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Abstract—During data collection and analysis'?, it is often
necessary to identify and possibly remove outliers that exist.
An objective method for identifying outliers to be removed
is critical. Many automated outlier detection methods are
available. However, many are limited by assumptions of a
distribution or require upper and lower predefined
boundaries in which the data should exist. If there is a
known distribution for the data, then using that distribution
can aid in finding outliers. Often, a distribution is not
known, or the experimenter does not want to make an
assumption about a certain distribution. Also, enough
information may not exist about a set of data to be able to
determine reliable upper and lower boundaries. For these
cases, an outlier detection method, using the empirical data
and based upon Chebyshev’s inequality, was formed. This
method allows for detection of multiple outliers, not just
one at a time. This method also assumes that the data are
independent measurements and that a relatively small
percentage of outliers is contained in the data.

Chebyshev’s inequality gives a bound of what percentage of
the data falls outside of k standard deviations from the
mean. This calculation holds no assumptions about the
distribution of the data. If the data are known to be
unimodal without a known distribution, then the method can
be improved by using the unimodal Chebyshev inequality.
The Chebyshev Outlier Detection method uses the
Chebyshev inequality to calculate upper and lower outlier
detection limits. Data values that are not within the range of
the upper and lower limits would be considered data
outliers. Outliers could be due to erroneous data or could
indicate that the data are correct but highly unusual. This
algorithm does not ascertain the reason for the outlier; it
identifies potential outlier data, allowing for domain experts
to investigate the cause.
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1. INTRODUCTION

When data are being collected, it is often necessary to
identify outliers that exist. There are several possible
reasons for outliers, including but not limited to

e typographical and other forms of a human
transferring the data errors

e misunderstanding the question (for surveys)

e instrumentation breakdown or out of calibration
(for instrument-generated data)

e one population dominating the sample of the data
and a separate and much smaller sample from
different population, with distinctly different
characteristics, being included in the data.

It may be easy to plot the data univariately and visually
detect the outliers. However, this becomes a time-
consuming problem when there are hundreds of different
variables in which outliers need to be identified.
Additionally, it can allow subjective judgment (colored by
the reviewer’s biases) to affect the selection. Furthermore,
different reviewers might pick different observations to be
identified as outliers.

Many automated outlier detection methods are available but
many of those are limited by assumptions of a distribution
or limited in being able to detect only single outliers. If
there is a known distribution for the data, then using that
distribution can aid in finding outliers. Often, a distribution
is not known, or the experimenter does not want to make an
assumption about a certain distribution. For these cases, an
outlier detection method, based upon Chebyshev’s
inequality, was formed. This method also allows for
detection of multiple outliers.



2. METHODOLOGY

Chebyshev’s inequality (otherwise known as Chebyshev’s
theorem)[1] was designed to determine a lower bound of the
percentage of data that exists within & number of standard
deviations from the mean. In the case of data with a normal
(bell-shaped) distribution, it is known that about 95% of the
data will fall within two standard deviations from the mean.
This means that you would expect to see about 5% of the
data outside two standard deviations from the mean.

When the data distribution is unknown, Chebyshev’s
inequality can be used, as shown by

1
P X —uls kG)Z(l—k—Q) (1)

where X represents the data, x4 is the data mean, O is the
standard deviation of the data, and k represents the number
of standard deviations from the mean. While no
distributional assumptions are made, it is expected that the
observations are independent from one another. From
Equation (1), it can be shown that at least 75% (3/4) of the
data would fall within two standard deviations (k = 2) from
the mean. Chebyshev’s inequality gives a lower bound for
the percentage of data that is within a certain number of
standard deviations from the mean, not dependent upon any
knowing how the data is distributed.

Chebyshev’s inequality is commonly used to get a lower
bound for the amount of data close to the mean.
Conversely, it also gives an upper bound on the amount of
data that is not k standard deviations from the mean.
Equation (1) can then be changed to focus on the amount of
data away from the mean. This results in

1
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where 4 is the mean (sample mean is used to approximate
M), o is the standard deviation (approximated by s, the
sample standard deviation), and k is the number of standard
deviations of interest. Using Equation (2), it would be
concluded that at the most, 25% of the data is outside two
standard deviations from the mean.

The Chebyshev’s inequality assumes NO known
distribution for the data. There is also an extension of
Chebyshev’s inequality that allows for the assumption of
unimodal data (data with only one peak). Although a
distribution may not be known for a given set of data,
whether or not it has only one mode can be known through
plotting, or domain knowledge about the data. The equation
for the unimodal Chebyshev’s inequality that measures the

percentage of data outside of & standard deviations from the
center is

4
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where M is the mode and B> = 0> + (M — 1)*, where u

is the mean (sample mean is used to approximate L), o is
the standard deviation. It is important to note that this
equation uses the mode as the measure of central tendency,
instead of the mean (as in Equation (2)). It also uses B as a
measure of the variability.

Under the assumption of unimodal data, it would be
concluded that at the most, 11% (1/9) of the data is outside
two standard deviations from the mode. Although this was
not as good as using a normal distribution (5% outside two
standard deviations), it was a large reduction in the portion
of the data values that can be outside the interval over using
the original Chebyshev’s inequality estimate of, at most,
25% of the data outside the two standard deviations from
the center. The methodology shown in Equations (2) and
(3) now will be used to form the Chebyshev outlier
detection method.

The Chebyshev outlier detection method uses Chebyshev’s
inequality to calculate an outlier detection value (ODV).
The ODV can be calculated as an upper limit (OD V) and/or
a lower limit (ODV;). When any data value is more
extreme than the appropriate ODV, it is considered to be an
outlier.

The calculation of the ODV is a two-stage process. The first
stage determines which data are definitely not outliers and
should be used in calculating the standard deviation, mode,
and mean within stage two. This first stage is made up of
the following steps:

1. A value for p; is decided. The value of p; is used
to determine which data are potential outliers. It
should be larger than the overall probability of
seeing an expected outlier. Values like 0.10, 0.05,
or 0.01 are reasonable for p;.

2. Solve for k. p; is then used to find & using either
Equation (2) if the data are not unimodal or

Equation (3) if the data are unimodal. Using
Equation (2) and solving for & results in
1
k=——. 4)

Using Equation (3) when the data are unimodal
results in the following equation for £:



k= “
N

For example, if p; = 0.01, then £ would be 10 using
Equation (4) and 6.67 when using Equation (5).
Anything more extreme than k standard deviations
from the mean would be considered a step 1
outlier.

3. The ODVs are then calculated using either
Equation (2) or Equation (3), depending on
whether or not the data are unimodal. These
outlier detection values are different from the final
ODVs, so a “1” will be added to the subscript for
the stage 1 calculations. In the case that the data
are not unimodal, the following equations are used:

ODV\y =u+k*o (62)

ODV,, =u-k*o (6b)

where ¢ and O are calculated from the data and
Equation (2). If the user is interested in finding
larger than normal outliers, then Equation (6a) is
used. If the user is interested in finding smaller
than normal outliers, then Equation (6b) is used.

In the case that the data are unimodal, then the
following equation can be used:

ODV,, =M +k*B (7a)

ODV,, =M —k*B (7b)

where £ is found in step 2, and where B and M are
calculated using all of the data and Equation (3).
Equations (6a), (6b), (7a), and (7b) are designed to
find stage 1 outliers in both the upper and lower
tails of the data distribution.

All data that are more extreme than the ODVs are removed
from the data for the second phase of the algorithm. This
creates a truncated dataset to be used in stage 2 to calculate
the mean and standard deviation. Stage 1 is used to remove
possible outliers from the mean and standard deviation
calculations necessary for Chebyshev inequality. This
removes possible outlier bias from these calculations.

The second stage uses the truncated dataset to calculate the
appropriate ODVs that are then applied to the complete
dataset and used to identify outliers. This stage is made up
of the following steps:

1. A value for p, is decided. This is the expected
probability of seeing an outlier. This is usually
smaller than p; because it will be used to actually
determine outliers. Values like 0.01, 0.001, or
0.0001 are reasonable for p,.

2. Solve for k. P, is then used to solve for k using
either Equation (2) if the data are not unimodal or
from Equation (3) if the data are unimodal. Using
Equation (2 )and solving for & results in

k=—— . (8)

Using Equation (3) when the data are unimodal
results in the following equation for £:

k= 2 (€))

3p,

For example, if p; = 0.001, then £ would be 31.6
using Equation (8) and 21.1 when using Equation
(9). Anything more extreme than k standard
deviations from the mean would be considered a
stage | outlier.

3. The ODYV is then calculated using Equations (6a)
and (6b) when the data are not unimodal or
Equations (7a) and (7b) when the data are
unimodal. It is important to note that the u, o, M,
and B are calculated using the truncated dataset.
This keeps them unbiased by possible outliers.

4. All data (from the complete dataset) that are more
extreme than the appropriate ODV are considered
to be outliers.

The first stage is used to trim the data from values that are
possibly outliers. Because the ODV is calculated using the
standard deviation from the data, including outliers in the
calculation of the standard deviation will inflate the ODV.
This makes it more difficult to find outliers that are truly
different from the rest of the data. Trimming off a small
percentage of the most extreme values helps counter this
effect.

The researcher can change the values of p; and p,,
depending on the characteristics and goals of the
experiment. If the goal of the outlier detection is to flag
only those values that are quite different from the
population, then the researcher will set p, very small, like
0.001 or 0.0001. If larger than normal values are being
trimmed from the data, then p, may be set at 0.01 or 0.05.
The values of p; will change according to the beliefs of the
researcher as to what proportion of the data should be used



in the calculations. The two-stage process is designed so
that p; should be larger than p,.

3. EXAMPLE

The Chebyshev outlier detection method works when data
are integer or continuous. The method is not designed to
find outliers within qualitative datasets. An example was
created to work through the steps using integers for
simplicity.  First the calculations will be performed
assuming that the data have no distribution (non-unimodal).
Then the same process will be performed assuming that the
data are unimodal.

A sample dataset was designed to show how the Chebyshev
outlier detection method works. The dataset consists of 50
data points, with the following values and number of the
data value shown in parentheses: 0 (1), 5 (4), 6 (10), 7 (16),
8 (12), 9 (3), 10 (1), 15 (1), 20 (1), and 25 (1). Figure 1
shows a histogram of these data. Outliers will be
determined using both the non-unimodal method and
unimodal method for example and comparison purposes.

15

10
L

Frequency

T T T T T T
0 5 10 15 20 25
Data Value

Figure 1 — Histogram of the Sample Data

Non-Unimodal Chebyshev Outlier Method Example

Although the data appear to be unimodal, this subsection
will assume the data are not unimodal for illustrational
purposes. The first step is to find which data points are
possible outliers that should not be included in calculations
of the mean and standard deviation. Both upper and lower
tails will be explored. A value of p; = 0.10 was chosen.
Using Equation (4), this resulted in a & value of 3.16.

The next part within stage 1 is to calculate ODV;y and
ODV;;. Equations (6a) and (6b) were used to make these
calculations. The sample mean of 7.7 was used to estimate
4, while the sample standard deviation of 3.6 was used to
estimate ¢ . This resulted in ODV;;=19.13 and ODV;; = -
3.73. Two data points (20 and 25) were outside the

detection values, so they were not included in the stage 2
calculations. Figure 2 shows the ODVs and the data points
that were outside of the ODV limits.

Stage 2 calculates the actual ODVs that are used in
determining which data are outliers. For this example, a
value of p, = 0.05 was chosen. Using Equation (4), this
resulted in a k value of 4.47. Equations (6a) and (6b) were
then used to calculate ODVy and ODV;. The sample mean
of the truncated dataset was 7.1 with a standard deviation of
1.9. This resulted in outlier detection values of 15.6 for
ODVy and -1.5 for ODV;. Figure 3 shows two data
points—20 and 25—were identified as outliers. These
calculations assumed a non-unimodal distribution and a
probability of outliers (p;) of 0.05. The unimodal
distribution calculations will be shown next, using the same
example data.

© ODV(L) ODV(U)
o |
-
c
E]
g
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0+ Step 1 Outliers
- 9 @
T T T T T T T
-5 0 5 10 15 20 25

Data Value

Figure 2 — Non-Unimodal Stage 1 Outliers Identified

Unimodal Chebyshev Outlier Method Example

As can be seen in the histogram in Figure 1, the data appear
to be unimodal because it contains only one peak. This
indicates that the unimodal Chebyshev outlier method is
appropriate to use. This subsection will identify outliers
using the unimodal method, and then the results can be
compared to the results just discussed using the non-
unimodal method.

The first stage is to find which data points are possible
outliers that should not be included in calculations of the
mean and standard deviation. A value of p; = 0.10 was
chosen, and both tails will be explored. Using Equation (5)
resulted in a k value of 2.11.
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Figure 3 — Outliers Identified Using Non-Unimodal
Chebyshev

The next step within stage 1 is to calculate ODV;y and
ODV;;. Equations (7a) and (7b) were used to make these
calculations. The mode (M) was 7 for the sample data. B
was calculated as 3.68 from Equation (3) using the sample
standard deviation of 3.6 (o), and the sample mean of 7.7
(u). This resulted in ODV;y = 14.76 and ODV;; = -0.76.
Three data points (15, 20, and 25) were outside the
detection values, so they were not included in the truncated
dataset used in the stage 2 calculations. Figure 4 shows the
ODVs and the data points that were outside the ODV limits.

oDV(L) ODV(U)
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Figure 4 — Unimodal Stage 1 Outliers Identified

Stage 2 calculates the actual ODVs that are used in
determining which data are outliers. For this example, a
value of p, = 0.05 was chosen. Using Equation (5), this
resulted in a &k value of 2.98. Equations (7a) and (7b) were
then used to calculate ODVy and ODV;. The mode (M) was
7 for the sample data. B was calculated as 1.53 from
Equation (3) using the sample standard deviation of 1.53 (o)
and the sample mean of 6.9 (1), both calculated from the
truncated dataset. This resulted in ODV,; = 11.57 and ODV;,

= 2.43. Four data points (0, 15, 20, and 25) were outside
the detection values. These data points were considered to
be outliers. Figure 5 shows the ODV values and the outlier
data points that were outside the ODV limits.
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Figure 5 — Outliers Identified Using Unimodal Chebyshev

Comparison of the Methods

Both methods used the same data and the same probabilities
of outliers with p;=0.10 and p, = 0.05. In comparison, the
non-unimodal Chebyshev outlier method identified two
outlier data points, 20 and 25. The unimodal Chebyshev
outlier method identified four outlier data points—0, 15, 20,
and 25. The unimodal method will always result in tighter
limits. It is recommended that if the data are expected to be
unimodal, the unimodal Chebyshev method be employed.

The decision as to what the probability values should be is a
key to the outlier decision making process. The researcher
needs to assess the risk and cost involved in making the
error of identifying an outlier incorrectly and the error in
not identifying a data point that is an outlier. If it is more
costly to incorrectly identify a data point as an outlier, then
the probabilities should be set very low. If the incorrect
identification of data points as outliers is low cost and low
risk, then the probabilities should be set higher.

4. CONCLUSIONS

Data outliers can have a significant impact upon data-driven
decisions. In many cases, the outliers do not reflect the true
nature of the data and, hence, should not be included in the
analyses. The outlier detection method discussed in this
paper uses Chebyshev’s inequality to form a data-driven
outlier detection method that is not dependent upon
knowing the distribution of the data. It also does not rely on
domain knowledge to determine outliers.
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