Skip to content
Snippets Groups Projects
sqlite3.c 4.74 MiB
Newer Older
**
** The page to be fetched is determined by the key. ^The minimum key value
** is 1.  After it has been retrieved using xFetch, the page is considered
** to be "pinned".
**
** If the requested page is already in the page cache, then the page cache
** implementation must return a pointer to the page buffer with its content
** intact.  If the requested page is not already in the cache, then the
** cache implementation should use the value of the createFlag
** parameter to help it determined what action to take:
**
** <table border=1 width=85% align=center>
Sergey Lyubka's avatar
Sergey Lyubka committed
** <tr><th> createFlag <th> Behavior when page is not already in cache
7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441
** <tr><td> 0 <td> Do not allocate a new page.  Return NULL.
** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
**                 Otherwise return NULL.
** <tr><td> 2 <td> Make every effort to allocate a new page.  Only return
**                 NULL if allocating a new page is effectively impossible.
** </table>
**
** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1.  SQLite
** will only use a createFlag of 2 after a prior call with a createFlag of 1
** failed.)^  In between the to xFetch() calls, SQLite may
** attempt to unpin one or more cache pages by spilling the content of
** pinned pages to disk and synching the operating system disk cache.
**
** [[the xUnpin() page cache method]]
** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
** as its second argument.  If the third parameter, discard, is non-zero,
** then the page must be evicted from the cache.
** ^If the discard parameter is
** zero, then the page may be discarded or retained at the discretion of
** page cache implementation. ^The page cache implementation
** may choose to evict unpinned pages at any time.
**
** The cache must not perform any reference counting. A single 
** call to xUnpin() unpins the page regardless of the number of prior calls 
** to xFetch().
**
** [[the xRekey() page cache methods]]
** The xRekey() method is used to change the key value associated with the
** page passed as the second argument. If the cache
** previously contains an entry associated with newKey, it must be
** discarded. ^Any prior cache entry associated with newKey is guaranteed not
** to be pinned.
**
** When SQLite calls the xTruncate() method, the cache must discard all
** existing cache entries with page numbers (keys) greater than or equal
** to the value of the iLimit parameter passed to xTruncate(). If any
** of these pages are pinned, they are implicitly unpinned, meaning that
** they can be safely discarded.
**
** [[the xDestroy() page cache method]]
** ^The xDestroy() method is used to delete a cache allocated by xCreate().
** All resources associated with the specified cache should be freed. ^After
** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
** handle invalid, and will not use it with any other sqlite3_pcache_methods2
** functions.
**
** [[the xShrink() page cache method]]
** ^SQLite invokes the xShrink() method when it wants the page cache to
** free up as much of heap memory as possible.  The page cache implementation
** is not obligated to free any memory, but well-behaved implementations should
** do their best.
*/
typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2;
struct sqlite3_pcache_methods2 {
  int iVersion;
  void *pArg;
  int (*xInit)(void*);
  void (*xShutdown)(void*);
  sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable);
  void (*xCachesize)(sqlite3_pcache*, int nCachesize);
  int (*xPagecount)(sqlite3_pcache*);
  sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
  void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard);
  void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*, 
      unsigned oldKey, unsigned newKey);
  void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
  void (*xDestroy)(sqlite3_pcache*);
  void (*xShrink)(sqlite3_pcache*);
};

/*
** This is the obsolete pcache_methods object that has now been replaced
** by sqlite3_pcache_methods2.  This object is not used by SQLite.  It is
** retained in the header file for backwards compatibility only.
*/
typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
struct sqlite3_pcache_methods {
  void *pArg;
  int (*xInit)(void*);
  void (*xShutdown)(void*);
  sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
  void (*xCachesize)(sqlite3_pcache*, int nCachesize);
  int (*xPagecount)(sqlite3_pcache*);
  void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
  void (*xUnpin)(sqlite3_pcache*, void*, int discard);
  void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
  void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
  void (*xDestroy)(sqlite3_pcache*);
};


/*
** CAPI3REF: Online Backup Object
**
** The sqlite3_backup object records state information about an ongoing
** online backup operation.  ^The sqlite3_backup object is created by
** a call to [sqlite3_backup_init()] and is destroyed by a call to
** [sqlite3_backup_finish()].
**
** See Also: [Using the SQLite Online Backup API]
*/
typedef struct sqlite3_backup sqlite3_backup;

/*
** CAPI3REF: Online Backup API.
**
** The backup API copies the content of one database into another.
** It is useful either for creating backups of databases or
** for copying in-memory databases to or from persistent files. 
**
** See Also: [Using the SQLite Online Backup API]
**
** ^SQLite holds a write transaction open on the destination database file
** for the duration of the backup operation.
** ^The source database is read-locked only while it is being read;
** it is not locked continuously for the entire backup operation.
** ^Thus, the backup may be performed on a live source database without
** preventing other database connections from
** reading or writing to the source database while the backup is underway.
** 
** ^(To perform a backup operation: 
**   <ol>
**     <li><b>sqlite3_backup_init()</b> is called once to initialize the
**         backup, 
**     <li><b>sqlite3_backup_step()</b> is called one or more times to transfer 
**         the data between the two databases, and finally
**     <li><b>sqlite3_backup_finish()</b> is called to release all resources 
**         associated with the backup operation. 
**   </ol>)^
** There should be exactly one call to sqlite3_backup_finish() for each
** successful call to sqlite3_backup_init().
**
** [[sqlite3_backup_init()]] <b>sqlite3_backup_init()</b>
**
** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the 
** [database connection] associated with the destination database 
** and the database name, respectively.
** ^The database name is "main" for the main database, "temp" for the
** temporary database, or the name specified after the AS keyword in
** an [ATTACH] statement for an attached database.
** ^The S and M arguments passed to 
** sqlite3_backup_init(D,N,S,M) identify the [database connection]
** and database name of the source database, respectively.
** ^The source and destination [database connections] (parameters S and D)
** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
** an error.
**
** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
** returned and an error code and error message are stored in the
** destination [database connection] D.
** ^The error code and message for the failed call to sqlite3_backup_init()
** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
** [sqlite3_errmsg16()] functions.
** ^A successful call to sqlite3_backup_init() returns a pointer to an
** [sqlite3_backup] object.
** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
** sqlite3_backup_finish() functions to perform the specified backup 
** operation.
**
** [[sqlite3_backup_step()]] <b>sqlite3_backup_step()</b>
**
** ^Function sqlite3_backup_step(B,N) will copy up to N pages between 
** the source and destination databases specified by [sqlite3_backup] object B.
** ^If N is negative, all remaining source pages are copied. 
** ^If sqlite3_backup_step(B,N) successfully copies N pages and there
** are still more pages to be copied, then the function returns [SQLITE_OK].
** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
** from source to destination, then it returns [SQLITE_DONE].
** ^If an error occurs while running sqlite3_backup_step(B,N),
** then an [error code] is returned. ^As well as [SQLITE_OK] and
** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
**
** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if
** <ol>
** <li> the destination database was opened read-only, or
** <li> the destination database is using write-ahead-log journaling
** and the destination and source page sizes differ, or
** <li> the destination database is an in-memory database and the
** destination and source page sizes differ.
** </ol>)^
**
** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
** the [sqlite3_busy_handler | busy-handler function]
** is invoked (if one is specified). ^If the 
** busy-handler returns non-zero before the lock is available, then 
** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
** sqlite3_backup_step() can be retried later. ^If the source
** [database connection]
** is being used to write to the source database when sqlite3_backup_step()
** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
** case the call to sqlite3_backup_step() can be retried later on. ^(If
** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
** [SQLITE_READONLY] is returned, then 
** there is no point in retrying the call to sqlite3_backup_step(). These 
** errors are considered fatal.)^  The application must accept 
** that the backup operation has failed and pass the backup operation handle 
** to the sqlite3_backup_finish() to release associated resources.
**
** ^The first call to sqlite3_backup_step() obtains an exclusive lock
** on the destination file. ^The exclusive lock is not released until either 
** sqlite3_backup_finish() is called or the backup operation is complete 
** and sqlite3_backup_step() returns [SQLITE_DONE].  ^Every call to
** sqlite3_backup_step() obtains a [shared lock] on the source database that
** lasts for the duration of the sqlite3_backup_step() call.
** ^Because the source database is not locked between calls to
** sqlite3_backup_step(), the source database may be modified mid-way
** through the backup process.  ^If the source database is modified by an
** external process or via a database connection other than the one being
** used by the backup operation, then the backup will be automatically
** restarted by the next call to sqlite3_backup_step(). ^If the source 
** database is modified by the using the same database connection as is used
** by the backup operation, then the backup database is automatically
** updated at the same time.
**
** [[sqlite3_backup_finish()]] <b>sqlite3_backup_finish()</b>
**
** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the 
** application wishes to abandon the backup operation, the application
** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
** ^The sqlite3_backup_finish() interfaces releases all
** resources associated with the [sqlite3_backup] object. 
** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
** active write-transaction on the destination database is rolled back.
** The [sqlite3_backup] object is invalid
** and may not be used following a call to sqlite3_backup_finish().
**
** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
** sqlite3_backup_step() errors occurred, regardless or whether or not
** sqlite3_backup_step() completed.
** ^If an out-of-memory condition or IO error occurred during any prior
** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
** sqlite3_backup_finish() returns the corresponding [error code].
**
** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
** is not a permanent error and does not affect the return value of
** sqlite3_backup_finish().
**
** [[sqlite3_backup__remaining()]] [[sqlite3_backup_pagecount()]]
** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
**
** ^Each call to sqlite3_backup_step() sets two values inside
** the [sqlite3_backup] object: the number of pages still to be backed
** up and the total number of pages in the source database file.
** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces
** retrieve these two values, respectively.
**
** ^The values returned by these functions are only updated by
** sqlite3_backup_step(). ^If the source database is modified during a backup
** operation, then the values are not updated to account for any extra
** pages that need to be updated or the size of the source database file
** changing.
**
** <b>Concurrent Usage of Database Handles</b>
**
** ^The source [database connection] may be used by the application for other
** purposes while a backup operation is underway or being initialized.
** ^If SQLite is compiled and configured to support threadsafe database
** connections, then the source database connection may be used concurrently
** from within other threads.
**
** However, the application must guarantee that the destination 
** [database connection] is not passed to any other API (by any thread) after 
** sqlite3_backup_init() is called and before the corresponding call to
** sqlite3_backup_finish().  SQLite does not currently check to see
** if the application incorrectly accesses the destination [database connection]
** and so no error code is reported, but the operations may malfunction
** nevertheless.  Use of the destination database connection while a
** backup is in progress might also also cause a mutex deadlock.
**
** If running in [shared cache mode], the application must
** guarantee that the shared cache used by the destination database
** is not accessed while the backup is running. In practice this means
** that the application must guarantee that the disk file being 
** backed up to is not accessed by any connection within the process,
** not just the specific connection that was passed to sqlite3_backup_init().
**
** The [sqlite3_backup] object itself is partially threadsafe. Multiple 
** threads may safely make multiple concurrent calls to sqlite3_backup_step().
** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
** APIs are not strictly speaking threadsafe. If they are invoked at the
** same time as another thread is invoking sqlite3_backup_step() it is
** possible that they return invalid values.
*/
SQLITE_API sqlite3_backup *sqlite3_backup_init(
  sqlite3 *pDest,                        /* Destination database handle */
  const char *zDestName,                 /* Destination database name */
  sqlite3 *pSource,                      /* Source database handle */
  const char *zSourceName                /* Source database name */
);
SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);

/*
** CAPI3REF: Unlock Notification
**
** ^When running in shared-cache mode, a database operation may fail with
** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
** individual tables within the shared-cache cannot be obtained. See
** [SQLite Shared-Cache Mode] for a description of shared-cache locking. 
** ^This API may be used to register a callback that SQLite will invoke 
** when the connection currently holding the required lock relinquishes it.
** ^This API is only available if the library was compiled with the
** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
**
** See Also: [Using the SQLite Unlock Notification Feature].
**
** ^Shared-cache locks are released when a database connection concludes
** its current transaction, either by committing it or rolling it back. 
**
** ^When a connection (known as the blocked connection) fails to obtain a
** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
** identity of the database connection (the blocking connection) that
** has locked the required resource is stored internally. ^After an 
** application receives an SQLITE_LOCKED error, it may call the
** sqlite3_unlock_notify() method with the blocked connection handle as 
** the first argument to register for a callback that will be invoked
** when the blocking connections current transaction is concluded. ^The
** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
** call that concludes the blocking connections transaction.
**
** ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
** there is a chance that the blocking connection will have already
** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
** If this happens, then the specified callback is invoked immediately,
** from within the call to sqlite3_unlock_notify().)^
**
** ^If the blocked connection is attempting to obtain a write-lock on a
** shared-cache table, and more than one other connection currently holds
** a read-lock on the same table, then SQLite arbitrarily selects one of 
** the other connections to use as the blocking connection.
**
** ^(There may be at most one unlock-notify callback registered by a 
** blocked connection. If sqlite3_unlock_notify() is called when the
** blocked connection already has a registered unlock-notify callback,
** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
** called with a NULL pointer as its second argument, then any existing
** unlock-notify callback is canceled. ^The blocked connections 
** unlock-notify callback may also be canceled by closing the blocked
** connection using [sqlite3_close()].
**
** The unlock-notify callback is not reentrant. If an application invokes
** any sqlite3_xxx API functions from within an unlock-notify callback, a
** crash or deadlock may be the result.
**
** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
** returns SQLITE_OK.
**
** <b>Callback Invocation Details</b>
**
** When an unlock-notify callback is registered, the application provides a 
** single void* pointer that is passed to the callback when it is invoked.
** However, the signature of the callback function allows SQLite to pass
** it an array of void* context pointers. The first argument passed to
** an unlock-notify callback is a pointer to an array of void* pointers,
** and the second is the number of entries in the array.
**
** When a blocking connections transaction is concluded, there may be
** more than one blocked connection that has registered for an unlock-notify
** callback. ^If two or more such blocked connections have specified the
** same callback function, then instead of invoking the callback function
** multiple times, it is invoked once with the set of void* context pointers
** specified by the blocked connections bundled together into an array.
** This gives the application an opportunity to prioritize any actions 
** related to the set of unblocked database connections.
**
** <b>Deadlock Detection</b>
**
** Assuming that after registering for an unlock-notify callback a 
** database waits for the callback to be issued before taking any further
** action (a reasonable assumption), then using this API may cause the
** application to deadlock. For example, if connection X is waiting for
** connection Y's transaction to be concluded, and similarly connection
** Y is waiting on connection X's transaction, then neither connection
** will proceed and the system may remain deadlocked indefinitely.
**
** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
** detection. ^If a given call to sqlite3_unlock_notify() would put the
** system in a deadlocked state, then SQLITE_LOCKED is returned and no
** unlock-notify callback is registered. The system is said to be in
** a deadlocked state if connection A has registered for an unlock-notify
** callback on the conclusion of connection B's transaction, and connection
** B has itself registered for an unlock-notify callback when connection
** A's transaction is concluded. ^Indirect deadlock is also detected, so
** the system is also considered to be deadlocked if connection B has
** registered for an unlock-notify callback on the conclusion of connection
** C's transaction, where connection C is waiting on connection A. ^Any
** number of levels of indirection are allowed.
**
** <b>The "DROP TABLE" Exception</b>
**
** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost 
** always appropriate to call sqlite3_unlock_notify(). There is however,
** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
** SQLite checks if there are any currently executing SELECT statements
** that belong to the same connection. If there are, SQLITE_LOCKED is
** returned. In this case there is no "blocking connection", so invoking
** sqlite3_unlock_notify() results in the unlock-notify callback being
** invoked immediately. If the application then re-attempts the "DROP TABLE"
** or "DROP INDEX" query, an infinite loop might be the result.
**
** One way around this problem is to check the extended error code returned
** by an sqlite3_step() call. ^(If there is a blocking connection, then the
** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
** the special "DROP TABLE/INDEX" case, the extended error code is just 
** SQLITE_LOCKED.)^
*/
SQLITE_API int sqlite3_unlock_notify(
  sqlite3 *pBlocked,                          /* Waiting connection */
  void (*xNotify)(void **apArg, int nArg),    /* Callback function to invoke */
  void *pNotifyArg                            /* Argument to pass to xNotify */
);


/*
** CAPI3REF: String Comparison
**
** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
** and extensions to compare the contents of two buffers containing UTF-8
** strings in a case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.
*/
SQLITE_API int sqlite3_stricmp(const char *, const char *);
SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);

Sergey Lyubka's avatar
Sergey Lyubka committed
/*
** CAPI3REF: String Globbing
*
** ^The [sqlite3_strglob(P,X)] interface returns zero if string X matches
** the glob pattern P, and it returns non-zero if string X does not match
** the glob pattern P.  ^The definition of glob pattern matching used in
** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
** SQL dialect used by SQLite.  ^The sqlite3_strglob(P,X) function is case
** sensitive.
**
** Note that this routine returns zero on a match and non-zero if the strings
** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
*/
SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr);

/*
** CAPI3REF: Error Logging Interface
**
Sergey Lyubka's avatar
Sergey Lyubka committed
** ^The [sqlite3_log()] interface writes a message into the [error log]
7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832
** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
** ^If logging is enabled, the zFormat string and subsequent arguments are
** used with [sqlite3_snprintf()] to generate the final output string.
**
** The sqlite3_log() interface is intended for use by extensions such as
** virtual tables, collating functions, and SQL functions.  While there is
** nothing to prevent an application from calling sqlite3_log(), doing so
** is considered bad form.
**
** The zFormat string must not be NULL.
**
** To avoid deadlocks and other threading problems, the sqlite3_log() routine
** will not use dynamically allocated memory.  The log message is stored in
** a fixed-length buffer on the stack.  If the log message is longer than
** a few hundred characters, it will be truncated to the length of the
** buffer.
*/
SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);

/*
** CAPI3REF: Write-Ahead Log Commit Hook
**
** ^The [sqlite3_wal_hook()] function is used to register a callback that
** will be invoked each time a database connection commits data to a
** [write-ahead log] (i.e. whenever a transaction is committed in
** [journal_mode | journal_mode=WAL mode]). 
**
** ^The callback is invoked by SQLite after the commit has taken place and 
** the associated write-lock on the database released, so the implementation 
** may read, write or [checkpoint] the database as required.
**
** ^The first parameter passed to the callback function when it is invoked
** is a copy of the third parameter passed to sqlite3_wal_hook() when
** registering the callback. ^The second is a copy of the database handle.
** ^The third parameter is the name of the database that was written to -
** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
** is the number of pages currently in the write-ahead log file,
** including those that were just committed.
**
** The callback function should normally return [SQLITE_OK].  ^If an error
** code is returned, that error will propagate back up through the
** SQLite code base to cause the statement that provoked the callback
** to report an error, though the commit will have still occurred. If the
** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value
** that does not correspond to any valid SQLite error code, the results
** are undefined.
**
** A single database handle may have at most a single write-ahead log callback 
** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
** previously registered write-ahead log callback. ^Note that the
** [sqlite3_wal_autocheckpoint()] interface and the
** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
** those overwrite any prior [sqlite3_wal_hook()] settings.
*/
SQLITE_API void *sqlite3_wal_hook(
  sqlite3*, 
  int(*)(void *,sqlite3*,const char*,int),
  void*
);

/*
** CAPI3REF: Configure an auto-checkpoint
**
** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around
** [sqlite3_wal_hook()] that causes any database on [database connection] D
** to automatically [checkpoint]
** after committing a transaction if there are N or
** more frames in the [write-ahead log] file.  ^Passing zero or 
** a negative value as the nFrame parameter disables automatic
** checkpoints entirely.
**
** ^The callback registered by this function replaces any existing callback
** registered using [sqlite3_wal_hook()].  ^Likewise, registering a callback
** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
** configured by this function.
**
** ^The [wal_autocheckpoint pragma] can be used to invoke this interface
** from SQL.
**
** ^Every new [database connection] defaults to having the auto-checkpoint
** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
** pages.  The use of this interface
** is only necessary if the default setting is found to be suboptimal
** for a particular application.
*/
SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);

/*
** CAPI3REF: Checkpoint a database
**
** ^The [sqlite3_wal_checkpoint(D,X)] interface causes database named X
** on [database connection] D to be [checkpointed].  ^If X is NULL or an
** empty string, then a checkpoint is run on all databases of
** connection D.  ^If the database connection D is not in
** [WAL | write-ahead log mode] then this interface is a harmless no-op.
**
** ^The [wal_checkpoint pragma] can be used to invoke this interface
** from SQL.  ^The [sqlite3_wal_autocheckpoint()] interface and the
** [wal_autocheckpoint pragma] can be used to cause this interface to be
** run whenever the WAL reaches a certain size threshold.
**
** See also: [sqlite3_wal_checkpoint_v2()]
*/
SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);

/*
** CAPI3REF: Checkpoint a database
**
** Run a checkpoint operation on WAL database zDb attached to database 
** handle db. The specific operation is determined by the value of the 
** eMode parameter:
**
** <dl>
** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
**   Checkpoint as many frames as possible without waiting for any database 
**   readers or writers to finish. Sync the db file if all frames in the log
**   are checkpointed. This mode is the same as calling 
**   sqlite3_wal_checkpoint(). The busy-handler callback is never invoked.
**
** <dt>SQLITE_CHECKPOINT_FULL<dd>
**   This mode blocks (calls the busy-handler callback) until there is no
**   database writer and all readers are reading from the most recent database
**   snapshot. It then checkpoints all frames in the log file and syncs the
**   database file. This call blocks database writers while it is running,
**   but not database readers.
**
** <dt>SQLITE_CHECKPOINT_RESTART<dd>
**   This mode works the same way as SQLITE_CHECKPOINT_FULL, except after 
**   checkpointing the log file it blocks (calls the busy-handler callback)
**   until all readers are reading from the database file only. This ensures 
**   that the next client to write to the database file restarts the log file 
**   from the beginning. This call blocks database writers while it is running,
**   but not database readers.
** </dl>
**
** If pnLog is not NULL, then *pnLog is set to the total number of frames in
** the log file before returning. If pnCkpt is not NULL, then *pnCkpt is set to
** the total number of checkpointed frames (including any that were already
** checkpointed when this function is called). *pnLog and *pnCkpt may be
** populated even if sqlite3_wal_checkpoint_v2() returns other than SQLITE_OK.
** If no values are available because of an error, they are both set to -1
** before returning to communicate this to the caller.
**
** All calls obtain an exclusive "checkpoint" lock on the database file. If
** any other process is running a checkpoint operation at the same time, the 
** lock cannot be obtained and SQLITE_BUSY is returned. Even if there is a 
** busy-handler configured, it will not be invoked in this case.
**
** The SQLITE_CHECKPOINT_FULL and RESTART modes also obtain the exclusive 
** "writer" lock on the database file. If the writer lock cannot be obtained
** immediately, and a busy-handler is configured, it is invoked and the writer
** lock retried until either the busy-handler returns 0 or the lock is
** successfully obtained. The busy-handler is also invoked while waiting for
** database readers as described above. If the busy-handler returns 0 before
** the writer lock is obtained or while waiting for database readers, the
** checkpoint operation proceeds from that point in the same way as 
** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible 
** without blocking any further. SQLITE_BUSY is returned in this case.
**
** If parameter zDb is NULL or points to a zero length string, then the
** specified operation is attempted on all WAL databases. In this case the
** values written to output parameters *pnLog and *pnCkpt are undefined. If 
** an SQLITE_BUSY error is encountered when processing one or more of the 
** attached WAL databases, the operation is still attempted on any remaining 
** attached databases and SQLITE_BUSY is returned to the caller. If any other 
** error occurs while processing an attached database, processing is abandoned 
** and the error code returned to the caller immediately. If no error 
** (SQLITE_BUSY or otherwise) is encountered while processing the attached 
** databases, SQLITE_OK is returned.
**
** If database zDb is the name of an attached database that is not in WAL
** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. If
** zDb is not NULL (or a zero length string) and is not the name of any
** attached database, SQLITE_ERROR is returned to the caller.
*/
SQLITE_API int sqlite3_wal_checkpoint_v2(
  sqlite3 *db,                    /* Database handle */
  const char *zDb,                /* Name of attached database (or NULL) */
  int eMode,                      /* SQLITE_CHECKPOINT_* value */
  int *pnLog,                     /* OUT: Size of WAL log in frames */
  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
);

/*
** CAPI3REF: Checkpoint operation parameters
**
** These constants can be used as the 3rd parameter to
** [sqlite3_wal_checkpoint_v2()].  See the [sqlite3_wal_checkpoint_v2()]
** documentation for additional information about the meaning and use of
** each of these values.
*/
#define SQLITE_CHECKPOINT_PASSIVE 0
#define SQLITE_CHECKPOINT_FULL    1
#define SQLITE_CHECKPOINT_RESTART 2

/*
** CAPI3REF: Virtual Table Interface Configuration
**
** This function may be called by either the [xConnect] or [xCreate] method
** of a [virtual table] implementation to configure
** various facets of the virtual table interface.
**
** If this interface is invoked outside the context of an xConnect or
** xCreate virtual table method then the behavior is undefined.
**
** At present, there is only one option that may be configured using
** this function. (See [SQLITE_VTAB_CONSTRAINT_SUPPORT].)  Further options
** may be added in the future.
*/
SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...);

/*
** CAPI3REF: Virtual Table Configuration Options
**
** These macros define the various options to the
** [sqlite3_vtab_config()] interface that [virtual table] implementations
** can use to customize and optimize their behavior.
**
** <dl>
** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT
** <dd>Calls of the form
** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
** where X is an integer.  If X is zero, then the [virtual table] whose
** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
** support constraints.  In this configuration (which is the default) if
** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire
** statement is rolled back as if [ON CONFLICT | OR ABORT] had been
** specified as part of the users SQL statement, regardless of the actual
** ON CONFLICT mode specified.
**
** If X is non-zero, then the virtual table implementation guarantees
** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before
** any modifications to internal or persistent data structures have been made.
** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite 
** is able to roll back a statement or database transaction, and abandon
** or continue processing the current SQL statement as appropriate. 
** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns
** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode
** had been ABORT.
**
** Virtual table implementations that are required to handle OR REPLACE
** must do so within the [xUpdate] method. If a call to the 
** [sqlite3_vtab_on_conflict()] function indicates that the current ON 
** CONFLICT policy is REPLACE, the virtual table implementation should 
** silently replace the appropriate rows within the xUpdate callback and
** return SQLITE_OK. Or, if this is not possible, it may return
** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT 
** constraint handling.
** </dl>
*/
#define SQLITE_VTAB_CONSTRAINT_SUPPORT 1

/*
** CAPI3REF: Determine The Virtual Table Conflict Policy
**
** This function may only be called from within a call to the [xUpdate] method
** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
** of the SQL statement that triggered the call to the [xUpdate] method of the
** [virtual table].
*/
SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *);

/*
** CAPI3REF: Conflict resolution modes
**
** These constants are returned by [sqlite3_vtab_on_conflict()] to
** inform a [virtual table] implementation what the [ON CONFLICT] mode
** is for the SQL statement being evaluated.
**
** Note that the [SQLITE_IGNORE] constant is also used as a potential
** return value from the [sqlite3_set_authorizer()] callback and that
** [SQLITE_ABORT] is also a [result code].
*/
#define SQLITE_ROLLBACK 1
/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
#define SQLITE_FAIL     3
/* #define SQLITE_ABORT 4  // Also an error code */
#define SQLITE_REPLACE  5



/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# undef double
#endif

#if 0
}  /* End of the 'extern "C"' block */
#endif
#endif

/*
** 2010 August 30
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
*/

#ifndef _SQLITE3RTREE_H_
#define _SQLITE3RTREE_H_


#if 0
extern "C" {
#endif

typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry;

/*
** Register a geometry callback named zGeom that can be used as part of an
** R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
*/
SQLITE_API int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
#ifdef SQLITE_RTREE_INT_ONLY
  int (*xGeom)(sqlite3_rtree_geometry*, int n, sqlite3_int64 *a, int *pRes),
#else
  int (*xGeom)(sqlite3_rtree_geometry*, int n, double *a, int *pRes),
#endif
  void *pContext
);


/*
** A pointer to a structure of the following type is passed as the first
** argument to callbacks registered using rtree_geometry_callback().
*/
struct sqlite3_rtree_geometry {
  void *pContext;                 /* Copy of pContext passed to s_r_g_c() */
  int nParam;                     /* Size of array aParam[] */
  double *aParam;                 /* Parameters passed to SQL geom function */
  void *pUser;                    /* Callback implementation user data */
  void (*xDelUser)(void *);       /* Called by SQLite to clean up pUser */
};


#if 0
}  /* end of the 'extern "C"' block */
#endif

#endif  /* ifndef _SQLITE3RTREE_H_ */


/************** End of sqlite3.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include hash.h in the middle of sqliteInt.h ******************/
/************** Begin file hash.h ********************************************/
/*
** 2001 September 22
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
Sergey Lyubka's avatar
Sergey Lyubka committed
** This is the header file for the generic hash-table implementation
** used in SQLite.
*/
#ifndef _SQLITE_HASH_H_
#define _SQLITE_HASH_H_

/* Forward declarations of structures. */
typedef struct Hash Hash;
typedef struct HashElem HashElem;

/* A complete hash table is an instance of the following structure.
** The internals of this structure are intended to be opaque -- client
** code should not attempt to access or modify the fields of this structure
** directly.  Change this structure only by using the routines below.
** However, some of the "procedures" and "functions" for modifying and
** accessing this structure are really macros, so we can't really make
** this structure opaque.
**
** All elements of the hash table are on a single doubly-linked list.
** Hash.first points to the head of this list.
**
** There are Hash.htsize buckets.  Each bucket points to a spot in
** the global doubly-linked list.  The contents of the bucket are the
** element pointed to plus the next _ht.count-1 elements in the list.
**
** Hash.htsize and Hash.ht may be zero.  In that case lookup is done
** by a linear search of the global list.  For small tables, the 
** Hash.ht table is never allocated because if there are few elements
** in the table, it is faster to do a linear search than to manage
** the hash table.
*/
struct Hash {
  unsigned int htsize;      /* Number of buckets in the hash table */
  unsigned int count;       /* Number of entries in this table */
  HashElem *first;          /* The first element of the array */
  struct _ht {              /* the hash table */
    int count;                 /* Number of entries with this hash */
    HashElem *chain;           /* Pointer to first entry with this hash */
  } *ht;
};

/* Each element in the hash table is an instance of the following 
** structure.  All elements are stored on a single doubly-linked list.
**
** Again, this structure is intended to be opaque, but it can't really
** be opaque because it is used by macros.
*/
struct HashElem {
  HashElem *next, *prev;       /* Next and previous elements in the table */
  void *data;                  /* Data associated with this element */
  const char *pKey; int nKey;  /* Key associated with this element */
};

/*
** Access routines.  To delete, insert a NULL pointer.
*/
SQLITE_PRIVATE void sqlite3HashInit(Hash*);
SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, int nKey, void *pData);
SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey, int nKey);
SQLITE_PRIVATE void sqlite3HashClear(Hash*);

/*
** Macros for looping over all elements of a hash table.  The idiom is
** like this:
**
**   Hash h;
**   HashElem *p;
**   ...
**   for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
**     SomeStructure *pData = sqliteHashData(p);
**     // do something with pData
**   }
*/
#define sqliteHashFirst(H)  ((H)->first)
#define sqliteHashNext(E)   ((E)->next)
#define sqliteHashData(E)   ((E)->data)
/* #define sqliteHashKey(E)    ((E)->pKey) // NOT USED */
/* #define sqliteHashKeysize(E) ((E)->nKey)  // NOT USED */

/*
** Number of entries in a hash table
*/
/* #define sqliteHashCount(H)  ((H)->count) // NOT USED */

#endif /* _SQLITE_HASH_H_ */

/************** End of hash.h ************************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include parse.h in the middle of sqliteInt.h *****************/
/************** Begin file parse.h *******************************************/
#define TK_SEMI                            1
#define TK_EXPLAIN                         2
#define TK_QUERY                           3
#define TK_PLAN                            4
#define TK_BEGIN                           5
#define TK_TRANSACTION                     6
#define TK_DEFERRED                        7
#define TK_IMMEDIATE                       8
#define TK_EXCLUSIVE                       9
#define TK_COMMIT                         10
#define TK_END                            11
#define TK_ROLLBACK                       12
#define TK_SAVEPOINT                      13
#define TK_RELEASE                        14
#define TK_TO                             15
#define TK_TABLE                          16
#define TK_CREATE                         17
#define TK_IF                             18
#define TK_NOT                            19
#define TK_EXISTS                         20
#define TK_TEMP                           21
#define TK_LP                             22
#define TK_RP                             23
#define TK_AS                             24
#define TK_COMMA                          25
#define TK_ID                             26
#define TK_INDEXED                        27
#define TK_ABORT                          28
#define TK_ACTION                         29
#define TK_AFTER                          30
#define TK_ANALYZE                        31
#define TK_ASC                            32
#define TK_ATTACH                         33
#define TK_BEFORE                         34
#define TK_BY                             35
#define TK_CASCADE                        36
#define TK_CAST                           37
#define TK_COLUMNKW                       38
#define TK_CONFLICT                       39
#define TK_DATABASE                       40
#define TK_DESC                           41
#define TK_DETACH                         42
#define TK_EACH                           43
#define TK_FAIL                           44
#define TK_FOR                            45
#define TK_IGNORE                         46
#define TK_INITIALLY                      47
#define TK_INSTEAD                        48
#define TK_LIKE_KW                        49
#define TK_MATCH                          50
#define TK_NO                             51
#define TK_KEY                            52
#define TK_OF                             53
#define TK_OFFSET                         54
#define TK_PRAGMA                         55
#define TK_RAISE                          56
#define TK_REPLACE                        57
#define TK_RESTRICT                       58
#define TK_ROW                            59
#define TK_TRIGGER                        60
#define TK_VACUUM                         61
#define TK_VIEW                           62
#define TK_VIRTUAL                        63
#define TK_REINDEX                        64
#define TK_RENAME                         65
#define TK_CTIME_KW                       66
#define TK_ANY                            67
#define TK_OR                             68
#define TK_AND                            69
#define TK_IS                             70
#define TK_BETWEEN                        71
#define TK_IN                             72
#define TK_ISNULL                         73
#define TK_NOTNULL                        74
#define TK_NE                             75
#define TK_EQ                             76
#define TK_GT                             77
#define TK_LE                             78