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Abstract—During data collection and analysis1,2, it is often 
necessary to identify and possibly remove outliers that exist. 
 An objective method for identifying outliers to be removed 
is critical.   Many automated outlier detection methods are 
available.  However, many are limited by assumptions of a 
distribution or require upper and lower predefined 
boundaries in which the data should exist.  If there is a 
known distribution for the data, then using that distribution 
can aid in finding outliers.  Often, a distribution is not 
known, or the experimenter does not want to make an 
assumption about a certain distribution.  Also, enough 
information may not exist about a set of data to be able to 
determine reliable upper and lower boundaries.  For these 
cases, an outlier detection method, using the empirical data 
and based upon Chebyshev’s inequality, was formed.  This 
method allows for detection of multiple outliers, not just 
one at a time.  This method also assumes that the data are 
independent measurements and that a relatively small 
percentage of outliers is contained in the data. 
 
Chebyshev’s inequality gives a bound of what percentage of 
the data falls outside of k standard deviations from the 
mean.  This calculation holds no assumptions about the 
distribution of the data.  If the data are known to be 
unimodal without a known distribution, then the method can 
be improved by using the unimodal Chebyshev inequality.  
The Chebyshev Outlier Detection method uses the 
Chebyshev inequality to calculate upper and lower outlier 
detection limits.  Data values that are not within the range of 
the upper and lower limits would be considered data 
outliers.  Outliers could be due to erroneous data or could 
indicate that the data are correct but highly unusual.  This 
algorithm does not ascertain the reason for the outlier; it 
identifies potential outlier data, allowing for domain experts 
to investigate the cause. 

TABLE OF CONTENTS 

1. INTRODUCTION......................................................1 
2. METHODOLOGY ....................................................2 
3. EXAMPLES .............................................................4 
4. CONCLUSIONS .......................................................5 
ACKNOWLEDGMENTS ...............................................6 
                                                           
1 0-7803-8870-4/05/$20.00© 2005 IEEE 
2 IEEEAC paper #1198, Version 3, Updated December 9, 2004 

REFERENCES............................................................. 6 
BIOGRAPHIES............................................................ 6 

1. INTRODUCTION 

When data are being collected, it is often necessary to 
identify outliers that exist.  There are several possible 
reasons for outliers, including but not limited to 

• typographical and other forms of a human 
transferring the data errors 

• misunderstanding the question (for surveys) 

• instrumentation breakdown or out of calibration 
(for instrument-generated data) 

• one population dominating the sample of the data 
and a separate and much smaller sample from 
different population, with distinctly different 
characteristics, being included in the data. 

 

It may be easy to plot the data univariately and visually 
detect the outliers.  However, this becomes a time-
consuming problem when there are hundreds of different 
variables in which outliers need to be identified.  
Additionally, it can allow subjective judgment (colored by 
the reviewer’s biases) to affect the selection.  Furthermore, 
different reviewers might pick different observations to be 
identified as outliers.  

Many automated outlier detection methods are available but 
many of those are limited by assumptions of a distribution 
or limited in being able to detect only single outliers.  If 
there is a known distribution for the data, then using that 
distribution can aid in finding outliers.  Often, a distribution 
is not known, or the experimenter does not want to make an 
assumption about a certain distribution.  For these cases, an 
outlier detection method, based upon Chebyshev’s 
inequality, was formed.  This method also allows for 
detection of multiple outliers. 
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2. METHODOLOGY 

Chebyshev’s inequality (otherwise known as Chebyshev’s 
theorem)[1] was designed to determine a lower bound of the 
percentage of data that exists within k number of standard 
deviations from the mean.  In the case of data with a normal 
(bell-shaped) distribution, it is known that about 95% of the 
data will fall within two standard deviations from the mean. 
 This means that you would expect to see about 5% of the 
data outside two standard deviations from the mean.   

When the data distribution is unknown, Chebyshev’s 
inequality can be used, as shown by  

 )11()|(| 2k
kXP −≥≤− σµ  (1) 

where X represents the data, µ is the data mean, σ  is the 
standard deviation of the data, and k represents the number 
of standard deviations from the mean.  While no 
distributional assumptions are made, it is expected that the 
observations are independent from one another.  From 
Equation (1), it can be shown that at least 75% (3/4) of the 
data would fall within two standard deviations (k = 2) from 
the mean.  Chebyshev’s inequality gives a lower bound for 
the percentage of data that is within a certain number of 
standard deviations from the mean, not dependent upon any 
knowing how the data is distributed. 

Chebyshev’s inequality is commonly used to get a lower 
bound for the amount of data close to the mean.  
Conversely, it also gives an upper bound on the amount of 
data that is not k standard deviations from the mean.  
Equation (1) can then be changed to focus on the amount of 
data away from the mean.  This results in  

 2

1)|(|
k

kXP ≤≥− σµ  (2) 

where µ is the mean (sample mean is used to approximate 
µ), σ is the standard deviation (approximated by s, the 
sample standard deviation), and k is the number of standard 
deviations of interest.  Using Equation (2), it would be 
concluded that at the most, 25% of the data is outside two 
standard deviations from the mean.  

The Chebyshev’s inequality assumes NO known 
distribution for the data.  There is also an extension of 
Chebyshev’s inequality that allows for the assumption of 
unimodal data (data with only one peak).  Although a 
distribution may not be known for a given set of data, 
whether or not it has only one mode can be known through 
plotting, or domain knowledge about the data.  The equation 
for the unimodal Chebyshev’s inequality that measures the 

percentage of data outside of k standard deviations from the 
center is 

 29
4)|(|
k

kBMXP
∗

≤≥−  (3) 

where M is the mode and 222 )( µσ −+= MB , where  µ 
is the mean (sample mean is used to approximate µ), σ is 
the standard deviation.  It is important to note that this 
equation uses the mode as the measure of central tendency, 
instead of the mean (as in Equation (2)).  It also uses B as a 
measure of the variability. 

Under the assumption of unimodal data, it would be 
concluded that at the most, 11% (1/9) of the data is outside 
two standard deviations from the mode.  Although this was 
not as good as using a normal distribution (5% outside two 
standard deviations), it was a large reduction in the portion 
of the data values that can be outside the interval over using 
the original Chebyshev’s inequality estimate of, at most, 
25% of the data outside the two standard deviations from 
the center.  The methodology shown in Equations (2) and 
(3) now will be used to form the Chebyshev outlier 
detection method. 

The Chebyshev outlier detection method uses Chebyshev’s 
inequality to calculate an outlier detection value (ODV).  
The ODV can be calculated as an upper limit (ODVU) and/or 
a lower limit (ODVL).  When any data value is more 
extreme than the appropriate ODV, it is considered to be an 
outlier.   

The calculation of the ODV is a two-stage process.  The first 
stage determines which data are definitely not outliers and 
should be used in calculating the standard deviation, mode, 
and mean within stage two.  This first stage is made up of 
the following steps: 

1. A value for p1 is decided.  The value of p1 is used 
to determine which data are potential outliers.  It 
should be larger than the overall probability of 
seeing an expected outlier.  Values like 0.10, 0.05, 
or 0.01 are reasonable for p1.   

2. Solve for k.  p1 is then used to find k using either 
Equation (2) if the data are not unimodal or 
Equation (3) if the data are unimodal.  Using 
Equation (2) and solving for k results in  

 
1

1
p

k =  . (4) 

Using Equation (3) when the data are unimodal 
results in the following equation for k: 
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13

2
p

k =  . (5) 

For example, if p1 = 0.01, then k would be 10 using 
Equation (4) and 6.67 when using Equation (5).  
Anything more extreme than k standard deviations 
from the mean would be considered a step 1 
outlier.  

3. The ODVs are then calculated using either 
Equation (2) or Equation (3), depending on 
whether or not the data are unimodal.  These 
outlier detection values are different from the final 
ODVs, so a “1” will be added to the subscript for 
the stage 1 calculations.  In the case that the data 
are not unimodal, the following equations are used: 

  σµ ∗+= kODV U1   (6a) 

 σµ ∗−= kODV L1  (6b) 

where µ and σ  are calculated from the data and 
Equation (2).  If the user is interested in finding 
larger than normal outliers, then Equation (6a) is 
used.  If the user is interested in finding smaller 
than normal outliers, then Equation (6b) is used.   

In the case that the data are unimodal, then the 
following equation can be used: 

 BkMODV U ∗+=1  (7a) 

 BkMODV L ∗−=1  (7b) 

where k is found in step 2, and where B and M are 
calculated using all of the data and Equation (3).  
Equations (6a), (6b), (7a), and (7b) are designed to 
find stage 1 outliers in both the upper and lower 
tails of the data distribution.   

All data that are more extreme than the ODVs are removed 
from the data for the second phase of the algorithm.  This 
creates a truncated dataset to be used in stage 2 to calculate 
the mean and standard deviation.  Stage 1 is used to remove 
possible outliers from the mean and standard deviation 
calculations necessary for Chebyshev inequality.  This 
removes possible outlier bias from these calculations. 

The second stage uses the truncated dataset to calculate the 
appropriate ODVs that are then applied to the complete 
dataset and used to identify outliers.  This stage is made up 
of the following steps: 

1. A value for p2 is decided.  This is the expected 
probability of seeing an outlier.  This is usually 
smaller than p1 because it will be used to actually 
determine outliers.  Values like 0.01, 0.001, or 
0.0001 are reasonable for p2. 

2. Solve for k.  P2 is then used to solve for k using 
either Equation (2) if the data are not unimodal or 
from Equation (3) if the data are unimodal.  Using 
Equation (2 )and solving for k results in  

 
2

1
p

k =  . (8) 

Using Equation (3) when the data are unimodal 
results in the following equation for k: 

  
23

2
p

k =  . (9) 

For example, if p1 = 0.001, then k would be 31.6 
using Equation (8) and 21.1 when using Equation 
(9). Anything more extreme than k standard 
deviations from the mean would be considered a 
stage 1 outlier. 

3. The ODV is then calculated using Equations (6a) 
and (6b) when the data are not unimodal or 
Equations (7a) and (7b) when the data are 
unimodal.  It is important to note that the µ, σ, M, 
and B are calculated using the truncated dataset.  
This keeps them unbiased by possible outliers. 

4. All data (from the complete dataset) that are more 
extreme than the appropriate ODV are considered 
to be outliers. 

The first stage is used to trim the data from values that are 
possibly outliers.  Because the ODV is calculated using the 
standard deviation from the data, including outliers in the 
calculation of the standard deviation will inflate the ODV.  
This makes it more difficult to find outliers that are truly 
different from the rest of the data.  Trimming off a small 
percentage of the most extreme values helps counter this 
effect.   

The researcher can change the values of p1 and p2, 
depending on the characteristics and goals of the 
experiment.  If the goal of the outlier detection is to flag 
only those values that are quite different from the 
population, then the researcher will set p2 very small, like 
0.001 or 0.0001.  If larger than normal values are being 
trimmed from the data, then p2 may be set at 0.01 or 0.05.  
The values of p1 will change according to the beliefs of the 
researcher as to what proportion of the data should be used 
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in the calculations.  The two-stage process is designed so 
that p1 should be larger than p2. 

3. EXAMPLE 

The Chebyshev outlier detection method works when data 
are integer or continuous.  The method is not designed to 
find outliers within qualitative datasets.  An example was 
created to work through the steps using integers for 
simplicity.  First the calculations will be performed 
assuming that the data have no distribution (non-unimodal). 
 Then the same process will be performed assuming that the 
data are unimodal. 

A sample dataset was designed to show how the Chebyshev 
outlier detection method works.  The dataset consists of 50 
data points, with the following values and number of the 
data value shown in parentheses:  0 (1), 5 (4), 6 (10), 7 (16), 
8 (12), 9 (3), 10 (1), 15 (1), 20 (1), and 25 (1).  Figure 1 
shows a histogram of these data.  Outliers will be 
determined using both the non-unimodal method and 
unimodal method for example and comparison purposes. 

Data Value
0 5 10 15 20 25

0
5

10
15

Fr
eq

ue
nc

y

 

Figure 1 – Histogram of the Sample Data 

 Non-Unimodal Chebyshev Outlier Method Example 

Although the data appear to be unimodal, this subsection 
will assume the data are not unimodal for illustrational 
purposes.  The first step is to find which data points are 
possible outliers that should not be included in calculations 
of the mean and standard deviation.  Both upper and lower 
tails will be explored.  A value of p1 = 0.10 was chosen.  
Using Equation (4), this resulted in a k value of 3.16.   

The next part within stage 1 is to calculate ODV1U and 
ODV1L. Equations (6a) and (6b) were used to make these 
calculations.  The sample mean of 7.7 was used to estimate 
µ, while the sample standard deviation of 3.6 was used to 
estimate σ .  This resulted in ODV1U = 19.13 and ODV1L = -
3.73.  Two data points (20 and 25) were outside the 

detection values, so they were not included in the stage 2 
calculations.  Figure 2 shows the ODVs and the data points 
that were outside of the ODV limits.   

Stage 2 calculates the actual ODVs that are used in 
determining which data are outliers.  For this example, a 
value of p2 = 0.05 was chosen.  Using Equation (4), this 
resulted in a k value of 4.47.  Equations (6a) and (6b) were 
then used to calculate ODVU and ODVL.  The sample mean 
of the truncated dataset was 7.1 with a standard deviation of 
1.9.  This resulted in outlier detection values of 15.6 for 
ODVU and -1.5 for ODVL.  Figure 3 shows two data 
points—20 and 25—were identified as outliers.  These 
calculations assumed a non-unimodal distribution and a 
probability of outliers (p2) of 0.05.  The unimodal 
distribution calculations will be shown next, using the same 
example data. 

Data Value
-5 0 5 10 15 20 25

0
5

10
15

Fr
eq
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nc

y

ODV(L) ODV(U)

Step 1 Outliers

 

Figure 2 – Non-Unimodal Stage 1 Outliers Identified 

 

Unimodal Chebyshev Outlier Method Example 

As can be seen in the histogram in Figure 1, the data appear 
to be unimodal because it contains only one peak.  This 
indicates that the unimodal Chebyshev outlier method is 
appropriate to use.  This subsection will identify outliers 
using the unimodal method, and then the results can be 
compared to the results just discussed using the non-
unimodal method. 

The first stage is to find which data points are possible 
outliers that should not be included in calculations of the 
mean and standard deviation.  A value of p1 = 0.10 was 
chosen, and both tails will be explored.  Using Equation (5) 
resulted in a k value of 2.11. 
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Data Value
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Figure 3 – Outliers Identified Using Non-Unimodal 
Chebyshev 

The next step within stage 1 is to calculate ODV1U and 
ODV1L.  Equations (7a) and (7b) were used to make these 
calculations.  The mode (M) was 7 for the sample data.  B 
was calculated as 3.68 from Equation (3) using the sample 
standard deviation of 3.6 (σ), and the sample mean of 7.7 
(µ).  This resulted in ODV1U = 14.76 and ODV1L = -0.76.  
Three data points (15, 20, and 25) were outside the 
detection values, so they were not included in the truncated 
dataset used in the stage 2 calculations.  Figure 4 shows the 
ODVs and the data points that were outside the ODV limits. 
  

Data Value
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Step 1 Outliers

 

Figure 4 – Unimodal Stage 1 Outliers Identified  

Stage 2 calculates the actual ODVs that are used in 
determining which data are outliers.  For this example, a 
value of p2 = 0.05 was chosen.  Using Equation (5), this 
resulted in a k value of 2.98.  Equations (7a) and (7b) were 
then used to calculate ODVU and ODVL.  The mode (M) was 
7 for the sample data.  B was calculated as 1.53 from 
Equation (3) using the sample standard deviation of 1.53 (σ) 
and the sample mean of 6.9 (µ), both calculated from the 
truncated dataset.  This resulted in ODVU = 11.57 and ODVL 

= 2.43.  Four data points (0, 15, 20, and 25) were outside 
the detection values.  These data points were considered to 
be outliers.  Figure 5 shows the ODV values and the outlier 
data points that were outside the ODV limits. 
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Figure 5 – Outliers Identified Using Unimodal Chebyshev 

Comparison of the Methods 

Both methods used the same data and the same probabilities 
of outliers with p1 = 0.10 and p2 = 0.05.  In comparison, the 
non-unimodal Chebyshev outlier method identified two 
outlier data points, 20 and 25.  The unimodal Chebyshev 
outlier method identified four outlier data points—0, 15, 20, 
and 25.  The unimodal method will always result in tighter 
limits.  It is recommended that if the data are expected to be 
unimodal, the unimodal Chebyshev method be employed. 

The decision as to what the probability values should be is a 
key to the outlier decision making process.  The researcher 
needs to assess the risk and cost involved in making the 
error of identifying an outlier incorrectly and the error in 
not identifying a data point that is an outlier.  If it is more 
costly to incorrectly identify a data point as an outlier, then 
the probabilities should be set very low.  If the incorrect 
identification of data points as outliers is low cost and low 
risk, then the probabilities should be set higher.   

4. CONCLUSIONS 

Data outliers can have a significant impact upon data-driven 
decisions.  In many cases, the outliers do not reflect the true 
nature of the data and, hence, should not be included in the 
analyses.  The outlier detection method discussed in this 
paper uses Chebyshev’s inequality to form a data-driven 
outlier detection method that is not dependent upon 
knowing the distribution of the data.  It also does not rely on 
domain knowledge to determine outliers.   
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