set_injection_parameters.py 12.4 KB
Newer Older
Marc Arene's avatar
Marc Arene committed
1 2 3
import sys
# cf https://docs.python.org/3/tutorial/modules.html
sys.path.append('../')
4
import numpy as np
5 6
from configparser import ConfigParser

7
import bilby.gw.conversion as conv
8

9
from Headers.PN_Coefficients import * # Headers.Constants already imported in PN_Coeff
10
import Library.python_utils as pu
11
import Library.param_utils as paru
Marc Arene's avatar
Marc Arene committed
12

Marc Arene's avatar
Marc Arene committed
13
import Library.CONST as CONST
Marc Arene's avatar
Marc Arene committed
14 15
import Library.roq_utils as roqu

16 17
import core.utils as cut

Marc Arene's avatar
Marc Arene committed
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

LAL_PI = 3.141592653589793238462643383279502884
LAL_MSUN_SI = 1.988546954961461467461011951140572744e30
LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6

def Compute_fISCO(Rmin, m1, m2):
    """
    Compute the frequency at the Innermost Stable Circular Orbit
    """

    vISCO = np.sqrt(1.0 / Rmin)
    Mt = m1 + m2
    fmax = vISCO**3 / (PI * GEOM * Mt)      # fmax signal
    return fmax

def Compute_LAL_fISCO(m1_SI, m2_SI):
    m1 = m1_SI / LAL_MSUN_SI
    m2 = m2_SI / LAL_MSUN_SI
    m_sec = (m1 + m2) * LAL_MTSUN_SI
    piM = LAL_PI * m_sec
    vISCO = 1 / np.sqrt(6)
    fISCO = vISCO**3 / piM

    return fISCO
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79


def ComputeChirpTime3p5PN(f_low, m1, m2):
    """
    Computes chirp times at 3.5 PN.

    Inputs:
    -------
        f_low: [float] low frequency cutoff of the detector
        sigpar: [array_like] parameters of the system
    Outputs:
    --------

    """
    Mt = m1 + m2
    Mt_sec = Mt * GEOM           # Total mass in s
    etaM = m1 * m2 / Mt**2
    etaM2 = etaM*etaM

    Tau_0 = tf1 * Mt_sec / etaM
    Tau_2 = tf2 + tf3 * etaM
    Tau_3 = tf4 * PI
    Tau_4 = tf5 + tf6 * etaM + tf7 * etaM2
    Tau_5 = PI*(tf9 + tf8*etaM)
    Tau_6 = tf11 + tf12*PI2 + tf10*(EULER + np.log(4.0)) + ( tf13 + tf14*PI2 )*etaM + tf15*etaM2 + tf16*etaM2*etaM
    Tau_6_log = tf10
    Tau_7 = PI*(tf19 + tf18*etaM + tf17*etaM2 )
    v_0 = pow(PI*Mt_sec*f_low,1.0/3.0)
    v_0_2 = v_0*v_0
    v_0_3 = v_0_2*v_0
    v_0_4 = v_0_3*v_0
    v_0_5 = v_0_4*v_0
    v_0_6 = v_0_5*v_0
    v_0_7 = v_0_6*v_0

    Tau_chirp = Tau_0*pow(v_0,-8.0)*(1.0 + Tau_2*v_0_2 + Tau_3*v_0_3 + Tau_4 *v_0_4 +  Tau_5 *v_0_5 +  (Tau_6 + Tau_6_log*np.log(v_0))*v_0_6 +  Tau_7 *v_0_7 )
    return Tau_chirp

Marc Arene's avatar
Marc Arene committed
80 81 82 83 84 85 86 87 88 89 90 91 92 93
def compute_time_from_flow_to_fhigh_3p5PN(f_low, f_high, mass_1, mass_2):
    """
    Computes the time it takes for the binary to go from f_low to f_high, using 3.5 PN approximation.
    """

    # Compute the time it takes from flow to get to merger
    tc_flow = ComputeChirpTime3p5PN(f_low, mass_1, mass_2)

    # Compute the time it takes from fhigh to get to merger
    tc_fhigh = ComputeChirpTime3p5PN(f_high, mass_1, mass_2)

    # Substracting the two gives the time it take for the binary to go from f_low to f_high

    return tc_flow - tc_fhigh
94

Marc Arene's avatar
Marc Arene committed
95
def ini_file_to_dict(inj_file_path='../examples/injection_files/GW170817.ini'):
96
    config = ConfigParser()
97
    config.read(inj_file_path)
98 99 100
    injection_parameters = pu.config_parser_to_dict(config)['parameters']

    injection_parameters = conv.generate_mass_parameters(injection_parameters)
101 102
    injection_parameters['reduced_mass'] = paru.component_masses_to_reduced_mass(injection_parameters['mass_1'], injection_parameters['mass_2'])

Marc Arene's avatar
Marc Arene committed
103
    # These two lines have been added to be able to plot the injected value on phi_c on the corner plots. Otherwise the `phi_c` and `tc_3p5PN` keys are not used in the code.
104
    # injection_parameters['phi_c'] = (injection_parameters['phase'] * 2) % (2*np.pi)
Marc Arene's avatar
Marc Arene committed
105 106 107 108 109 110 111 112
    # injection_parameters['tc_3p5PN'] = tc_3p5PN
    return injection_parameters

def compute_extended_analysis_dict(mass_1, mass_2, geocent_time, chirp_mass, **analysis_kwargs):

    approximant = analysis_kwargs['approximant']
    roq = analysis_kwargs['roq']
    roq_directory = analysis_kwargs['roq_b_matrix_directory']
113 114 115 116 117
    if type(analysis_kwargs['minimum_frequency_ifos']) == str:
        minimum_frequency_ifos = cut.convert_string_to_dict(analysis_kwargs['minimum_frequency_ifos'])
    else:
        minimum_frequency_ifos = {ifo: analysis_kwargs['minimum_frequency_ifos'] for ifo in analysis_kwargs['ifos']}
    minimum_frequency_all = min(minimum_frequency_ifos.values())
Marc Arene's avatar
Marc Arene committed
118 119 120 121
    reference_frequency = analysis_kwargs['reference_frequency']
    maximum_frequency = analysis_kwargs['maximum_frequency']

    ext_analysis_dict = {}
122 123 124 125 126
    ifo_chosen = analysis_kwargs['ifos'].split(',')
    if set.intersection(set(CONST.IFOS_POSSIBLE), set(ifo_chosen)) != set(ifo_chosen):
        raise ValueError("IFOs wrongly chosen: you must choose between {}. Example: '--ifos=H1,V1'. ".format(CONST.IFOS_POSSIBLE))
    else:
        ext_analysis_dict['ifos'] = ifo_chosen
Marc Arene's avatar
Marc Arene committed
127 128 129 130 131
    # approximant = 'TaylorF2'
    # approximant = 'SpinTaylorF2'
    # approximant = 'IMRPhenomD'
    # approximant = 'IMRPhenomPv2'
    # approximant = 'IMRPhenomPv2_NRTidal'
132 133 134 135

    # Set the duration and sampling frequency of the data segment that we're going
    # to inject the signal into. For the
    # TaylorF2 waveform, we cut the signal close to the isco frequency
136
    tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency_all, mass_1, mass_2)
137 138 139 140
    # We integrate the signal up to the frequency of the "Innermost stable circular orbit (ISCO)"
    R_isco = 6.      # Orbital separation at ISCO, in geometric units. 6M for PN ISCO; 2.8M for EOB
    m1_min = 1
    m2_min = 1
Marc Arene's avatar
Marc Arene committed
141
    f_ISCO = Compute_fISCO(R_isco, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
142
    f_ISCO_run = Compute_fISCO(R_isco, m1_min, m2_min)
Marc Arene's avatar
Marc Arene committed
143
    duration = None
144
    t_end_minus_tc = 2
Marc Arene's avatar
Marc Arene committed
145
    # f_ISCO = Compute_LAL_fISCO(mass_1 * LAL_MSUN_SI, mass_2 * LAL_MSUN_SI)
Marc Arene's avatar
Marc Arene committed
146
    # f_ISCO_run = Compute_LAL_fISCO(m1_min * LAL_MSUN_SI, m2_min * LAL_MSUN_SI)
Marc Arene's avatar
Marc Arene committed
147
    if approximant == 'TaylorF2':
Marc Arene's avatar
Marc Arene committed
148 149
        f_high = f_ISCO
        f_high_run = f_ISCO_run
Marc Arene's avatar
Marc Arene committed
150 151 152 153 154
        # maximum_frequency_injected_waveform = 0
        # maximum_frequency_search_waveform = 0
        # # maximum_frequency_ifo = min(4096 * 4, f_high_run)
        # maximum_frequency_ifo = f_high_run
        # sampling_frequency = 2 * f_high_run
Marc Arene's avatar
Marc Arene committed
155
        # duration = int(tc_3p5PN) + 1 + 2
Marc Arene's avatar
Marc Arene committed
156
        # reference_frequency = 0
Marc Arene's avatar
Marc Arene committed
157 158 159 160 161 162
        maximum_frequency_ifo = min(maximum_frequency, f_high_run)
        maximum_frequency_injected_waveform = maximum_frequency_ifo
        maximum_frequency_search_waveform = maximum_frequency_ifo

        sampling_frequency = 2 * maximum_frequency_ifo
        # duration = 64
163
        duration = int(tc_3p5PN) + 1 + t_end_minus_tc
Marc Arene's avatar
Marc Arene committed
164
    elif approximant == 'IMRPhenomPv2' and roq:
Marc Arene's avatar
Marc Arene committed
165 166 167
        # cf:
        # - https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group___l_a_l_sim_i_m_r_phenom__c.html#gad3f98acfe9527259a7f73a8ef69a2f7b
        # - line 103 of https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_i_m_r_phenom_d_8c_source.html#l00103
Marc Arene's avatar
Marc Arene committed
168
        params_best_basis, scale_factor = roqu.get_best_segment_params_from_chirp_mass(chirp_mass, roq_directory=roq_directory)
Marc Arene's avatar
Marc Arene committed
169

Marc Arene's avatar
Marc Arene committed
170 171 172
        ext_analysis_dict['roq'] = {}
        ext_analysis_dict['roq']['directory'] = roq_directory + str(int(params_best_basis['seglen'])) + 's/'
        ext_analysis_dict['roq']['params_path'] = ext_analysis_dict['roq']['directory'] + 'params.dat'
Marc Arene's avatar
Marc Arene committed
173 174 175

        rescaled_params = roqu.rescale_params(params_best_basis, scale_factor)

Marc Arene's avatar
Marc Arene committed
176 177
        # minimum_frequency = max(minimum_frequency, rescaled_params['flow'])
        # maximum_frequency_ifo = min(int(maximum_frequency), int(rescaled_params['fhigh']))
Marc Arene's avatar
Marc Arene committed
178
        # sampling_frequency = 2 * maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
179
        # tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
180 181 182 183
        # # int() function because we need to make sure that sampling_freq * duration = integer to the 14 decimal precision
        # duration = min(int(tc_3p5PN + 2 + 1), int(rescaled_params['seglen']))
        # maximum_frequency_injected_waveform = rescaled_params['fhigh']
        # maximum_frequency_search_waveform = maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
184
        # reference_frequency = reference_frequency * scale_factor
Marc Arene's avatar
Marc Arene committed
185 186


Marc Arene's avatar
Marc Arene committed
187
        # Settings which give me consistent results between the classic and the roq compute logL
188
        minimum_frequency_all = rescaled_params['flow']
Marc Arene's avatar
Marc Arene committed
189 190
        maximum_frequency_injected_waveform = rescaled_params['fhigh']
        # maximum_frequency_injected_waveform = min(2048, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
191
        maximum_frequency_ifo = min(maximum_frequency, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
192 193
        maximum_frequency_search_waveform = maximum_frequency_injected_waveform
        # maximum_frequency_search_waveform = maximum_frequency_ifo
194
        # maximum_frequency_ifo = rescaled_params['fhigh']
Marc Arene's avatar
Marc Arene committed
195
        sampling_frequency = 2 * max(maximum_frequency, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
196
        duration = rescaled_params['seglen']
Marc Arene's avatar
Marc Arene committed
197
        reference_frequency = reference_frequency * scale_factor
Marc Arene's avatar
Marc Arene committed
198 199


Marc Arene's avatar
Marc Arene committed
200 201 202



Marc Arene's avatar
Marc Arene committed
203 204 205
        ext_analysis_dict['roq']['params'] = params_best_basis
        ext_analysis_dict['roq']['rescaled_params'] = rescaled_params
        ext_analysis_dict['roq']['scale_factor'] = scale_factor
Marc Arene's avatar
Marc Arene committed
206

207
        tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency_all, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
208 209 210

        LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6
        f_CUT = 0.2
Marc Arene's avatar
Marc Arene committed
211
        M_sec = (mass_1 + mass_2) * LAL_MTSUN_SI
Marc Arene's avatar
Marc Arene committed
212 213 214 215
        M_min_sec = (m1_min + m2_min) * LAL_MTSUN_SI
        f_high = f_CUT / M_sec
        f_high_run = f_CUT / M_min_sec
    else:
Marc Arene's avatar
Marc Arene committed
216 217 218 219 220
        # cf:
        # - https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group___l_a_l_sim_i_m_r_phenom__c.html#gad3f98acfe9527259a7f73a8ef69a2f7b
        # - line 103 of https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_i_m_r_phenom_d_8c_source.html#l00103
        LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6
        f_CUT = 0.2
Marc Arene's avatar
Marc Arene committed
221
        M_sec = (mass_1 + mass_2) * LAL_MTSUN_SI
Marc Arene's avatar
Marc Arene committed
222 223 224
        M_min_sec = (m1_min + m2_min) * LAL_MTSUN_SI
        f_high = f_CUT / M_sec
        f_high_run = f_CUT / M_min_sec
225

Marc Arene's avatar
Marc Arene committed
226
        maximum_frequency_ifo = min(maximum_frequency, f_high_run)
227
        maximum_frequency_injected_waveform = maximum_frequency_ifo
228 229
        maximum_frequency_search_waveform = maximum_frequency_ifo

230
        sampling_frequency = 2 * maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
231
        # duration = 64
Marc Arene's avatar
Marc Arene committed
232 233
        # duration = int(tc_3p5PN) + 1 + t_end_minus_tc # formula for 59 sec
        duration = next_power_of_two(tc_3p5PN + t_end_minus_tc) # formula for 64 sec
234

Marc Arene's avatar
Marc Arene committed
235

Marc Arene's avatar
Marc Arene committed
236 237
    # Use an integer because frame files have an integer start_time
    # hence when extracting a subpart of it, the index will be exact
Marc Arene's avatar
Marc Arene committed
238 239
    start_time = geocent_time + t_end_minus_tc - duration # new formula which should be used
    # start_time = geocent_time  - tc_3p5PN # formula used for reruns of chap 8
Marc Arene's avatar
Marc Arene committed
240
    # start_time = int(geocent_time - tc_3p5PN)
Marc Arene's avatar
Marc Arene committed
241 242
    # if duration is None:
    #     duration = int(geocent_time - start_time) + 1 + 2
Marc Arene's avatar
Marc Arene committed
243 244

    ext_analysis_dict.update(
245 246
        minimum_frequency_ifos = minimum_frequency_ifos,
        minimum_frequency_all = minimum_frequency_all,
247
        maximum_frequency_injected_waveform = maximum_frequency_injected_waveform,
248
        maximum_frequency_search_waveform = maximum_frequency_search_waveform,
249
        maximum_frequency_ifo = maximum_frequency_ifo,
250
        maximum_frequency_generated_waveform = None,
Marc Arene's avatar
Marc Arene committed
251 252
        sampling_frequency = sampling_frequency,
        duration = duration,
253
        tc_3p5PN = tc_3p5PN,
Marc Arene's avatar
Marc Arene committed
254
        start_time = start_time,
255 256
        f_high = f_high,
        f_high_run = f_high_run,
Marc Arene's avatar
Marc Arene committed
257
        approximant = approximant,
Marc Arene's avatar
Marc Arene committed
258
        reference_frequency = reference_frequency
259 260
    )

Marc Arene's avatar
Marc Arene committed
261
    return ext_analysis_dict
262

263 264 265
def next_power_of_two(val):
    return 2**int(np.log(val)/np.log(2) + 1)

Marc Arene's avatar
Marc Arene committed
266
def get_inj_parameters_and_analysis_dict(inj_file_path='../examples/injection_files/GW170817.ini', **analysis_kwargs):
267 268 269 270 271 272 273 274 275 276 277

    injection_parameters = ini_file_to_dict(inj_file_path)

    ext_analysis_dict = compute_extended_analysis_dict(injection_parameters['mass_1'], injection_parameters['mass_2'], injection_parameters['geocent_time'], injection_parameters['chirp_mass'], **analysis_kwargs)

    # These two lines have been added to be able to plot the injected value on phi_c on the corner plots. Otherwise the `phi_c` and `tc_3p5PN` keys are not used in the code.
    injection_parameters['phi_c'] = (injection_parameters['phase'] * 2) % (2*np.pi)
    injection_parameters['tc_3p5PN'] = ext_analysis_dict['tc_3p5PN']

    return injection_parameters, ext_analysis_dict

278 279

if __name__=='__main__':
Marc Arene's avatar
Marc Arene committed
280 281 282 283 284
    from optparse import OptionParser
    usage = """%prog [options]
    Plots the three waveforms in the time domain"""
    parser=OptionParser(usage)

Marc Arene's avatar
Marc Arene committed
285
    parser.add_option("--inj_file", default='../examples/injection_files/GW170817.ini', action="store", type="string", help="""Injection file path leading to the `.ini` file specifying the parameters of the injection.""")
286

Marc Arene's avatar
Marc Arene committed
287 288 289
    (opts,args)=parser.parse_args()

    injection_parameters = ini_file_to_dict(opts.inj_file)
290 291

    pu.print_dict(injection_parameters, indent=3, align_keys=True)
Marc Arene's avatar
Marc Arene committed
292 293

    breakpoint()