Skip to content
Snippets Groups Projects
sqlite3.h 340 KiB
Newer Older
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
** it is trying to promote to a reserved lock and
** a second process is holding a reserved lock that it is trying
** to promote to an exclusive lock.  The first process cannot proceed
** because it is blocked by the second and the second process cannot
** proceed because it is blocked by the first.  If both processes
** invoke the busy handlers, neither will make any progress.  Therefore,
** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
** will induce the first process to release its read lock and allow
** the second process to proceed.
**
** ^The default busy callback is NULL.
**
** ^The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
** when SQLite is in the middle of a large transaction where all the
** changes will not fit into the in-memory cache.  SQLite will
** already hold a RESERVED lock on the database file, but it needs
** to promote this lock to EXCLUSIVE so that it can spill cache
** pages into the database file without harm to concurrent
** readers.  ^If it is unable to promote the lock, then the in-memory
** cache will be left in an inconsistent state and so the error
** code is promoted from the relatively benign [SQLITE_BUSY] to
** the more severe [SQLITE_IOERR_BLOCKED].  ^This error code promotion
** forces an automatic rollback of the changes.  See the
** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError">
** CorruptionFollowingBusyError</a> wiki page for a discussion of why
** this is important.
**
** ^(There can only be a single busy handler defined for each
** [database connection].  Setting a new busy handler clears any
** previously set handler.)^  ^Note that calling [sqlite3_busy_timeout()]
** will also set or clear the busy handler.
**
** The busy callback should not take any actions which modify the
** database connection that invoked the busy handler.  Any such actions
** result in undefined behavior.
** 
** A busy handler must not close the database connection
** or [prepared statement] that invoked the busy handler.
*/
SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);

/*
** CAPI3REF: Set A Busy Timeout
**
** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
** for a specified amount of time when a table is locked.  ^The handler
** will sleep multiple times until at least "ms" milliseconds of sleeping
** have accumulated.  ^After at least "ms" milliseconds of sleeping,
** the handler returns 0 which causes [sqlite3_step()] to return
** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
**
** ^Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
**
** ^(There can only be a single busy handler for a particular
** [database connection] any any given moment.  If another busy handler
** was defined  (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.)^
*/
SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);

/*
** CAPI3REF: Convenience Routines For Running Queries
**
** This is a legacy interface that is preserved for backwards compatibility.
** Use of this interface is not recommended.
**
** Definition: A <b>result table</b> is memory data structure created by the
** [sqlite3_get_table()] interface.  A result table records the
** complete query results from one or more queries.
**
** The table conceptually has a number of rows and columns.  But
** these numbers are not part of the result table itself.  These
** numbers are obtained separately.  Let N be the number of rows
** and M be the number of columns.
**
** A result table is an array of pointers to zero-terminated UTF-8 strings.
** There are (N+1)*M elements in the array.  The first M pointers point
** to zero-terminated strings that  contain the names of the columns.
** The remaining entries all point to query results.  NULL values result
** in NULL pointers.  All other values are in their UTF-8 zero-terminated
** string representation as returned by [sqlite3_column_text()].
**
** A result table might consist of one or more memory allocations.
** It is not safe to pass a result table directly to [sqlite3_free()].
** A result table should be deallocated using [sqlite3_free_table()].
**
** ^(As an example of the result table format, suppose a query result
** is as follows:
**
** <blockquote><pre>
**        Name        | Age
**        -----------------------
**        Alice       | 43
**        Bob         | 28
**        Cindy       | 21
** </pre></blockquote>
**
** There are two column (M==2) and three rows (N==3).  Thus the
** result table has 8 entries.  Suppose the result table is stored
** in an array names azResult.  Then azResult holds this content:
**
** <blockquote><pre>
**        azResult&#91;0] = "Name";
**        azResult&#91;1] = "Age";
**        azResult&#91;2] = "Alice";
**        azResult&#91;3] = "43";
**        azResult&#91;4] = "Bob";
**        azResult&#91;5] = "28";
**        azResult&#91;6] = "Cindy";
**        azResult&#91;7] = "21";
** </pre></blockquote>)^
**
** ^The sqlite3_get_table() function evaluates one or more
** semicolon-separated SQL statements in the zero-terminated UTF-8
** string of its 2nd parameter and returns a result table to the
** pointer given in its 3rd parameter.
**
** After the application has finished with the result from sqlite3_get_table(),
** it must pass the result table pointer to sqlite3_free_table() in order to
** release the memory that was malloced.  Because of the way the
** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
** function must not try to call [sqlite3_free()] directly.  Only
** [sqlite3_free_table()] is able to release the memory properly and safely.
**
** The sqlite3_get_table() interface is implemented as a wrapper around
** [sqlite3_exec()].  The sqlite3_get_table() routine does not have access
** to any internal data structures of SQLite.  It uses only the public
** interface defined here.  As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
** reflected in subsequent calls to [sqlite3_errcode()] or
** [sqlite3_errmsg()].
*/
SQLITE_API int sqlite3_get_table(
  sqlite3 *db,          /* An open database */
  const char *zSql,     /* SQL to be evaluated */
  char ***pazResult,    /* Results of the query */
  int *pnRow,           /* Number of result rows written here */
  int *pnColumn,        /* Number of result columns written here */
  char **pzErrmsg       /* Error msg written here */
);
SQLITE_API void sqlite3_free_table(char **result);

/*
** CAPI3REF: Formatted String Printing Functions
**
** These routines are work-alikes of the "printf()" family of functions
** from the standard C library.
**
** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()].  ^Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
** memory to hold the resulting string.
**
** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from
** the standard C library.  The result is written into the
** buffer supplied as the second parameter whose size is given by
** the first parameter. Note that the order of the
** first two parameters is reversed from snprintf().)^  This is an
** historical accident that cannot be fixed without breaking
** backwards compatibility.  ^(Note also that sqlite3_snprintf()
** returns a pointer to its buffer instead of the number of
** characters actually written into the buffer.)^  We admit that
** the number of characters written would be a more useful return
** value but we cannot change the implementation of sqlite3_snprintf()
** now without breaking compatibility.
**
** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
** guarantees that the buffer is always zero-terminated.  ^The first
** parameter "n" is the total size of the buffer, including space for
** the zero terminator.  So the longest string that can be completely
** written will be n-1 characters.
**
** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
**
** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
** All of the usual printf() formatting options apply.  In addition, there
** is are "%q", "%Q", and "%z" options.
**
** ^(The %q option works like %s in that it substitutes a nul-terminated
** string from the argument list.  But %q also doubles every '\'' character.
** %q is designed for use inside a string literal.)^  By doubling each '\''
** character it escapes that character and allows it to be inserted into
** the string.
**
** For example, assume the string variable zText contains text as follows:
**
** <blockquote><pre>
**  char *zText = "It's a happy day!";
** </pre></blockquote>
**
** One can use this text in an SQL statement as follows:
**
** <blockquote><pre>
**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
**  sqlite3_exec(db, zSQL, 0, 0, 0);
**  sqlite3_free(zSQL);
** </pre></blockquote>
**
** Because the %q format string is used, the '\'' character in zText
** is escaped and the SQL generated is as follows:
**
** <blockquote><pre>
**  INSERT INTO table1 VALUES('It''s a happy day!')
** </pre></blockquote>
**
** This is correct.  Had we used %s instead of %q, the generated SQL
** would have looked like this:
**
** <blockquote><pre>
**  INSERT INTO table1 VALUES('It's a happy day!');
** </pre></blockquote>
**
** This second example is an SQL syntax error.  As a general rule you should
** always use %q instead of %s when inserting text into a string literal.
**
** ^(The %Q option works like %q except it also adds single quotes around
** the outside of the total string.  Additionally, if the parameter in the
** argument list is a NULL pointer, %Q substitutes the text "NULL" (without
** single quotes).)^  So, for example, one could say:
**
** <blockquote><pre>
**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
**  sqlite3_exec(db, zSQL, 0, 0, 0);
**  sqlite3_free(zSQL);
** </pre></blockquote>
**
** The code above will render a correct SQL statement in the zSQL
** variable even if the zText variable is a NULL pointer.
**
** ^(The "%z" formatting option works like "%s" but with the
** addition that after the string has been read and copied into
** the result, [sqlite3_free()] is called on the input string.)^
*/
SQLITE_API char *sqlite3_mprintf(const char*,...);
SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);

/*
** CAPI3REF: Memory Allocation Subsystem
**
** The SQLite core uses these three routines for all of its own
** internal memory allocation needs. "Core" in the previous sentence
** does not include operating-system specific VFS implementation.  The
** Windows VFS uses native malloc() and free() for some operations.
**
** ^The sqlite3_malloc() routine returns a pointer to a block
** of memory at least N bytes in length, where N is the parameter.
** ^If sqlite3_malloc() is unable to obtain sufficient free
** memory, it returns a NULL pointer.  ^If the parameter N to
** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
** a NULL pointer.
**
** ^Calling sqlite3_free() with a pointer previously returned
** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
** that it might be reused.  ^The sqlite3_free() routine is
** a no-op if is called with a NULL pointer.  Passing a NULL pointer
** to sqlite3_free() is harmless.  After being freed, memory
** should neither be read nor written.  Even reading previously freed
** memory might result in a segmentation fault or other severe error.
** Memory corruption, a segmentation fault, or other severe error
** might result if sqlite3_free() is called with a non-NULL pointer that
** was not obtained from sqlite3_malloc() or sqlite3_realloc().
**
** ^(The sqlite3_realloc() interface attempts to resize a
** prior memory allocation to be at least N bytes, where N is the
** second parameter.  The memory allocation to be resized is the first
** parameter.)^ ^ If the first parameter to sqlite3_realloc()
** is a NULL pointer then its behavior is identical to calling
** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
** ^If the second parameter to sqlite3_realloc() is zero or
** negative then the behavior is exactly the same as calling
** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
** ^sqlite3_realloc() returns a pointer to a memory allocation
** of at least N bytes in size or NULL if sufficient memory is unavailable.
** ^If M is the size of the prior allocation, then min(N,M) bytes
** of the prior allocation are copied into the beginning of buffer returned
** by sqlite3_realloc() and the prior allocation is freed.
** ^If sqlite3_realloc() returns NULL, then the prior allocation
** is not freed.
**
** ^The memory returned by sqlite3_malloc() and sqlite3_realloc()
** is always aligned to at least an 8 byte boundary, or to a
** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
** option is used.
**
** In SQLite version 3.5.0 and 3.5.1, it was possible to define
** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
** implementation of these routines to be omitted.  That capability
** is no longer provided.  Only built-in memory allocators can be used.
**
** Prior to SQLite version 3.7.10, the Windows OS interface layer called
** the system malloc() and free() directly when converting
** filenames between the UTF-8 encoding used by SQLite
** and whatever filename encoding is used by the particular Windows
** installation.  Memory allocation errors were detected, but
** they were reported back as [SQLITE_CANTOPEN] or
** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
**
** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
** must be either NULL or else pointers obtained from a prior
** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
** not yet been released.
**
** The application must not read or write any part of
** a block of memory after it has been released using
** [sqlite3_free()] or [sqlite3_realloc()].
*/
SQLITE_API void *sqlite3_malloc(int);
SQLITE_API void *sqlite3_realloc(void*, int);
SQLITE_API void sqlite3_free(void*);

/*
** CAPI3REF: Memory Allocator Statistics
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
** routines, which form the built-in memory allocation subsystem.
**
** ^The [sqlite3_memory_used()] routine returns the number of bytes
** of memory currently outstanding (malloced but not freed).
** ^The [sqlite3_memory_highwater()] routine returns the maximum
** value of [sqlite3_memory_used()] since the high-water mark
** was last reset.  ^The values returned by [sqlite3_memory_used()] and
** [sqlite3_memory_highwater()] include any overhead
** added by SQLite in its implementation of [sqlite3_malloc()],
** but not overhead added by the any underlying system library
** routines that [sqlite3_malloc()] may call.
**
** ^The memory high-water mark is reset to the current value of
** [sqlite3_memory_used()] if and only if the parameter to
** [sqlite3_memory_highwater()] is true.  ^The value returned
** by [sqlite3_memory_highwater(1)] is the high-water mark
** prior to the reset.
*/
SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);

/*
** CAPI3REF: Pseudo-Random Number Generator
**
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random [ROWID | ROWIDs] when inserting new records into a table that
** already uses the largest possible [ROWID].  The PRNG is also used for
** the build-in random() and randomblob() SQL functions.  This interface allows
** applications to access the same PRNG for other purposes.
**
** ^A call to this routine stores N bytes of randomness into buffer P.
**
** ^The first time this routine is invoked (either internally or by
** the application) the PRNG is seeded using randomness obtained
** from the xRandomness method of the default [sqlite3_vfs] object.
** ^On all subsequent invocations, the pseudo-randomness is generated
** internally and without recourse to the [sqlite3_vfs] xRandomness
** method.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
**
** ^This routine registers an authorizer callback with a particular
** [database connection], supplied in the first argument.
** ^The authorizer callback is invoked as SQL statements are being compiled
** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  ^At various
** points during the compilation process, as logic is being created
** to perform various actions, the authorizer callback is invoked to
** see if those actions are allowed.  ^The authorizer callback should
** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
** specific action but allow the SQL statement to continue to be
** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
** rejected with an error.  ^If the authorizer callback returns
** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
** then the [sqlite3_prepare_v2()] or equivalent call that triggered
** the authorizer will fail with an error message.
**
** When the callback returns [SQLITE_OK], that means the operation
** requested is ok.  ^When the callback returns [SQLITE_DENY], the
** [sqlite3_prepare_v2()] or equivalent call that triggered the
** authorizer will fail with an error message explaining that
** access is denied. 
**
** ^The first parameter to the authorizer callback is a copy of the third
** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
** to the callback is an integer [SQLITE_COPY | action code] that specifies
** the particular action to be authorized. ^The third through sixth parameters
** to the callback are zero-terminated strings that contain additional
** details about the action to be authorized.
**
** ^If the action code is [SQLITE_READ]
** and the callback returns [SQLITE_IGNORE] then the
** [prepared statement] statement is constructed to substitute
** a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
** return can be used to deny an untrusted user access to individual
** columns of a table.
** ^If the action code is [SQLITE_DELETE] and the callback returns
** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
** [truncate optimization] is disabled and all rows are deleted individually.
**
** An authorizer is used when [sqlite3_prepare | preparing]
** SQL statements from an untrusted source, to ensure that the SQL statements
** do not try to access data they are not allowed to see, or that they do not
** try to execute malicious statements that damage the database.  For
** example, an application may allow a user to enter arbitrary
** SQL queries for evaluation by a database.  But the application does
** not want the user to be able to make arbitrary changes to the
** database.  An authorizer could then be put in place while the
** user-entered SQL is being [sqlite3_prepare | prepared] that
** disallows everything except [SELECT] statements.
**
** Applications that need to process SQL from untrusted sources
** might also consider lowering resource limits using [sqlite3_limit()]
** and limiting database size using the [max_page_count] [PRAGMA]
** in addition to using an authorizer.
**
** ^(Only a single authorizer can be in place on a database connection
** at a time.  Each call to sqlite3_set_authorizer overrides the
** previous call.)^  ^Disable the authorizer by installing a NULL callback.
** The authorizer is disabled by default.
**
** The authorizer callback must not do anything that will modify
** the database connection that invoked the authorizer callback.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
** statement might be re-prepared during [sqlite3_step()] due to a 
** schema change.  Hence, the application should ensure that the
** correct authorizer callback remains in place during the [sqlite3_step()].
**
** ^Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes
** sqlite3_prepare_v2() to reprepare a statement after a schema change.
*/
SQLITE_API int sqlite3_set_authorizer(
  sqlite3*,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pUserData
);

/*
** CAPI3REF: Authorizer Return Codes
**
** The [sqlite3_set_authorizer | authorizer callback function] must
** return either [SQLITE_OK] or one of these two constants in order
** to signal SQLite whether or not the action is permitted.  See the
** [sqlite3_set_authorizer | authorizer documentation] for additional
** information.
**
** Note that SQLITE_IGNORE is also used as a [SQLITE_ROLLBACK | return code]
** from the [sqlite3_vtab_on_conflict()] interface.
*/
#define SQLITE_DENY   1   /* Abort the SQL statement with an error */
#define SQLITE_IGNORE 2   /* Don't allow access, but don't generate an error */

/*
** CAPI3REF: Authorizer Action Codes
**
** The [sqlite3_set_authorizer()] interface registers a callback function
** that is invoked to authorize certain SQL statement actions.  The
** second parameter to the callback is an integer code that specifies
** what action is being authorized.  These are the integer action codes that
** the authorizer callback may be passed.
**
** These action code values signify what kind of operation is to be
** authorized.  The 3rd and 4th parameters to the authorization
** callback function will be parameters or NULL depending on which of these
** codes is used as the second parameter.  ^(The 5th parameter to the
** authorizer callback is the name of the database ("main", "temp",
** etc.) if applicable.)^  ^The 6th parameter to the authorizer callback
** is the name of the inner-most trigger or view that is responsible for
** the access attempt or NULL if this access attempt is directly from
** top-level SQL code.
*/
/******************************************* 3rd ************ 4th ***********/
#define SQLITE_CREATE_INDEX          1   /* Index Name      Table Name      */
#define SQLITE_CREATE_TABLE          2   /* Table Name      NULL            */
#define SQLITE_CREATE_TEMP_INDEX     3   /* Index Name      Table Name      */
#define SQLITE_CREATE_TEMP_TABLE     4   /* Table Name      NULL            */
#define SQLITE_CREATE_TEMP_TRIGGER   5   /* Trigger Name    Table Name      */
#define SQLITE_CREATE_TEMP_VIEW      6   /* View Name       NULL            */
#define SQLITE_CREATE_TRIGGER        7   /* Trigger Name    Table Name      */
#define SQLITE_CREATE_VIEW           8   /* View Name       NULL            */
#define SQLITE_DELETE                9   /* Table Name      NULL            */
#define SQLITE_DROP_INDEX           10   /* Index Name      Table Name      */
#define SQLITE_DROP_TABLE           11   /* Table Name      NULL            */
#define SQLITE_DROP_TEMP_INDEX      12   /* Index Name      Table Name      */
#define SQLITE_DROP_TEMP_TABLE      13   /* Table Name      NULL            */
#define SQLITE_DROP_TEMP_TRIGGER    14   /* Trigger Name    Table Name      */
#define SQLITE_DROP_TEMP_VIEW       15   /* View Name       NULL            */
#define SQLITE_DROP_TRIGGER         16   /* Trigger Name    Table Name      */
#define SQLITE_DROP_VIEW            17   /* View Name       NULL            */
#define SQLITE_INSERT               18   /* Table Name      NULL            */
#define SQLITE_PRAGMA               19   /* Pragma Name     1st arg or NULL */
#define SQLITE_READ                 20   /* Table Name      Column Name     */
#define SQLITE_SELECT               21   /* NULL            NULL            */
#define SQLITE_TRANSACTION          22   /* Operation       NULL            */
#define SQLITE_UPDATE               23   /* Table Name      Column Name     */
#define SQLITE_ATTACH               24   /* Filename        NULL            */
#define SQLITE_DETACH               25   /* Database Name   NULL            */
#define SQLITE_ALTER_TABLE          26   /* Database Name   Table Name      */
#define SQLITE_REINDEX              27   /* Index Name      NULL            */
#define SQLITE_ANALYZE              28   /* Table Name      NULL            */
#define SQLITE_CREATE_VTABLE        29   /* Table Name      Module Name     */
#define SQLITE_DROP_VTABLE          30   /* Table Name      Module Name     */
#define SQLITE_FUNCTION             31   /* NULL            Function Name   */
#define SQLITE_SAVEPOINT            32   /* Operation       Savepoint Name  */
#define SQLITE_COPY                  0   /* No longer used */

/*
** CAPI3REF: Tracing And Profiling Functions
**
** These routines register callback functions that can be used for
** tracing and profiling the execution of SQL statements.
**
** ^The callback function registered by sqlite3_trace() is invoked at
** various times when an SQL statement is being run by [sqlite3_step()].
** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
** SQL statement text as the statement first begins executing.
** ^(Additional sqlite3_trace() callbacks might occur
** as each triggered subprogram is entered.  The callbacks for triggers
** contain a UTF-8 SQL comment that identifies the trigger.)^
**
Sergey Lyubka's avatar
Sergey Lyubka committed
** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit
** the length of [bound parameter] expansion in the output of sqlite3_trace().
**
** ^The callback function registered by sqlite3_profile() is invoked
** as each SQL statement finishes.  ^The profile callback contains
** the original statement text and an estimate of wall-clock time
** of how long that statement took to run.  ^The profile callback
** time is in units of nanoseconds, however the current implementation
** is only capable of millisecond resolution so the six least significant
** digits in the time are meaningless.  Future versions of SQLite
** might provide greater resolution on the profiler callback.  The
** sqlite3_profile() function is considered experimental and is
** subject to change in future versions of SQLite.
*/
SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
   void(*xProfile)(void*,const char*,sqlite3_uint64), void*);

/*
** CAPI3REF: Query Progress Callbacks
**
** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
** function X to be invoked periodically during long running calls to
** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
** database connection D.  An example use for this
** interface is to keep a GUI updated during a large query.
**
** ^The parameter P is passed through as the only parameter to the 
** callback function X.  ^The parameter N is the number of 
** [virtual machine instructions] that are evaluated between successive
** invocations of the callback X.
**
** ^Only a single progress handler may be defined at one time per
** [database connection]; setting a new progress handler cancels the
** old one.  ^Setting parameter X to NULL disables the progress handler.
** ^The progress handler is also disabled by setting N to a value less
** than 1.
**
** ^If the progress callback returns non-zero, the operation is
** interrupted.  This feature can be used to implement a
** "Cancel" button on a GUI progress dialog box.
**
** The progress handler callback must not do anything that will modify
** the database connection that invoked the progress handler.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
*/
SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);

/*
** CAPI3REF: Opening A New Database Connection
**
** ^These routines open an SQLite database file as specified by the 
** filename argument. ^The filename argument is interpreted as UTF-8 for
** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
** order for sqlite3_open16(). ^(A [database connection] handle is usually
** returned in *ppDb, even if an error occurs.  The only exception is that
** if SQLite is unable to allocate memory to hold the [sqlite3] object,
** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
** object.)^ ^(If the database is opened (and/or created) successfully, then
** [SQLITE_OK] is returned.  Otherwise an [error code] is returned.)^ ^The
** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
** an English language description of the error following a failure of any
** of the sqlite3_open() routines.
**
** ^The default encoding for the database will be UTF-8 if
** sqlite3_open() or sqlite3_open_v2() is called and
** UTF-16 in the native byte order if sqlite3_open16() is used.
**
** Whether or not an error occurs when it is opened, resources
** associated with the [database connection] handle should be released by
** passing it to [sqlite3_close()] when it is no longer required.
**
** The sqlite3_open_v2() interface works like sqlite3_open()
** except that it accepts two additional parameters for additional control
** over the new database connection.  ^(The flags parameter to
** sqlite3_open_v2() can take one of
** the following three values, optionally combined with the 
** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
** [SQLITE_OPEN_PRIVATECACHE], and/or [SQLITE_OPEN_URI] flags:)^
**
** <dl>
** ^(<dt>[SQLITE_OPEN_READONLY]</dt>
** <dd>The database is opened in read-only mode.  If the database does not
** already exist, an error is returned.</dd>)^
**
** ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
** <dd>The database is opened for reading and writing if possible, or reading
** only if the file is write protected by the operating system.  In either
** case the database must already exist, otherwise an error is returned.</dd>)^
**
** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
** <dd>The database is opened for reading and writing, and is created if
** it does not already exist. This is the behavior that is always used for
** sqlite3_open() and sqlite3_open16().</dd>)^
** </dl>
**
** If the 3rd parameter to sqlite3_open_v2() is not one of the
** combinations shown above optionally combined with other
** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits]
** then the behavior is undefined.
**
** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
** opens in the multi-thread [threading mode] as long as the single-thread
** mode has not been set at compile-time or start-time.  ^If the
** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
** in the serialized [threading mode] unless single-thread was
** previously selected at compile-time or start-time.
** ^The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be
** eligible to use [shared cache mode], regardless of whether or not shared
** cache is enabled using [sqlite3_enable_shared_cache()].  ^The
** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not
** participate in [shared cache mode] even if it is enabled.
**
** ^The fourth parameter to sqlite3_open_v2() is the name of the
** [sqlite3_vfs] object that defines the operating system interface that
** the new database connection should use.  ^If the fourth parameter is
** a NULL pointer then the default [sqlite3_vfs] object is used.
**
** ^If the filename is ":memory:", then a private, temporary in-memory database
** is created for the connection.  ^This in-memory database will vanish when
** the database connection is closed.  Future versions of SQLite might
** make use of additional special filenames that begin with the ":" character.
** It is recommended that when a database filename actually does begin with
** a ":" character you should prefix the filename with a pathname such as
** "./" to avoid ambiguity.
**
** ^If the filename is an empty string, then a private, temporary
** on-disk database will be created.  ^This private database will be
** automatically deleted as soon as the database connection is closed.
**
** [[URI filenames in sqlite3_open()]] <h3>URI Filenames</h3>
**
** ^If [URI filename] interpretation is enabled, and the filename argument
** begins with "file:", then the filename is interpreted as a URI. ^URI
** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is
** set in the fourth argument to sqlite3_open_v2(), or if it has
** been enabled globally using the [SQLITE_CONFIG_URI] option with the
** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option.
** As of SQLite version 3.7.7, URI filename interpretation is turned off
** by default, but future releases of SQLite might enable URI filename
** interpretation by default.  See "[URI filenames]" for additional
** information.
**
** URI filenames are parsed according to RFC 3986. ^If the URI contains an
** authority, then it must be either an empty string or the string 
** "localhost". ^If the authority is not an empty string or "localhost", an 
** error is returned to the caller. ^The fragment component of a URI, if 
** present, is ignored.
**
** ^SQLite uses the path component of the URI as the name of the disk file
** which contains the database. ^If the path begins with a '/' character, 
** then it is interpreted as an absolute path. ^If the path does not begin 
** with a '/' (meaning that the authority section is omitted from the URI)
** then the path is interpreted as a relative path. 
** ^On windows, the first component of an absolute path 
** is a drive specification (e.g. "C:").
**
** [[core URI query parameters]]
** The query component of a URI may contain parameters that are interpreted
** either by SQLite itself, or by a [VFS | custom VFS implementation].
** SQLite interprets the following three query parameters:
**
** <ul>
**   <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
**     a VFS object that provides the operating system interface that should
**     be used to access the database file on disk. ^If this option is set to
**     an empty string the default VFS object is used. ^Specifying an unknown
**     VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
**     present, then the VFS specified by the option takes precedence over
**     the value passed as the fourth parameter to sqlite3_open_v2().
**
**   <li> <b>mode</b>: ^(The mode parameter may be set to either "ro", "rw",
**     "rwc", or "memory". Attempting to set it to any other value is
**     an error)^. 
**     ^If "ro" is specified, then the database is opened for read-only 
**     access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the 
**     third argument to sqlite3_open_v2(). ^If the mode option is set to 
**     "rw", then the database is opened for read-write (but not create) 
**     access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had 
**     been set. ^Value "rwc" is equivalent to setting both 
**     SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE.  ^If the mode option is
**     set to "memory" then a pure [in-memory database] that never reads
**     or writes from disk is used. ^It is an error to specify a value for
**     the mode parameter that is less restrictive than that specified by
**     the flags passed in the third parameter to sqlite3_open_v2().
**
**   <li> <b>cache</b>: ^The cache parameter may be set to either "shared" or
**     "private". ^Setting it to "shared" is equivalent to setting the
**     SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
**     sqlite3_open_v2(). ^Setting the cache parameter to "private" is 
**     equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
**     ^If sqlite3_open_v2() is used and the "cache" parameter is present in
Sergey Lyubka's avatar
Sergey Lyubka committed
**     a URI filename, its value overrides any behavior requested by setting
**     SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
** </ul>
**
** ^Specifying an unknown parameter in the query component of a URI is not an
** error.  Future versions of SQLite might understand additional query
** parameters.  See "[query parameters with special meaning to SQLite]" for
** additional information.
**
** [[URI filename examples]] <h3>URI filename examples</h3>
**
** <table border="1" align=center cellpadding=5>
** <tr><th> URI filenames <th> Results
** <tr><td> file:data.db <td> 
**          Open the file "data.db" in the current directory.
** <tr><td> file:/home/fred/data.db<br>
**          file:///home/fred/data.db <br> 
**          file://localhost/home/fred/data.db <br> <td> 
**          Open the database file "/home/fred/data.db".
** <tr><td> file://darkstar/home/fred/data.db <td> 
**          An error. "darkstar" is not a recognized authority.
** <tr><td style="white-space:nowrap"> 
**          file:///C:/Documents%20and%20Settings/fred/Desktop/data.db
**     <td> Windows only: Open the file "data.db" on fred's desktop on drive
**          C:. Note that the %20 escaping in this example is not strictly 
**          necessary - space characters can be used literally
**          in URI filenames.
** <tr><td> file:data.db?mode=ro&cache=private <td> 
**          Open file "data.db" in the current directory for read-only access.
**          Regardless of whether or not shared-cache mode is enabled by
**          default, use a private cache.
** <tr><td> file:/home/fred/data.db?vfs=unix-nolock <td>
**          Open file "/home/fred/data.db". Use the special VFS "unix-nolock".
** <tr><td> file:data.db?mode=readonly <td> 
**          An error. "readonly" is not a valid option for the "mode" parameter.
** </table>
**
** ^URI hexadecimal escape sequences (%HH) are supported within the path and
** query components of a URI. A hexadecimal escape sequence consists of a
** percent sign - "%" - followed by exactly two hexadecimal digits 
** specifying an octet value. ^Before the path or query components of a
** URI filename are interpreted, they are encoded using UTF-8 and all 
** hexadecimal escape sequences replaced by a single byte containing the
** corresponding octet. If this process generates an invalid UTF-8 encoding,
** the results are undefined.
**
** <b>Note to Windows users:</b>  The encoding used for the filename argument
** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
** codepage is currently defined.  Filenames containing international
** characters must be converted to UTF-8 prior to passing them into
** sqlite3_open() or sqlite3_open_v2().
**
** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
** prior to calling sqlite3_open() or sqlite3_open_v2().  Otherwise, various
** features that require the use of temporary files may fail.
**
** See also: [sqlite3_temp_directory]
*/
SQLITE_API int sqlite3_open(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open_v2(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  int flags,              /* Flags */
  const char *zVfs        /* Name of VFS module to use */
);

/*
** CAPI3REF: Obtain Values For URI Parameters
**
** These are utility routines, useful to VFS implementations, that check
** to see if a database file was a URI that contained a specific query 
** parameter, and if so obtains the value of that query parameter.
**
** If F is the database filename pointer passed into the xOpen() method of 
** a VFS implementation when the flags parameter to xOpen() has one or 
** more of the [SQLITE_OPEN_URI] or [SQLITE_OPEN_MAIN_DB] bits set and
** P is the name of the query parameter, then
** sqlite3_uri_parameter(F,P) returns the value of the P
** parameter if it exists or a NULL pointer if P does not appear as a 
** query parameter on F.  If P is a query parameter of F
** has no explicit value, then sqlite3_uri_parameter(F,P) returns
** a pointer to an empty string.
**
** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean
** parameter and returns true (1) or false (0) according to the value
** of P.  The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the
** value of query parameter P is one of "yes", "true", or "on" in any
** case or if the value begins with a non-zero number.  The 
** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of
** query parameter P is one of "no", "false", or "off" in any case or
** if the value begins with a numeric zero.  If P is not a query
** parameter on F or if the value of P is does not match any of the
** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0).
**
** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a
** 64-bit signed integer and returns that integer, or D if P does not
** exist.  If the value of P is something other than an integer, then
** zero is returned.
** 
** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
** sqlite3_uri_boolean(F,P,B) returns B.  If F is not a NULL pointer and
** is not a database file pathname pointer that SQLite passed into the xOpen
** VFS method, then the behavior of this routine is undefined and probably
** undesirable.
*/
SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam);
SQLITE_API int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault);
SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64);


/*
** CAPI3REF: Error Codes And Messages
**
** ^The sqlite3_errcode() interface returns the numeric [result code] or
** [extended result code] for the most recent failed sqlite3_* API call
** associated with a [database connection]. If a prior API call failed
** but the most recent API call succeeded, the return value from
** sqlite3_errcode() is undefined.  ^The sqlite3_extended_errcode()
** interface is the same except that it always returns the 
** [extended result code] even when extended result codes are
** disabled.
**
** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
** text that describes the error, as either UTF-8 or UTF-16 respectively.
** ^(Memory to hold the error message string is managed internally.
** The application does not need to worry about freeing the result.
** However, the error string might be overwritten or deallocated by
** subsequent calls to other SQLite interface functions.)^
**
** ^The sqlite3_errstr() interface returns the English-language text
** that describes the [result code], as UTF-8.
** ^(Memory to hold the error message string is managed internally
** and must not be freed by the application)^.
**
** When the serialized [threading mode] is in use, it might be the
** case that a second error occurs on a separate thread in between
** the time of the first error and the call to these interfaces.
** When that happens, the second error will be reported since these
** interfaces always report the most recent result.  To avoid
** this, each thread can obtain exclusive use of the [database connection] D
** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
** all calls to the interfaces listed here are completed.
**
** If an interface fails with SQLITE_MISUSE, that means the interface
** was invoked incorrectly by the application.  In that case, the
** error code and message may or may not be set.
*/
SQLITE_API int sqlite3_errcode(sqlite3 *db);
SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
SQLITE_API const char *sqlite3_errmsg(sqlite3*);
SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
SQLITE_API const char *sqlite3_errstr(int);

/*
** CAPI3REF: SQL Statement Object
** KEYWORDS: {prepared statement} {prepared statements}
**
** An instance of this object represents a single SQL statement.
** This object is variously known as a "prepared statement" or a
** "compiled SQL statement" or simply as a "statement".
**
** The life of a statement object goes something like this:
**
** <ol>
** <li> Create the object using [sqlite3_prepare_v2()] or a related
**      function.
** <li> Bind values to [host parameters] using the sqlite3_bind_*()
**      interfaces.
** <li> Run the SQL by calling [sqlite3_step()] one or more times.
** <li> Reset the statement using [sqlite3_reset()] then go back
**      to step 2.  Do this zero or more times.
** <li> Destroy the object using [sqlite3_finalize()].
** </ol>
**
** Refer to documentation on individual methods above for additional
** information.
*/
typedef struct sqlite3_stmt sqlite3_stmt;

/*
** CAPI3REF: Run-time Limits
**
** ^(This interface allows the size of various constructs to be limited
** on a connection by connection basis.  The first parameter is the
** [database connection] whose limit is to be set or queried.  The
** second parameter is one of the [limit categories] that define a
** class of constructs to be size limited.  The third parameter is the
** new limit for that construct.)^
**
** ^If the new limit is a negative number, the limit is unchanged.
** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a 
** [limits | hard upper bound]
** set at compile-time by a C preprocessor macro called
** [limits | SQLITE_MAX_<i>NAME</i>].
** (The "_LIMIT_" in the name is changed to "_MAX_".))^
** ^Attempts to increase a limit above its hard upper bound are
** silently truncated to the hard upper bound.
**
** ^Regardless of whether or not the limit was changed, the 
** [sqlite3_limit()] interface returns the prior value of the limit.
** ^Hence, to find the current value of a limit without changing it,
** simply invoke this interface with the third parameter set to -1.
**
** Run-time limits are intended for use in applications that manage
** both their own internal database and also databases that are controlled
** by untrusted external sources.  An example application might be a
** web browser that has its own databases for storing history and
** separate databases controlled by JavaScript applications downloaded
** off the Internet.  The internal databases can be given the
** large, default limits.  Databases managed by external sources can
** be given much smaller limits designed to prevent a denial of service
** attack.  Developers might also want to use the [sqlite3_set_authorizer()]
** interface to further control untrusted SQL.  The size of the database
** created by an untrusted script can be contained using the
** [max_page_count] [PRAGMA].
**
** New run-time limit categories may be added in future releases.
*/
SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);

/*
** CAPI3REF: Run-Time Limit Categories
** KEYWORDS: {limit category} {*limit categories}
**
** These constants define various performance limits
** that can be lowered at run-time using [sqlite3_limit()].
** The synopsis of the meanings of the various limits is shown below.
** Additional information is available at [limits | Limits in SQLite].
**
** <dl>
** [[SQLITE_LIMIT_LENGTH]] ^(<dt>SQLITE_LIMIT_LENGTH</dt>
** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
**
** [[SQLITE_LIMIT_SQL_LENGTH]] ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
**
** [[SQLITE_LIMIT_COLUMN]] ^(<dt>SQLITE_LIMIT_COLUMN</dt>
** <dd>The maximum number of columns in a table definition or in the
** result set of a [SELECT] or the maximum number of columns in an index
** or in an ORDER BY or GROUP BY clause.</dd>)^
**
** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
** <dd>The maximum depth of the parse tree on any expression.</dd>)^
**
** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^
**
** [[SQLITE_LIMIT_VDBE_OP]] ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
** <dd>The maximum number of instructions in a virtual machine program
** used to implement an SQL statement.  This limit is not currently
** enforced, though that might be added in some future release of
** SQLite.</dd>)^
**
** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
** <dd>The maximum number of arguments on a function.</dd>)^
**
** [[SQLITE_LIMIT_ATTACHED]] ^(<dt>SQLITE_LIMIT_ATTACHED</dt>
** <dd>The maximum number of [ATTACH | attached databases].)^</dd>
**
** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]]
** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
** <dd>The maximum length of the pattern argument to the [LIKE] or
** [GLOB] operators.</dd>)^
**
** [[SQLITE_LIMIT_VARIABLE_NUMBER]]
** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
** <dd>The maximum index number of any [parameter] in an SQL statement.)^