Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Docker-in-Docker (DinD) capabilities of public runners deactivated.
More info
Open sidebar
xQML
xQML
Commits
d6698174
Commit
d6698174
authored
Mar 14, 2019
by
Matthieu Tristram
Browse files
Solve memory leak
parent
376be78a
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
74 additions
and
52 deletions
+74
-52
TestMem.py
TestMem.py
+52
-28
xqml/estimators.py
xqml/estimators.py
+5
-6
xqml/xqml.py
xqml/xqml.py
+4
-13
xqml/xqml_utils.py
xqml/xqml_utils.py
+13
-5
No files found.
TestMem.py
View file @
d6698174
...
...
@@ -29,7 +29,7 @@ if len(sys.argv) > 1:
if
exp
==
"Big"
:
nside
=
16
dell
=
1
glat
=
2
0
glat
=
1
0
elif
exp
==
"Small"
:
nside
=
64
dell
=
10
...
...
@@ -86,7 +86,7 @@ npix = sum(mask)
print
(
"fsky=%.2g %% (npix=%d)"
%
(
100
*
fsky
,
npix
))
toGB
=
1024.
*
1024.
*
1024.
emem
=
8.
*
(
npix
*
2
*
npix
*
2
)
*
(
len
(
lth
)
*
2
)
/
toGB
print
(
"mem=%.2g Gb"
%
emem
)
print
(
"mem=%.2g Gb"
%
2.
*
emem
)
##############################
...
...
@@ -109,7 +109,7 @@ noise = (randn(len(varmap)) * varmap**0.5).reshape(nstoke, -1)
# ############## Initialise xqml class ###############
esti
=
xqml
.
xQML
(
mask
,
ellbins
,
clth
,
lmax
=
lmax
,
fwhm
=
fwhm
,
spec
=
spec
)
s1
=
timeit
.
default_timer
()
print
(
"Init: %
d
sec (%
d
)"
%
(
s1
-
s0
,
s1
-
s0
))
print
(
"Init: %
.2f
sec (%
.2f
)"
%
(
s1
-
s0
,
s1
-
s0
))
esti
.
NA
=
NoiseVar
esti
.
NB
=
NoiseVar
...
...
@@ -117,39 +117,63 @@ esti.NB = NoiseVar
invCa
=
xqml
.
xqml_utils
.
pd_inv
(
esti
.
S
+
esti
.
NA
)
invCb
=
xqml
.
xqml_utils
.
pd_inv
(
esti
.
S
+
esti
.
NB
)
s2
=
timeit
.
default_timer
()
print
(
"Inv C: %
d
sec (%
d
)"
%
(
s2
-
s0
,
s2
-
s1
))
print
(
"Inv C: %
.2f
sec (%
.2f
)"
%
(
s2
-
s0
,
s2
-
s1
))
s1
=
s2
esti
.
El
=
xqml
.
estimators
.
El
(
invCa
,
invCb
,
esti
.
Pl
)
s2
=
timeit
.
default_timer
()
print
(
"Construct El: %d sec (%d)"
%
(
s2
-
s0
,
s2
-
s1
))
s1
=
s2
meth
=
"classic"
#meth = "long"
if
meth
==
"classic"
:
esti
.
El
=
xqml
.
estimators
.
El
(
invCa
,
invCb
,
esti
.
Pl
)
s2
=
timeit
.
default_timer
()
print
(
"Construct El: %.2f sec (%.2f)"
%
(
s2
-
s0
,
s2
-
s1
))
s1
=
s2
Wll
=
xqml
.
estimators
.
CrossWindowFunction
(
esti
.
El
,
esti
.
Pl
)
# nl = len(esti.El)
# Wll = np.asarray( [np.sum(E * P) for E in esti.El for P in esti.Pl] ).reshape(nl,nl)
s2
=
timeit
.
default_timer
()
print
(
"Construct W: %.2f sec (%.2f)"
%
(
s2
-
s0
,
s2
-
s1
))
s1
=
s2
esti
.
Pl
=
0.
esti
.
bias
=
xqml
.
estimators
.
biasQuadEstimator
(
esti
.
NA
,
esti
.
El
)
s2
=
timeit
.
default_timer
()
print
(
"Construct bias: %.2f sec (%.2f)"
%
(
s2
-
s0
,
s2
-
s1
))
s1
=
s2
else
:
nl
=
len
(
esti
.
Pl
)
CaPl
=
[
np
.
dot
(
invCa
,
P
)
for
P
in
esti
.
Pl
]
CbPl
=
[
np
.
dot
(
invCb
,
P
)
for
P
in
esti
.
Pl
]
esti
.
Pl
=
0
Wll
=
np
.
asarray
([
np
.
sum
(
CaP
*
CbP
)
for
CaP
in
CaPl
for
CbP
in
CbPl
]).
reshape
(
nl
,
nl
)
s2
=
timeit
.
default_timer
()
print
(
"Construct Wll: %.2f sec (%.2f)"
%
(
s2
-
s0
,
s2
-
s1
))
s1
=
s2
CbPl
=
0
esti
.
El
=
[
np
.
dot
(
CaP
,
invCb
)
for
CaP
in
CaPl
]
# esti.El = xqml.estimators.El(invCa, invCb, esti.Pl)
s2
=
timeit
.
default_timer
()
print
(
"Construct El: %.2f sec (%.2f)"
%
(
s2
-
s0
,
s2
-
s1
))
s1
=
s2
CaPl
=
0
esti
.
bias
=
xqml
.
estimators
.
biasQuadEstimator
(
esti
.
NA
,
esti
.
El
)
s2
=
timeit
.
default_timer
()
print
(
"Construct bias: %.2f sec (%.2f)"
%
(
s2
-
s0
,
s2
-
s1
))
s1
=
s2
#esti.bias = xqml.estimators.biasQuadEstimator(esti.NA, esti.El)
#s2 = timeit.default_timer()
#print( "Construct bias: %d sec (%d)" % (s2-s0,s2-s1))
#s1 = s2
#Wll = xqml.estimators.CrossWindowFunction(esti.El, esti.Pl)
nl
=
len
(
esti
.
El
)
#Wll = np.asarray( [np.sum(E * P) for E in esti.El for P in esti.Pl] ).reshape(nl,nl)
Wll
=
np
.
zeros
((
nl
,
nl
))
for
l1
in
range
(
nl
):
for
l2
in
range
(
nl
):
Wll
[
l1
,
l2
]
=
np
.
sum
(
esti
.
El
[
l1
]
*
esti
.
Pl
[
l2
])
s2
=
timeit
.
default_timer
()
print
(
"Construct W: %d sec (%d)"
%
(
s2
-
s0
,
s2
-
s1
))
s1
=
s2
esti
.
invW
=
linalg
.
inv
(
Wll
)
s2
=
timeit
.
default_timer
()
print
(
"inv W: %
d
sec (%
d
)"
%
(
s2
-
s0
,
s2
-
s1
))
print
(
"inv W: %
.2f
sec (%
.2f
)"
%
(
s2
-
s0
,
s2
-
s1
))
s1
=
s2
#esti.construct_esti( NA=NoiseVar, NB=NoiseVar)
s2
=
timeit
.
default_timer
()
print
(
"Construct esti: %d sec (%d)"
%
(
s2
-
s0
,
s2
-
s1
))
#s2 = timeit.default_timer()
#print( "Construct esti: %.2f sec (%.2f)" % (s2-s0,s2-s1))
ellval
=
esti
.
lbin
()
...
...
@@ -171,7 +195,7 @@ for n in np.arange(nsimu):
t
.
append
(
timeit
.
default_timer
()
-
s1
)
allcla
.
append
(
esti
.
get_spectra
(
dmA
))
print
(
"get_spectra: %
d (%d
sec)"
%
(
timeit
.
default_timer
()
-
s0
,
mean
(
t
)))
print
(
"get_spectra: %
.2f (%.2f
sec)"
%
(
timeit
.
default_timer
()
-
s0
,
mean
(
t
)))
hcl
=
mean
(
allcl
,
0
)
scl
=
std
(
allcl
,
0
)
hcla
=
mean
(
allcla
,
0
)
...
...
xqml/estimators.py
View file @
d6698174
...
...
@@ -136,7 +136,7 @@ def El(invCAA, invCBB, Pl):
"""
El
=
np
.
asarray
(
[
np
.
dot
(
np
.
dot
(
invCAA
,
P
),
invCBB
)
for
P
in
Pl
]
)
El
=
[
np
.
dot
(
np
.
dot
(
invCAA
,
P
),
invCBB
)
for
P
in
Pl
]
return
El
...
...
@@ -239,10 +239,9 @@ def CrossGisherMatrix(El, CAB):
"""
nl
=
len
(
El
)
El_CAB
=
np
.
asarray
([
np
.
dot
(
CAB
,
E
)
for
E
in
El
])
GAB
=
np
.
asarray
(
[
np
.
sum
(
Ei
*
Ej
.
T
)
for
Ei
in
El_CAB
for
Ej
in
El_CAB
]
).
reshape
(
nl
,
nl
)
El_CAB
=
[
np
.
dot
(
CAB
,
E
)
for
E
in
El
]
GAB
=
np
.
asarray
([
np
.
sum
(
Ei
*
Ej
.
T
)
for
Ei
in
El_CAB
for
Ej
in
El_CAB
]).
reshape
(
nl
,
nl
)
return
GAB
...
...
@@ -343,7 +342,7 @@ def biasQuadEstimator(NoiseN, El):
???
"""
return
np
.
asarray
(
[
np
.
sum
(
NoiseN
*
E
)
for
E
in
El
]
)
return
[
np
.
sum
(
NoiseN
*
E
)
for
E
in
El
]
def
CovAB
(
invWll
,
GAB
):
...
...
xqml/xqml.py
View file @
d6698174
...
...
@@ -156,23 +156,14 @@ class xQML(object):
# Compute E using Eq...
self
.
El
=
El
(
invCa
,
invCb
,
self
.
Pl
)
# Finally compute invW by inverting...
self
.
invW
=
linalg
.
inv
(
CrossWindowFunction
(
self
.
El
,
self
.
Pl
))
# Compute bias for auto
# if not self.cross:
# self.bias = biasQuadEstimator(self.NA, self.El)
self
.
bias
=
biasQuadEstimator
(
self
.
NA
,
self
.
El
)
# Finally compute invW by inverting...
# s0 = timeit.default_timer()
self
.
invW
=
linalg
.
inv
(
CrossWindowFunction
(
self
.
El
,
self
.
Pl
))
# s1 = timeit.default_timer()
# self.invW = linalg.inv(CrossWindowFunctionLong(invCa, invCb, self.Pl))
# s2 = timeit.default_timer()
# print( "CrossWindowFunction: %d sec" % (s1-s0))
# print( "CrossWindowFunctionLong: %d sec" % (s2-s1))
#Clean
del
(
self
.
Pl
)
del
(
invCa
)
del
(
invCb
)
def
get_spectra
(
self
,
mapA
,
mapB
=
None
):
"""
...
...
xqml/xqml_utils.py
View file @
d6698174
...
...
@@ -90,7 +90,7 @@ def getstokes(spec=None, temp=False, polar=False, corr=False):
return
stokes
,
speclist
,
istokes
,
ispecs
def
ComputeSizeDs_dcb
(
nside
,
fsky
,
deltal
=
1
):
def
ComputeSizeDs_dcb
(
nside
,
fsky
,
deltal
=
1
,
unit
=
"Gb"
):
"""
???
...
...
@@ -103,10 +103,18 @@ def ComputeSizeDs_dcb(nside, fsky, deltal=1):
----------
???
"""
if
units
[
0
].
lower
()
==
"g"
:
toGB
=
1024.
*
1024.
*
1024.
sizeds_dcb
=
(
2
*
12
*
nside
**
2
*
fsky
)
**
2
*
8
*
2
*
(
3.
*
nside
/
deltal
)
/
toGB
print
(
"size (Gb) = "
+
str
(
sizeds_dcb
))
print
(
"possible reduced size (Gb) = "
+
str
(
sizeds_dcb
/
4
))
else
:
toGB
=
1.
nspec
=
2
nell
=
nspec
*
(
3.
*
nside
-
1
)
/
deltal
npixtot
=
2
*
12
*
nside
**
2
*
fsky
sizeds_dcb
=
(
npixtot
)
**
2
*
(
nell
+
5
)
return
(
8.
*
sizeds_dcb
/
toGB
)
# print("size (Gb) = " + str(sizeds_dcb))
def
get_colors
(
num_colors
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment