set_injection_parameters.py 12 KB
Newer Older
Marc Arene's avatar
Marc Arene committed
1 2 3
import sys
# cf https://docs.python.org/3/tutorial/modules.html
sys.path.append('../')
4
import numpy as np
5 6
from configparser import ConfigParser

7
import bilby.gw.conversion as conv
8

9
from Headers.PN_Coefficients import * # Headers.Constants already imported in PN_Coeff
10
import Library.python_utils as pu
11
import Library.param_utils as paru
Marc Arene's avatar
Marc Arene committed
12

Marc Arene's avatar
Marc Arene committed
13
import Library.CONST as CONST
Marc Arene's avatar
Marc Arene committed
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
import Library.roq_utils as roqu


LAL_PI = 3.141592653589793238462643383279502884
LAL_MSUN_SI = 1.988546954961461467461011951140572744e30
LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6

def Compute_fISCO(Rmin, m1, m2):
    """
    Compute the frequency at the Innermost Stable Circular Orbit
    """

    vISCO = np.sqrt(1.0 / Rmin)
    Mt = m1 + m2
    fmax = vISCO**3 / (PI * GEOM * Mt)      # fmax signal
    return fmax

def Compute_LAL_fISCO(m1_SI, m2_SI):
    m1 = m1_SI / LAL_MSUN_SI
    m2 = m2_SI / LAL_MSUN_SI
    m_sec = (m1 + m2) * LAL_MTSUN_SI
    piM = LAL_PI * m_sec
    vISCO = 1 / np.sqrt(6)
    fISCO = vISCO**3 / piM

    return fISCO
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77


def ComputeChirpTime3p5PN(f_low, m1, m2):
    """
    Computes chirp times at 3.5 PN.

    Inputs:
    -------
        f_low: [float] low frequency cutoff of the detector
        sigpar: [array_like] parameters of the system
    Outputs:
    --------

    """
    Mt = m1 + m2
    Mt_sec = Mt * GEOM           # Total mass in s
    etaM = m1 * m2 / Mt**2
    etaM2 = etaM*etaM

    Tau_0 = tf1 * Mt_sec / etaM
    Tau_2 = tf2 + tf3 * etaM
    Tau_3 = tf4 * PI
    Tau_4 = tf5 + tf6 * etaM + tf7 * etaM2
    Tau_5 = PI*(tf9 + tf8*etaM)
    Tau_6 = tf11 + tf12*PI2 + tf10*(EULER + np.log(4.0)) + ( tf13 + tf14*PI2 )*etaM + tf15*etaM2 + tf16*etaM2*etaM
    Tau_6_log = tf10
    Tau_7 = PI*(tf19 + tf18*etaM + tf17*etaM2 )
    v_0 = pow(PI*Mt_sec*f_low,1.0/3.0)
    v_0_2 = v_0*v_0
    v_0_3 = v_0_2*v_0
    v_0_4 = v_0_3*v_0
    v_0_5 = v_0_4*v_0
    v_0_6 = v_0_5*v_0
    v_0_7 = v_0_6*v_0

    Tau_chirp = Tau_0*pow(v_0,-8.0)*(1.0 + Tau_2*v_0_2 + Tau_3*v_0_3 + Tau_4 *v_0_4 +  Tau_5 *v_0_5 +  (Tau_6 + Tau_6_log*np.log(v_0))*v_0_6 +  Tau_7 *v_0_7 )
    return Tau_chirp

Marc Arene's avatar
Marc Arene committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91
def compute_time_from_flow_to_fhigh_3p5PN(f_low, f_high, mass_1, mass_2):
    """
    Computes the time it takes for the binary to go from f_low to f_high, using 3.5 PN approximation.
    """

    # Compute the time it takes from flow to get to merger
    tc_flow = ComputeChirpTime3p5PN(f_low, mass_1, mass_2)

    # Compute the time it takes from fhigh to get to merger
    tc_fhigh = ComputeChirpTime3p5PN(f_high, mass_1, mass_2)

    # Substracting the two gives the time it take for the binary to go from f_low to f_high

    return tc_flow - tc_fhigh
92

Marc Arene's avatar
Marc Arene committed
93
def ini_file_to_dict(inj_file_path='../examples/injection_files/GW170817.ini'):
94
    config = ConfigParser()
95
    config.read(inj_file_path)
96 97 98
    injection_parameters = pu.config_parser_to_dict(config)['parameters']

    injection_parameters = conv.generate_mass_parameters(injection_parameters)
99 100
    injection_parameters['reduced_mass'] = paru.component_masses_to_reduced_mass(injection_parameters['mass_1'], injection_parameters['mass_2'])

Marc Arene's avatar
Marc Arene committed
101
    # These two lines have been added to be able to plot the injected value on phi_c on the corner plots. Otherwise the `phi_c` and `tc_3p5PN` keys are not used in the code.
102
    # injection_parameters['phi_c'] = (injection_parameters['phase'] * 2) % (2*np.pi)
Marc Arene's avatar
Marc Arene committed
103 104 105 106 107 108 109 110 111 112 113 114 115
    # injection_parameters['tc_3p5PN'] = tc_3p5PN
    return injection_parameters

def compute_extended_analysis_dict(mass_1, mass_2, geocent_time, chirp_mass, **analysis_kwargs):

    approximant = analysis_kwargs['approximant']
    roq = analysis_kwargs['roq']
    roq_directory = analysis_kwargs['roq_b_matrix_directory']
    minimum_frequency = analysis_kwargs['minimum_frequency']
    reference_frequency = analysis_kwargs['reference_frequency']
    maximum_frequency = analysis_kwargs['maximum_frequency']

    ext_analysis_dict = {}
116 117 118 119 120
    ifo_chosen = analysis_kwargs['ifos'].split(',')
    if set.intersection(set(CONST.IFOS_POSSIBLE), set(ifo_chosen)) != set(ifo_chosen):
        raise ValueError("IFOs wrongly chosen: you must choose between {}. Example: '--ifos=H1,V1'. ".format(CONST.IFOS_POSSIBLE))
    else:
        ext_analysis_dict['ifos'] = ifo_chosen
Marc Arene's avatar
Marc Arene committed
121 122 123 124 125
    # approximant = 'TaylorF2'
    # approximant = 'SpinTaylorF2'
    # approximant = 'IMRPhenomD'
    # approximant = 'IMRPhenomPv2'
    # approximant = 'IMRPhenomPv2_NRTidal'
126 127 128 129

    # Set the duration and sampling frequency of the data segment that we're going
    # to inject the signal into. For the
    # TaylorF2 waveform, we cut the signal close to the isco frequency
Marc Arene's avatar
Marc Arene committed
130
    tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency, mass_1, mass_2)
131 132 133 134
    # We integrate the signal up to the frequency of the "Innermost stable circular orbit (ISCO)"
    R_isco = 6.      # Orbital separation at ISCO, in geometric units. 6M for PN ISCO; 2.8M for EOB
    m1_min = 1
    m2_min = 1
Marc Arene's avatar
Marc Arene committed
135
    f_ISCO = Compute_fISCO(R_isco, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
136
    f_ISCO_run = Compute_fISCO(R_isco, m1_min, m2_min)
Marc Arene's avatar
Marc Arene committed
137
    duration = None
138
    t_end_minus_tc = 2
Marc Arene's avatar
Marc Arene committed
139
    # f_ISCO = Compute_LAL_fISCO(mass_1 * LAL_MSUN_SI, mass_2 * LAL_MSUN_SI)
Marc Arene's avatar
Marc Arene committed
140
    # f_ISCO_run = Compute_LAL_fISCO(m1_min * LAL_MSUN_SI, m2_min * LAL_MSUN_SI)
Marc Arene's avatar
Marc Arene committed
141
    if approximant == 'TaylorF2':
Marc Arene's avatar
Marc Arene committed
142 143
        f_high = f_ISCO
        f_high_run = f_ISCO_run
Marc Arene's avatar
Marc Arene committed
144 145 146 147 148
        # maximum_frequency_injected_waveform = 0
        # maximum_frequency_search_waveform = 0
        # # maximum_frequency_ifo = min(4096 * 4, f_high_run)
        # maximum_frequency_ifo = f_high_run
        # sampling_frequency = 2 * f_high_run
Marc Arene's avatar
Marc Arene committed
149
        # duration = int(tc_3p5PN) + 1 + 2
Marc Arene's avatar
Marc Arene committed
150
        # reference_frequency = 0
Marc Arene's avatar
Marc Arene committed
151 152 153 154 155 156
        maximum_frequency_ifo = min(maximum_frequency, f_high_run)
        maximum_frequency_injected_waveform = maximum_frequency_ifo
        maximum_frequency_search_waveform = maximum_frequency_ifo

        sampling_frequency = 2 * maximum_frequency_ifo
        # duration = 64
157
        duration = int(tc_3p5PN) + 1 + t_end_minus_tc
Marc Arene's avatar
Marc Arene committed
158
    elif approximant == 'IMRPhenomPv2' and roq:
Marc Arene's avatar
Marc Arene committed
159 160 161
        # cf:
        # - https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group___l_a_l_sim_i_m_r_phenom__c.html#gad3f98acfe9527259a7f73a8ef69a2f7b
        # - line 103 of https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_i_m_r_phenom_d_8c_source.html#l00103
Marc Arene's avatar
Marc Arene committed
162
        params_best_basis, scale_factor = roqu.get_best_segment_params_from_chirp_mass(chirp_mass, roq_directory=roq_directory)
Marc Arene's avatar
Marc Arene committed
163

Marc Arene's avatar
Marc Arene committed
164 165 166
        ext_analysis_dict['roq'] = {}
        ext_analysis_dict['roq']['directory'] = roq_directory + str(int(params_best_basis['seglen'])) + 's/'
        ext_analysis_dict['roq']['params_path'] = ext_analysis_dict['roq']['directory'] + 'params.dat'
Marc Arene's avatar
Marc Arene committed
167 168 169

        rescaled_params = roqu.rescale_params(params_best_basis, scale_factor)

Marc Arene's avatar
Marc Arene committed
170 171
        # minimum_frequency = max(minimum_frequency, rescaled_params['flow'])
        # maximum_frequency_ifo = min(int(maximum_frequency), int(rescaled_params['fhigh']))
Marc Arene's avatar
Marc Arene committed
172
        # sampling_frequency = 2 * maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
173
        # tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
174 175 176 177
        # # int() function because we need to make sure that sampling_freq * duration = integer to the 14 decimal precision
        # duration = min(int(tc_3p5PN + 2 + 1), int(rescaled_params['seglen']))
        # maximum_frequency_injected_waveform = rescaled_params['fhigh']
        # maximum_frequency_search_waveform = maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
178
        # reference_frequency = reference_frequency * scale_factor
Marc Arene's avatar
Marc Arene committed
179 180


Marc Arene's avatar
Marc Arene committed
181
        # Settings which give me consistent results between the classic and the roq compute logL
Marc Arene's avatar
Marc Arene committed
182
        minimum_frequency = rescaled_params['flow']
Marc Arene's avatar
Marc Arene committed
183 184
        maximum_frequency_injected_waveform = rescaled_params['fhigh']
        # maximum_frequency_injected_waveform = min(2048, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
185
        maximum_frequency_ifo = min(maximum_frequency, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
186 187
        maximum_frequency_search_waveform = maximum_frequency_injected_waveform
        # maximum_frequency_search_waveform = maximum_frequency_ifo
188
        # maximum_frequency_ifo = rescaled_params['fhigh']
Marc Arene's avatar
Marc Arene committed
189
        sampling_frequency = 2 * max(maximum_frequency, rescaled_params['fhigh'])
Marc Arene's avatar
Marc Arene committed
190
        duration = rescaled_params['seglen']
Marc Arene's avatar
Marc Arene committed
191
        reference_frequency = reference_frequency * scale_factor
Marc Arene's avatar
Marc Arene committed
192 193


Marc Arene's avatar
Marc Arene committed
194 195 196



Marc Arene's avatar
Marc Arene committed
197 198 199
        ext_analysis_dict['roq']['params'] = params_best_basis
        ext_analysis_dict['roq']['rescaled_params'] = rescaled_params
        ext_analysis_dict['roq']['scale_factor'] = scale_factor
Marc Arene's avatar
Marc Arene committed
200

Marc Arene's avatar
Marc Arene committed
201
        tc_3p5PN = ComputeChirpTime3p5PN(minimum_frequency, mass_1, mass_2)
Marc Arene's avatar
Marc Arene committed
202 203 204

        LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6
        f_CUT = 0.2
Marc Arene's avatar
Marc Arene committed
205
        M_sec = (mass_1 + mass_2) * LAL_MTSUN_SI
Marc Arene's avatar
Marc Arene committed
206 207 208 209
        M_min_sec = (m1_min + m2_min) * LAL_MTSUN_SI
        f_high = f_CUT / M_sec
        f_high_run = f_CUT / M_min_sec
    else:
Marc Arene's avatar
Marc Arene committed
210 211 212 213 214
        # cf:
        # - https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group___l_a_l_sim_i_m_r_phenom__c.html#gad3f98acfe9527259a7f73a8ef69a2f7b
        # - line 103 of https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/_l_a_l_sim_i_m_r_phenom_d_8c_source.html#l00103
        LAL_MTSUN_SI = 4.925491025543575903411922162094833998e-6
        f_CUT = 0.2
Marc Arene's avatar
Marc Arene committed
215
        M_sec = (mass_1 + mass_2) * LAL_MTSUN_SI
Marc Arene's avatar
Marc Arene committed
216 217 218
        M_min_sec = (m1_min + m2_min) * LAL_MTSUN_SI
        f_high = f_CUT / M_sec
        f_high_run = f_CUT / M_min_sec
219

Marc Arene's avatar
Marc Arene committed
220
        maximum_frequency_ifo = min(maximum_frequency, f_high_run)
221
        maximum_frequency_injected_waveform = maximum_frequency_ifo
222 223
        maximum_frequency_search_waveform = maximum_frequency_ifo

224
        sampling_frequency = 2 * maximum_frequency_ifo
Marc Arene's avatar
Marc Arene committed
225
        # duration = 64
Marc Arene's avatar
Marc Arene committed
226 227
        # duration = int(tc_3p5PN) + 1 + t_end_minus_tc # formula for 59 sec
        duration = next_power_of_two(tc_3p5PN + t_end_minus_tc) # formula for 64 sec
228

Marc Arene's avatar
Marc Arene committed
229

Marc Arene's avatar
Marc Arene committed
230 231
    # Use an integer because frame files have an integer start_time
    # hence when extracting a subpart of it, the index will be exact
Marc Arene's avatar
Marc Arene committed
232 233
    start_time = geocent_time + t_end_minus_tc - duration # new formula which should be used
    # start_time = geocent_time  - tc_3p5PN # formula used for reruns of chap 8
Marc Arene's avatar
Marc Arene committed
234
    # start_time = int(geocent_time - tc_3p5PN)
Marc Arene's avatar
Marc Arene committed
235 236
    # if duration is None:
    #     duration = int(geocent_time - start_time) + 1 + 2
Marc Arene's avatar
Marc Arene committed
237 238

    ext_analysis_dict.update(
239
        minimum_frequency = minimum_frequency,
240
        maximum_frequency_injected_waveform = maximum_frequency_injected_waveform,
241
        maximum_frequency_search_waveform = maximum_frequency_search_waveform,
242
        maximum_frequency_ifo = maximum_frequency_ifo,
243
        maximum_frequency_generated_waveform = None,
Marc Arene's avatar
Marc Arene committed
244 245
        sampling_frequency = sampling_frequency,
        duration = duration,
246
        tc_3p5PN = tc_3p5PN,
Marc Arene's avatar
Marc Arene committed
247
        start_time = start_time,
248 249
        f_high = f_high,
        f_high_run = f_high_run,
Marc Arene's avatar
Marc Arene committed
250
        approximant = approximant,
Marc Arene's avatar
Marc Arene committed
251
        reference_frequency = reference_frequency
252 253
    )

Marc Arene's avatar
Marc Arene committed
254
    return ext_analysis_dict
255

256 257 258
def next_power_of_two(val):
    return 2**int(np.log(val)/np.log(2) + 1)

Marc Arene's avatar
Marc Arene committed
259
def get_inj_parameters_and_analysis_dict(inj_file_path='../examples/injection_files/GW170817.ini', **analysis_kwargs):
260 261 262 263 264 265 266 267 268 269 270

    injection_parameters = ini_file_to_dict(inj_file_path)

    ext_analysis_dict = compute_extended_analysis_dict(injection_parameters['mass_1'], injection_parameters['mass_2'], injection_parameters['geocent_time'], injection_parameters['chirp_mass'], **analysis_kwargs)

    # These two lines have been added to be able to plot the injected value on phi_c on the corner plots. Otherwise the `phi_c` and `tc_3p5PN` keys are not used in the code.
    injection_parameters['phi_c'] = (injection_parameters['phase'] * 2) % (2*np.pi)
    injection_parameters['tc_3p5PN'] = ext_analysis_dict['tc_3p5PN']

    return injection_parameters, ext_analysis_dict

271 272

if __name__=='__main__':
Marc Arene's avatar
Marc Arene committed
273 274 275 276 277
    from optparse import OptionParser
    usage = """%prog [options]
    Plots the three waveforms in the time domain"""
    parser=OptionParser(usage)

Marc Arene's avatar
Marc Arene committed
278
    parser.add_option("--inj_file", default='../examples/injection_files/GW170817.ini', action="store", type="string", help="""Injection file path leading to the `.ini` file specifying the parameters of the injection.""")
279

Marc Arene's avatar
Marc Arene committed
280 281 282
    (opts,args)=parser.parse_args()

    injection_parameters = ini_file_to_dict(opts.inj_file)
283 284

    pu.print_dict(injection_parameters, indent=3, align_keys=True)
Marc Arene's avatar
Marc Arene committed
285 286

    breakpoint()