
Marc Arene committed
144 145
        # reference_frequency = 0
    elif approximant == 'IMRPhenomPv2' and roq:
Marc Arene's avatar
Marc Arene committed
146 147 148
        # cf:
        # - https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group___l_a_l_sim_i_m_r_phenom__c.html#gad3f98acfe9527259a7f73a8ef69a2f7b
        # - line 103 of https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_i_m_r_phenom_d_8c_source.html#l00103
Marc Arene's avatar
Marc Arene committed
149
        params_best_basis, scale_factor = roqu.get_best_segment_params_from_chirp_mass(chirp_mass, roq_directory=roq_directory)
Marc Arene's avatar
Marc Arene committed
150

Marc Arene's avatar
Marc Arene committed
151 152 153
        ext_analysis_dict['roq'] = {}
        ext_analysis_dict['roq']['directory'] = roq_directory + str(int(params_best_basis['seglen'])) + 's/'
        ext_analysis_dict['roq']['params_path'] = ext_analysis_dict['roq']['directory'] + 'params.dat'
Marc Arene's avatar
Marc Arene committed
154 155 156

        rescaled_params = roqu.rescale_params(params_best_basis, scale_factor)

Marc Arene's avatar
Marc Arene committed
157 158
        # minimum_frequency = max(minimum_frequency, rescaled_params['flow'])
        # maximum_frequency_ifo = min(int(maximum_frequency), int(rescaled_params['fhigh']))
Marc Arene's avatar
Marc Arene committed
159
        # sampling_frequency = 2 * maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
160
        # tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
161 162 163 164
        # # int() function because we need to make sure that sampling_freq * duration = integer to the 14 decimal precision
        # duration = min(int(tc_3p5PN + 2 + 1), int(rescaled_params['seglen']))
        # maximum_frequency_injected_waveform = rescaled_params['fhigh']
        # maximum_frequency_search_waveform = maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
165
        # reference_frequency = reference_frequency * scale_factor
Marc Arene's avatar
Marc Arene committed
166 167


Marc Arene's avatar
Marc Arene committed
168
        # Settings which give me consistent results between the classic and the roq compute logL
Marc Arene's avatar
Marc Arene committed
169
        minimum_frequency = rescaled_params['flow']
Marc Arene's avatar
Marc Arene committed
170 171
        maximum_frequency_injected_waveform = rescaled_params['fhigh']
        # maximum_frequency_injected_waveform = min(2048, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
172
        maximum_frequency_ifo = min(maximum_frequency, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
173 174
        maximum_frequency_search_waveform = maximum_frequency_injected_waveform
        # maximum_frequency_search_waveform = maximum_frequency_ifo
175
        # maximum_frequency_ifo = rescaled_params['fhigh']
Marc Arene's avatar
Marc Arene committed
176
        sampling_frequency = 2 * max(maximum_frequency, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
177
        duration = rescaled_params['seglen']
Marc Arene's avatar
Marc Arene committed
178
        reference_frequency = reference_frequency * scale_factor
Marc Arene's avatar
Marc Arene committed
179 180


Marc Arene's avatar
Marc Arene committed
181 182 183



Marc Arene's avatar
Marc Arene committed
184 185 186
        ext_analysis_dict['roq']['params'] = params_best_basis
        ext_analysis_dict['roq']['rescaled_params'] = rescaled_params
        ext_analysis_dict['roq']['scale_factor'] = scale_factor
Marc Arene's avatar
Marc Arene committed
187

Marc Arene's avatar
Marc Arene committed
188
        tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
189 190 191

        LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6
        f_CUT = 0.2
Marc Arene's avatar
Marc Arene committed
192
        M_sec = (mass_1 + mass_2) * LAL_MTSUN_SI
Marc Arene's avatar
Marc Arene committed
193 194 195 196
        M_min_sec = (m1_min + m2_min) * LAL_MTSUN_SI
        f_high = f_CUT / M_sec
        f_high_run = f_CUT / M_min_sec
    else:
Marc Arene's avatar
Marc Arene committed
197 198 199 200 201
        # cf:
        # - https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group___l_a_l_sim_i_m_r_phenom__c.html#gad3f98acfe9527259a7f73a8ef69a2f7b
        # - line 103 of https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_i_m_r_phenom_d_8c_source.html#l00103
        LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6
        f_CUT = 0.2
Marc Arene's avatar
Marc Arene committed
202
        M_sec = (mass_1 + mass_2) * LAL_MTSUN_SI
Marc Arene's avatar
Marc Arene committed
203 204 205
        M_min_sec = (m1_min + m2_min) * LAL_MTSUN_SI
        f_high = f_CUT / M_sec
        f_high_run = f_CUT / M_min_sec
206

Marc Arene's avatar
Marc Arene committed
207
        maximum_frequency_ifo = min(maximum_frequency, f_high_run)
208
        maximum_frequency_injected_waveform = maximum_frequency_ifo
209 210
        maximum_frequency_search_waveform = maximum_frequency_ifo

211
        sampling_frequency = 2 * maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
212
        duration = 64
Marc Arene's avatar
Marc Arene committed
213 214 215 216

    start_time = geocent_time - tc_3p5PN

    ext_analysis_dict.update(
217
        minimum_frequency = minimum_frequency,
218
        maximum_frequency_injected_waveform = maximum_frequency_injected_waveform,
219
        maximum_frequency_search_waveform = maximum_frequency_search_waveform,
220
        maximum_frequency_ifo = maximum_frequency_ifo,
221
        maximum_frequency_generated_waveform = None,
Marc Arene's avatar
Marc Arene committed
222 223
        sampling_frequency = sampling_frequency,
        duration = duration,
224
        tc_3p5PN = tc_3p5PN,
Marc Arene's avatar
Marc Arene committed
225
        start_time = start_time,
226 227
        f_high = f_high,
        f_high_run = f_high_run,
Marc Arene's avatar
Marc Arene committed
228
        approximant = approximant,
Marc Arene's avatar
Marc Arene committed
229
        reference_frequency = reference_frequency
230 231
    )

Marc Arene's avatar
Marc Arene committed
232
    return ext_analysis_dict
233

234 235 236 237 238 239 240 241 242 243 244 245
def get_inj_parameters_and_analysis_dict(inj_file_path='../examples/GW170817.ini', **analysis_kwargs):

    injection_parameters = ini_file_to_dict(inj_file_path)

    ext_analysis_dict = compute_extended_analysis_dict(injection_parameters['mass_1'], injection_parameters['mass_2'], injection_parameters['geocent_time'], injection_parameters['chirp_mass'], **analysis_kwargs)

    # These two lines have been added to be able to plot the injected value on phi_c on the corner plots. Otherwise the `phi_c` and `tc_3p5PN` keys are not used in the code.
    injection_parameters['phi_c'] = (injection_parameters['phase'] * 2) % (2*np.pi)
    injection_parameters['tc_3p5PN'] = ext_analysis_dict['tc_3p5PN']

    return injection_parameters, ext_analysis_dict

246 247

if __name__=='__main__':
Marc Arene's avatar
Marc Arene committed
248 249 250 251 252 253
    from optparse import OptionParser
    usage = """%prog [options]
    Plots the three waveforms in the time domain"""
    parser=OptionParser(usage)

    parser.add_option("--inj_file", default='../examples/GW170817.ini', action="store", type="string", help="""Injection file path leading to the `.ini` file specifying the parameters of the injection.""")
254

Marc Arene's avatar
Marc Arene committed
255 256 257
    (opts,args)=parser.parse_args()

    injection_parameters = ini_file_to_dict(opts.inj_file)
258 259

    pu.print_dict(injection_parameters, indent=3, align_keys=True)
Marc Arene's avatar
Marc Arene committed
260 261

    breakpoint()