Skip to content
Snippets Groups Projects
Commit 2bc77e06 authored by Sergey Lyubka's avatar Sergey Lyubka
Browse files

Fixed build

parent 790daabf
No related branches found
No related tags found
No related merge requests found
...@@ -3,14 +3,13 @@ ...@@ -3,14 +3,13 @@
PROG = ws_ssl PROG = ws_ssl
CFLAGS = -W -Wall -I../.. -I. -pthread -g -O0 $(CFLAGS_EXTRA) CFLAGS = -W -Wall -I../.. -I. -pthread -g -O0 $(CFLAGS_EXTRA)
SOURCES = ws_ssl.c ../../mongoose.c net_skeleton.c ssl_wrapper.c SOURCES = ws_ssl.c ../../mongoose.c ssl_wrapper.c
all: $(PROG) all: $(PROG)
$(PROG): $(SOURCES) $(PROG): $(SOURCES)
$(CC) -o $(PROG) $(SOURCES) \ $(CC) -o $(PROG) $(SOURCES) \
-DNS_ENABLE_SSL -DNOEMBED_NET_SKELETON \ -DNS_ENABLE_SSL -DSSL_WRAPPER_USE_AS_LIBRARY -lssl $(CFLAGS)
-DSSL_WRAPPER_USE_AS_LIBRARY -lssl $(CFLAGS)
clean: clean:
rm -rf $(PROG) *.exe *.dSYM *.obj *.exp .*o *.lib rm -rf $(PROG) *.exe *.dSYM *.obj *.exp .*o *.lib
// Copyright (c) 2014 Cesanta Software Limited
// All rights reserved
//
// This software is dual-licensed: you can redistribute it and/or modify
// it under the terms of the GNU General Public License version 2 as
// published by the Free Software Foundation. For the terms of this
// license, see <http://www.gnu.org/licenses/>.
//
// You are free to use this software under the terms of the GNU General
// Public License, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// Alternatively, you can license this software under a commercial
// license, as set out in <http://cesanta.com/>.
//
// $Date: 2014-09-28 05:04:41 UTC $
#include "net_skeleton.h"
#ifndef NS_MALLOC
#define NS_MALLOC malloc
#endif
#ifndef NS_REALLOC
#define NS_REALLOC realloc
#endif
#ifndef NS_FREE
#define NS_FREE free
#endif
#define NS_UDP_RECEIVE_BUFFER_SIZE 2000
#define NS_VPRINTF_BUFFER_SIZE 500
struct ctl_msg {
ns_callback_t callback;
char message[1024 * 8];
};
void iobuf_resize(struct iobuf *io, size_t new_size) {
char *p;
if ((new_size > io->size || (new_size < io->size && new_size >= io->len)) &&
(p = (char *) NS_REALLOC(io->buf, new_size)) != NULL) {
io->size = new_size;
io->buf = p;
}
}
void iobuf_init(struct iobuf *iobuf, size_t initial_size) {
iobuf->len = iobuf->size = 0;
iobuf->buf = NULL;
iobuf_resize(iobuf, initial_size);
}
void iobuf_free(struct iobuf *iobuf) {
if (iobuf != NULL) {
if (iobuf->buf != NULL) NS_FREE(iobuf->buf);
iobuf_init(iobuf, 0);
}
}
size_t iobuf_append(struct iobuf *io, const void *buf, size_t len) {
char *p = NULL;
assert(io != NULL);
assert(io->len <= io->size);
if (len <= 0) {
} else if (io->len + len <= io->size) {
memcpy(io->buf + io->len, buf, len);
io->len += len;
} else if ((p = (char *) NS_REALLOC(io->buf, io->len + len)) != NULL) {
io->buf = p;
memcpy(io->buf + io->len, buf, len);
io->len += len;
io->size = io->len;
} else {
len = 0;
}
return len;
}
void iobuf_remove(struct iobuf *io, size_t n) {
if (n > 0 && n <= io->len) {
memmove(io->buf, io->buf + n, io->len - n);
io->len -= n;
}
}
static size_t ns_out(struct ns_connection *nc, const void *buf, size_t len) {
if (nc->flags & NSF_UDP) {
long n = sendto(nc->sock, buf, len, 0, &nc->sa.sa, sizeof(nc->sa.sin));
DBG(("%p %d send %ld (%d %s)", nc, nc->sock, n, errno, strerror(errno)));
return n < 0 ? 0 : n;
} else {
return iobuf_append(&nc->send_iobuf, buf, len);
}
}
#ifndef NS_DISABLE_THREADS
void *ns_start_thread(void *(*f)(void *), void *p) {
#ifdef _WIN32
return (void *) _beginthread((void (__cdecl *)(void *)) f, 0, p);
#else
pthread_t thread_id = (pthread_t) 0;
pthread_attr_t attr;
(void) pthread_attr_init(&attr);
(void) pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
#if defined(NS_STACK_SIZE) && NS_STACK_SIZE > 1
(void) pthread_attr_setstacksize(&attr, NS_STACK_SIZE);
#endif
pthread_create(&thread_id, &attr, f, p);
pthread_attr_destroy(&attr);
return (void *) thread_id;
#endif
}
#endif // NS_DISABLE_THREADS
static void ns_add_conn(struct ns_mgr *mgr, struct ns_connection *c) {
c->next = mgr->active_connections;
mgr->active_connections = c;
c->prev = NULL;
if (c->next != NULL) c->next->prev = c;
}
static void ns_remove_conn(struct ns_connection *conn) {
if (conn->prev == NULL) conn->mgr->active_connections = conn->next;
if (conn->prev) conn->prev->next = conn->next;
if (conn->next) conn->next->prev = conn->prev;
}
// Print message to buffer. If buffer is large enough to hold the message,
// return buffer. If buffer is to small, allocate large enough buffer on heap,
// and return allocated buffer.
int ns_avprintf(char **buf, size_t size, const char *fmt, va_list ap) {
va_list ap_copy;
int len;
va_copy(ap_copy, ap);
len = vsnprintf(*buf, size, fmt, ap_copy);
va_end(ap_copy);
if (len < 0) {
// eCos and Windows are not standard-compliant and return -1 when
// the buffer is too small. Keep allocating larger buffers until we
// succeed or out of memory.
*buf = NULL;
while (len < 0) {
if (*buf) free(*buf);
size *= 2;
if ((*buf = (char *) NS_MALLOC(size)) == NULL) break;
va_copy(ap_copy, ap);
len = vsnprintf(*buf, size, fmt, ap_copy);
va_end(ap_copy);
}
} else if (len > (int) size) {
// Standard-compliant code path. Allocate a buffer that is large enough.
if ((*buf = (char *) NS_MALLOC(len + 1)) == NULL) {
len = -1;
} else {
va_copy(ap_copy, ap);
len = vsnprintf(*buf, len + 1, fmt, ap_copy);
va_end(ap_copy);
}
}
return len;
}
int ns_vprintf(struct ns_connection *nc, const char *fmt, va_list ap) {
char mem[NS_VPRINTF_BUFFER_SIZE], *buf = mem;
int len;
if ((len = ns_avprintf(&buf, sizeof(mem), fmt, ap)) > 0) {
ns_out(nc, buf, len);
}
if (buf != mem && buf != NULL) {
free(buf);
}
return len;
}
int ns_printf(struct ns_connection *conn, const char *fmt, ...) {
int len;
va_list ap;
va_start(ap, fmt);
len = ns_vprintf(conn, fmt, ap);
va_end(ap);
return len;
}
static void hexdump(struct ns_connection *nc, const char *path,
int num_bytes, int ev) {
const struct iobuf *io = ev == NS_SEND ? &nc->send_iobuf : &nc->recv_iobuf;
FILE *fp;
char *buf, src[60], dst[60];
int buf_size = num_bytes * 5 + 100;
if ((fp = fopen(path, "a")) != NULL) {
ns_sock_to_str(nc->sock, src, sizeof(src), 3);
ns_sock_to_str(nc->sock, dst, sizeof(dst), 7);
fprintf(fp, "%lu %p %s %s %s %d\n", (unsigned long) time(NULL),
nc->user_data, src,
ev == NS_RECV ? "<-" : ev == NS_SEND ? "->" :
ev == NS_ACCEPT ? "<A" : ev == NS_CONNECT ? "C>" : "XX",
dst, num_bytes);
if (num_bytes > 0 && (buf = (char *) NS_MALLOC(buf_size)) != NULL) {
ns_hexdump(io->buf + (ev == NS_SEND ? 0 : io->len) -
(ev == NS_SEND ? 0 : num_bytes), num_bytes, buf, buf_size);
fprintf(fp, "%s", buf);
free(buf);
}
fclose(fp);
}
}
static void ns_call(struct ns_connection *nc, int ev, void *p) {
if (nc->mgr->hexdump_file != NULL && ev != NS_POLL) {
int len = (ev == NS_RECV || ev == NS_SEND) ? * (int *) p : 0;
hexdump(nc, nc->mgr->hexdump_file, len, ev);
}
nc->callback(nc, ev, p);
}
static void ns_destroy_conn(struct ns_connection *conn) {
closesocket(conn->sock);
iobuf_free(&conn->recv_iobuf);
iobuf_free(&conn->send_iobuf);
#ifdef NS_ENABLE_SSL
if (conn->ssl != NULL) {
SSL_free(conn->ssl);
}
if (conn->ssl_ctx != NULL) {
SSL_CTX_free(conn->ssl_ctx);
}
#endif
NS_FREE(conn);
}
static void ns_close_conn(struct ns_connection *conn) {
DBG(("%p %d", conn, conn->flags));
ns_call(conn, NS_CLOSE, NULL);
ns_remove_conn(conn);
ns_destroy_conn(conn);
}
void ns_set_close_on_exec(sock_t sock) {
#ifdef _WIN32
(void) SetHandleInformation((HANDLE) sock, HANDLE_FLAG_INHERIT, 0);
#else
fcntl(sock, F_SETFD, FD_CLOEXEC);
#endif
}
static void ns_set_non_blocking_mode(sock_t sock) {
#ifdef _WIN32
unsigned long on = 1;
ioctlsocket(sock, FIONBIO, &on);
#else
int flags = fcntl(sock, F_GETFL, 0);
fcntl(sock, F_SETFL, flags | O_NONBLOCK);
#endif
}
#ifndef NS_DISABLE_SOCKETPAIR
int ns_socketpair2(sock_t sp[2], int sock_type) {
union socket_address sa;
sock_t sock;
socklen_t len = sizeof(sa.sin);
int ret = 0;
sp[0] = sp[1] = INVALID_SOCKET;
(void) memset(&sa, 0, sizeof(sa));
sa.sin.sin_family = AF_INET;
sa.sin.sin_port = htons(0);
sa.sin.sin_addr.s_addr = htonl(0x7f000001);
if ((sock = socket(AF_INET, sock_type, 0)) != INVALID_SOCKET &&
!bind(sock, &sa.sa, len) &&
(sock_type == SOCK_DGRAM || !listen(sock, 1)) &&
!getsockname(sock, &sa.sa, &len) &&
(sp[0] = socket(AF_INET, sock_type, 0)) != INVALID_SOCKET &&
!connect(sp[0], &sa.sa, len) &&
(sock_type == SOCK_STREAM ||
(!getsockname(sp[0], &sa.sa, &len) && !connect(sock, &sa.sa, len))) &&
(sp[1] = (sock_type == SOCK_DGRAM ? sock :
accept(sock, &sa.sa, &len))) != INVALID_SOCKET) {
ns_set_close_on_exec(sp[0]);
ns_set_close_on_exec(sp[1]);
ret = 1;
} else {
if (sp[0] != INVALID_SOCKET) closesocket(sp[0]);
if (sp[1] != INVALID_SOCKET) closesocket(sp[1]);
sp[0] = sp[1] = INVALID_SOCKET;
}
if (sock_type != SOCK_DGRAM) closesocket(sock);
return ret;
}
int ns_socketpair(sock_t sp[2]) {
return ns_socketpair2(sp, SOCK_STREAM);
}
#endif // NS_DISABLE_SOCKETPAIR
// TODO(lsm): use non-blocking resolver
static int ns_resolve2(const char *host, struct in_addr *ina) {
struct hostent *he;
if ((he = gethostbyname(host)) == NULL) {
DBG(("gethostbyname(%s) failed: %s", host, strerror(errno)));
} else {
memcpy(ina, he->h_addr_list[0], sizeof(*ina));
return 1;
}
return 0;
}
// Resolve FDQN "host", store IP address in the "ip".
// Return > 0 (IP address length) on success.
int ns_resolve(const char *host, char *buf, size_t n) {
struct in_addr ad;
return ns_resolve2(host, &ad) ? snprintf(buf, n, "%s", inet_ntoa(ad)) : 0;
}
// Address format: [PROTO://][IP_ADDRESS:]PORT[:CERT][:CA_CERT]
static int ns_parse_address(const char *str, union socket_address *sa,
int *proto, int *use_ssl, char *cert, char *ca) {
unsigned int a, b, c, d, port;
int n = 0, len = 0;
char host[200];
#ifdef NS_ENABLE_IPV6
char buf[100];
#endif
// MacOS needs that. If we do not zero it, subsequent bind() will fail.
// Also, all-zeroes in the socket address means binding to all addresses
// for both IPv4 and IPv6 (INADDR_ANY and IN6ADDR_ANY_INIT).
memset(sa, 0, sizeof(*sa));
sa->sin.sin_family = AF_INET;
*proto = SOCK_STREAM;
*use_ssl = 0;
cert[0] = ca[0] = '\0';
if (memcmp(str, "ssl://", 6) == 0) {
str += 6;
*use_ssl = 1;
} else if (memcmp(str, "udp://", 6) == 0) {
str += 6;
*proto = SOCK_DGRAM;
} else if (memcmp(str, "tcp://", 6) == 0) {
str += 6;
}
if (sscanf(str, "%u.%u.%u.%u:%u%n", &a, &b, &c, &d, &port, &len) == 5) {
// Bind to a specific IPv4 address, e.g. 192.168.1.5:8080
sa->sin.sin_addr.s_addr = htonl((a << 24) | (b << 16) | (c << 8) | d);
sa->sin.sin_port = htons((uint16_t) port);
#ifdef NS_ENABLE_IPV6
} else if (sscanf(str, "[%99[^]]]:%u%n", buf, &port, &len) == 2 &&
inet_pton(AF_INET6, buf, &sa->sin6.sin6_addr)) {
// IPv6 address, e.g. [3ffe:2a00:100:7031::1]:8080
sa->sin6.sin6_family = AF_INET6;
sa->sin6.sin6_port = htons((uint16_t) port);
#endif
} else if (sscanf(str, "%199[^ :]:%u%n", host, &port, &len) == 2) {
sa->sin.sin_port = htons((uint16_t) port);
ns_resolve2(host, &sa->sin.sin_addr);
} else if (sscanf(str, "%u%n", &port, &len) == 1) {
// If only port is specified, bind to IPv4, INADDR_ANY
sa->sin.sin_port = htons((uint16_t) port);
}
if (*use_ssl && (sscanf(str + len, ":%99[^:]:%99[^:]%n", cert, ca, &n) == 2 ||
sscanf(str + len, ":%99[^:]%n", cert, &n) == 1)) {
len += n;
}
return port < 0xffff && str[len] == '\0' ? len : 0;
}
// 'sa' must be an initialized address to bind to
static sock_t ns_open_listening_socket(union socket_address *sa, int proto) {
socklen_t sa_len = (sa->sa.sa_family == AF_INET) ?
sizeof(sa->sin) : sizeof(sa->sin6);
sock_t sock = INVALID_SOCKET;
#ifndef _WIN32
int on = 1;
#endif
if ((sock = socket(sa->sa.sa_family, proto, 0)) != INVALID_SOCKET &&
#ifndef _WIN32
// SO_RESUSEADDR is not enabled on Windows because the semantics of
// SO_REUSEADDR on UNIX and Windows is different. On Windows,
// SO_REUSEADDR allows to bind a socket to a port without error even if
// the port is already open by another program. This is not the behavior
// SO_REUSEADDR was designed for, and leads to hard-to-track failure
// scenarios. Therefore, SO_REUSEADDR was disabled on Windows.
!setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (void *) &on, sizeof(on)) &&
#endif
!bind(sock, &sa->sa, sa_len) &&
(proto == SOCK_DGRAM || listen(sock, SOMAXCONN) == 0)) {
ns_set_non_blocking_mode(sock);
// In case port was set to 0, get the real port number
(void) getsockname(sock, &sa->sa, &sa_len);
} else if (sock != INVALID_SOCKET) {
closesocket(sock);
sock = INVALID_SOCKET;
}
return sock;
}
#ifdef NS_ENABLE_SSL
// Certificate generation script is at
// https://github.com/cesanta/net_skeleton/blob/master/scripts/gen_certs.sh
static int ns_use_ca_cert(SSL_CTX *ctx, const char *cert) {
if (ctx == NULL) {
return -1;
} else if (cert == NULL || cert[0] == '\0') {
return 0;
}
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, 0);
return SSL_CTX_load_verify_locations(ctx, cert, NULL) == 1 ? 0 : -2;
}
static int ns_use_cert(SSL_CTX *ctx, const char *pem_file) {
if (ctx == NULL) {
return -1;
} else if (pem_file == NULL || pem_file[0] == '\0') {
return 0;
} else if (SSL_CTX_use_certificate_file(ctx, pem_file, 1) == 0 ||
SSL_CTX_use_PrivateKey_file(ctx, pem_file, 1) == 0) {
return -2;
} else {
SSL_CTX_set_mode(ctx, SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
SSL_CTX_use_certificate_chain_file(ctx, pem_file);
return 0;
}
}
#endif // NS_ENABLE_SSL
struct ns_connection *ns_bind(struct ns_mgr *srv, const char *str,
ns_callback_t callback, void *user_data) {
union socket_address sa;
struct ns_connection *nc = NULL;
int use_ssl, proto;
char cert[100], ca_cert[100];
sock_t sock;
ns_parse_address(str, &sa, &proto, &use_ssl, cert, ca_cert);
if (use_ssl && cert[0] == '\0') return NULL;
if ((sock = ns_open_listening_socket(&sa, proto)) == INVALID_SOCKET) {
} else if ((nc = ns_add_sock(srv, sock, callback, NULL)) == NULL) {
closesocket(sock);
} else {
nc->sa = sa;
nc->flags |= NSF_LISTENING;
nc->user_data = user_data;
nc->callback = callback;
if (proto == SOCK_DGRAM) {
nc->flags |= NSF_UDP;
}
#ifdef NS_ENABLE_SSL
if (use_ssl) {
nc->ssl_ctx = SSL_CTX_new(SSLv23_server_method());
if (ns_use_cert(nc->ssl_ctx, cert) != 0 ||
ns_use_ca_cert(nc->ssl_ctx, ca_cert) != 0) {
ns_close_conn(nc);
nc = NULL;
}
}
#endif
DBG(("%p sock %d/%d ssl %p %p", nc, sock, proto, nc->ssl_ctx, nc->ssl));
}
return nc;
}
static struct ns_connection *accept_conn(struct ns_connection *ls) {
struct ns_connection *c = NULL;
union socket_address sa;
socklen_t len = sizeof(sa);
sock_t sock = INVALID_SOCKET;
// NOTE(lsm): on Windows, sock is always > FD_SETSIZE
if ((sock = accept(ls->sock, &sa.sa, &len)) == INVALID_SOCKET) {
} else if ((c = ns_add_sock(ls->mgr, sock, ls->callback,
ls->user_data)) == NULL) {
closesocket(sock);
#ifdef NS_ENABLE_SSL
} else if (ls->ssl_ctx != NULL &&
((c->ssl = SSL_new(ls->ssl_ctx)) == NULL ||
SSL_set_fd(c->ssl, sock) != 1)) {
DBG(("SSL error"));
ns_close_conn(c);
c = NULL;
#endif
} else {
c->listener = ls;
c->proto_data = ls->proto_data;
ns_call(c, NS_ACCEPT, &sa);
DBG(("%p %d %p %p", c, c->sock, c->ssl_ctx, c->ssl));
}
return c;
}
static int ns_is_error(int n) {
return n == 0 ||
(n < 0 && errno != EINTR && errno != EINPROGRESS &&
errno != EAGAIN && errno != EWOULDBLOCK
#ifdef _WIN32
&& WSAGetLastError() != WSAEINTR && WSAGetLastError() != WSAEWOULDBLOCK
#endif
);
}
void ns_sock_to_str(sock_t sock, char *buf, size_t len, int flags) {
union socket_address sa;
socklen_t slen = sizeof(sa);
if (buf != NULL && len > 0) {
buf[0] = '\0';
memset(&sa, 0, sizeof(sa));
if (flags & 4) {
getpeername(sock, &sa.sa, &slen);
} else {
getsockname(sock, &sa.sa, &slen);
}
if (flags & 1) {
#if defined(NS_ENABLE_IPV6)
inet_ntop(sa.sa.sa_family, sa.sa.sa_family == AF_INET ?
(void *) &sa.sin.sin_addr :
(void *) &sa.sin6.sin6_addr, buf, len);
#elif defined(_WIN32)
// Only Windoze Vista (and newer) have inet_ntop()
strncpy(buf, inet_ntoa(sa.sin.sin_addr), len);
#else
inet_ntop(sa.sa.sa_family, (void *) &sa.sin.sin_addr, buf,(socklen_t)len);
#endif
}
if (flags & 2) {
snprintf(buf + strlen(buf), len - (strlen(buf) + 1), "%s%d",
flags & 1 ? ":" : "", (int) ntohs(sa.sin.sin_port));
}
}
}
int ns_hexdump(const void *buf, int len, char *dst, int dst_len) {
const unsigned char *p = (const unsigned char *) buf;
char ascii[17] = "";
int i, idx, n = 0;
for (i = 0; i < len; i++) {
idx = i % 16;
if (idx == 0) {
if (i > 0) n += snprintf(dst + n, dst_len - n, " %s\n", ascii);
n += snprintf(dst + n, dst_len - n, "%04x ", i);
}
n += snprintf(dst + n, dst_len - n, " %02x", p[i]);
ascii[idx] = p[i] < 0x20 || p[i] > 0x7e ? '.' : p[i];
ascii[idx + 1] = '\0';
}
while (i++ % 16) n += snprintf(dst + n, dst_len - n, "%s", " ");
n += snprintf(dst + n, dst_len - n, " %s\n\n", ascii);
return n;
}
#ifdef NS_ENABLE_SSL
static int ns_ssl_err(struct ns_connection *conn, int res) {
int ssl_err = SSL_get_error(conn->ssl, res);
if (ssl_err == SSL_ERROR_WANT_READ) conn->flags |= NSF_WANT_READ;
if (ssl_err == SSL_ERROR_WANT_WRITE) conn->flags |= NSF_WANT_WRITE;
return ssl_err;
}
#endif
static void ns_read_from_socket(struct ns_connection *conn) {
char buf[2048];
int n = 0;
if (conn->flags & NSF_CONNECTING) {
int ok = 1, ret;
socklen_t len = sizeof(ok);
ret = getsockopt(conn->sock, SOL_SOCKET, SO_ERROR, (char *) &ok, &len);
(void) ret;
#ifdef NS_ENABLE_SSL
if (ret == 0 && ok == 0 && conn->ssl != NULL) {
int res = SSL_connect(conn->ssl);
int ssl_err = ns_ssl_err(conn, res);
if (res == 1) {
conn->flags |= NSF_SSL_HANDSHAKE_DONE;
} else if (ssl_err == SSL_ERROR_WANT_READ ||
ssl_err == SSL_ERROR_WANT_WRITE) {
return; // Call us again
} else {
ok = 1;
}
}
#endif
conn->flags &= ~NSF_CONNECTING;
DBG(("%p ok=%d", conn, ok));
if (ok != 0) {
conn->flags |= NSF_CLOSE_IMMEDIATELY;
}
ns_call(conn, NS_CONNECT, &ok);
return;
}
#ifdef NS_ENABLE_SSL
if (conn->ssl != NULL) {
if (conn->flags & NSF_SSL_HANDSHAKE_DONE) {
// SSL library may have more bytes ready to read then we ask to read.
// Therefore, read in a loop until we read everything. Without the loop,
// we skip to the next select() cycle which can just timeout.
while ((n = SSL_read(conn->ssl, buf, sizeof(buf))) > 0) {
DBG(("%p %d <- %d bytes (SSL)", conn, conn->flags, n));
iobuf_append(&conn->recv_iobuf, buf, n);
ns_call(conn, NS_RECV, &n);
}
ns_ssl_err(conn, n);
} else {
int res = SSL_accept(conn->ssl);
int ssl_err = ns_ssl_err(conn, res);
if (res == 1) {
conn->flags |= NSF_SSL_HANDSHAKE_DONE;
} else if (ssl_err == SSL_ERROR_WANT_READ ||
ssl_err == SSL_ERROR_WANT_WRITE) {
return; // Call us again
} else {
conn->flags |= NSF_CLOSE_IMMEDIATELY;
}
return;
}
} else
#endif
{
while ((n = (int) recv(conn->sock, buf, sizeof(buf), 0)) > 0) {
DBG(("%p %d <- %d bytes (PLAIN)", conn, conn->flags, n));
iobuf_append(&conn->recv_iobuf, buf, n);
ns_call(conn, NS_RECV, &n);
}
}
if (ns_is_error(n)) {
conn->flags |= NSF_CLOSE_IMMEDIATELY;
}
}
static void ns_write_to_socket(struct ns_connection *conn) {
struct iobuf *io = &conn->send_iobuf;
int n = 0;
#ifdef NS_ENABLE_SSL
if (conn->ssl != NULL) {
n = SSL_write(conn->ssl, io->buf, io->len);
if (n <= 0) {
int ssl_err = ns_ssl_err(conn, n);
if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) {
return; // Call us again
} else {
conn->flags |= NSF_CLOSE_IMMEDIATELY;
}
}
} else
#endif
{ n = (int) send(conn->sock, io->buf, io->len, 0); }
DBG(("%p %d -> %d bytes", conn, conn->flags, n));
ns_call(conn, NS_SEND, &n);
if (ns_is_error(n)) {
conn->flags |= NSF_CLOSE_IMMEDIATELY;
} else if (n > 0) {
iobuf_remove(io, n);
}
}
int ns_send(struct ns_connection *conn, const void *buf, int len) {
return (int) ns_out(conn, buf, len);
}
static void ns_handle_udp(struct ns_connection *ls) {
struct ns_connection nc;
char buf[NS_UDP_RECEIVE_BUFFER_SIZE];
int n;
socklen_t s_len = sizeof(nc.sa);
memset(&nc, 0, sizeof(nc));
n = recvfrom(ls->sock, buf, sizeof(buf), 0, &nc.sa.sa, &s_len);
if (n <= 0) {
DBG(("%p recvfrom: %s", ls, strerror(errno)));
} else {
nc.mgr = ls->mgr;
nc.recv_iobuf.buf = buf;
nc.recv_iobuf.len = nc.recv_iobuf.size = n;
nc.sock = ls->sock;
nc.callback = ls->callback;
nc.user_data = ls->user_data;
nc.proto_data = ls->proto_data;
nc.mgr = ls->mgr;
nc.listener = ls;
nc.flags = NSF_UDP;
DBG(("%p %d bytes received", ls, n));
ns_call(&nc, NS_RECV, &n);
}
}
static void ns_add_to_set(sock_t sock, fd_set *set, sock_t *max_fd) {
if (sock != INVALID_SOCKET) {
FD_SET(sock, set);
if (*max_fd == INVALID_SOCKET || sock > *max_fd) {
*max_fd = sock;
}
}
}
time_t ns_mgr_poll(struct ns_mgr *mgr, int milli) {
struct ns_connection *conn, *tmp_conn;
struct timeval tv;
fd_set read_set, write_set;
sock_t max_fd = INVALID_SOCKET;
time_t current_time = time(NULL);
FD_ZERO(&read_set);
FD_ZERO(&write_set);
ns_add_to_set(mgr->ctl[1], &read_set, &max_fd);
for (conn = mgr->active_connections; conn != NULL; conn = tmp_conn) {
tmp_conn = conn->next;
if (!(conn->flags & (NSF_LISTENING | NSF_CONNECTING))) {
ns_call(conn, NS_POLL, &current_time);
}
if (!(conn->flags & NSF_WANT_WRITE)) {
//DBG(("%p read_set", conn));
ns_add_to_set(conn->sock, &read_set, &max_fd);
}
if (((conn->flags & NSF_CONNECTING) && !(conn->flags & NSF_WANT_READ)) ||
(conn->send_iobuf.len > 0 && !(conn->flags & NSF_CONNECTING) &&
!(conn->flags & NSF_BUFFER_BUT_DONT_SEND))) {
//DBG(("%p write_set", conn));
ns_add_to_set(conn->sock, &write_set, &max_fd);
}
if (conn->flags & NSF_CLOSE_IMMEDIATELY) {
ns_close_conn(conn);
}
}
tv.tv_sec = milli / 1000;
tv.tv_usec = (milli % 1000) * 1000;
if (select((int) max_fd + 1, &read_set, &write_set, NULL, &tv) > 0) {
// select() might have been waiting for a long time, reset current_time
// now to prevent last_io_time being set to the past.
current_time = time(NULL);
// Read wakeup messages
if (mgr->ctl[1] != INVALID_SOCKET &&
FD_ISSET(mgr->ctl[1], &read_set)) {
struct ctl_msg ctl_msg;
int len = (int) recv(mgr->ctl[1], (char *) &ctl_msg, sizeof(ctl_msg), 0);
send(mgr->ctl[1], ctl_msg.message, 1, 0);
if (len >= (int) sizeof(ctl_msg.callback) && ctl_msg.callback != NULL) {
struct ns_connection *c;
for (c = ns_next(mgr, NULL); c != NULL; c = ns_next(mgr, c)) {
ctl_msg.callback(c, NS_POLL, ctl_msg.message);
}
}
}
for (conn = mgr->active_connections; conn != NULL; conn = tmp_conn) {
tmp_conn = conn->next;
if (FD_ISSET(conn->sock, &read_set)) {
if (conn->flags & NSF_LISTENING) {
if (conn->flags & NSF_UDP) {
ns_handle_udp(conn);
} else {
// We're not looping here, and accepting just one connection at
// a time. The reason is that eCos does not respect non-blocking
// flag on a listening socket and hangs in a loop.
accept_conn(conn);
}
} else {
conn->last_io_time = current_time;
ns_read_from_socket(conn);
}
}
if (FD_ISSET(conn->sock, &write_set)) {
if (conn->flags & NSF_CONNECTING) {
ns_read_from_socket(conn);
} else if (!(conn->flags & NSF_BUFFER_BUT_DONT_SEND)) {
conn->last_io_time = current_time;
ns_write_to_socket(conn);
}
}
}
}
for (conn = mgr->active_connections; conn != NULL; conn = tmp_conn) {
tmp_conn = conn->next;
if ((conn->flags & NSF_CLOSE_IMMEDIATELY) ||
(conn->send_iobuf.len == 0 &&
(conn->flags & NSF_FINISHED_SENDING_DATA))) {
ns_close_conn(conn);
}
}
return current_time;
}
struct ns_connection *ns_connect(struct ns_mgr *mgr, const char *address,
ns_callback_t callback, void *user_data) {
sock_t sock = INVALID_SOCKET;
struct ns_connection *nc = NULL;
union socket_address sa;
char cert[100], ca_cert[100];
int rc, use_ssl, proto;
ns_parse_address(address, &sa, &proto, &use_ssl, cert, ca_cert);
if ((sock = socket(AF_INET, proto, 0)) == INVALID_SOCKET) {
return NULL;
}
ns_set_non_blocking_mode(sock);
rc = (proto == SOCK_DGRAM) ? 0 : connect(sock, &sa.sa, sizeof(sa.sin));
if (rc != 0 && ns_is_error(rc)) {
closesocket(sock);
return NULL;
} else if ((nc = ns_add_sock(mgr, sock, callback, user_data)) == NULL) {
closesocket(sock);
return NULL;
}
nc->sa = sa; // Important, cause UDP conns will use sendto()
nc->flags = (proto == SOCK_DGRAM) ? NSF_UDP : NSF_CONNECTING;
#ifdef NS_ENABLE_SSL
if (use_ssl) {
if ((nc->ssl_ctx = SSL_CTX_new(SSLv23_client_method())) == NULL ||
ns_use_cert(nc->ssl_ctx, cert) != 0 ||
ns_use_ca_cert(nc->ssl_ctx, ca_cert) != 0 ||
(nc->ssl = SSL_new(nc->ssl_ctx)) == NULL) {
ns_close_conn(nc);
return NULL;
} else {
SSL_set_fd(nc->ssl, sock);
}
}
#endif
return nc;
}
struct ns_connection *ns_add_sock(struct ns_mgr *s, sock_t sock,
ns_callback_t callback, void *user_data) {
struct ns_connection *conn;
if ((conn = (struct ns_connection *) NS_MALLOC(sizeof(*conn))) != NULL) {
memset(conn, 0, sizeof(*conn));
ns_set_non_blocking_mode(sock);
ns_set_close_on_exec(sock);
conn->sock = sock;
conn->user_data = user_data;
conn->callback = callback;
conn->mgr = s;
conn->last_io_time = time(NULL);
ns_add_conn(s, conn);
DBG(("%p %d", conn, sock));
}
return conn;
}
struct ns_connection *ns_next(struct ns_mgr *s, struct ns_connection *conn) {
return conn == NULL ? s->active_connections : conn->next;
}
void ns_broadcast(struct ns_mgr *mgr, ns_callback_t cb,void *data, size_t len) {
struct ctl_msg ctl_msg;
if (mgr->ctl[0] != INVALID_SOCKET && data != NULL &&
len < sizeof(ctl_msg.message)) {
ctl_msg.callback = cb;
memcpy(ctl_msg.message, data, len);
send(mgr->ctl[0], (char *) &ctl_msg,
offsetof(struct ctl_msg, message) + len, 0);
recv(mgr->ctl[0], (char *) &len, 1, 0);
}
}
void ns_mgr_init(struct ns_mgr *s, void *user_data) {
memset(s, 0, sizeof(*s));
s->ctl[0] = s->ctl[1] = INVALID_SOCKET;
s->user_data = user_data;
#ifdef _WIN32
{ WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); }
#else
// Ignore SIGPIPE signal, so if client cancels the request, it
// won't kill the whole process.
signal(SIGPIPE, SIG_IGN);
#endif
#ifndef NS_DISABLE_SOCKETPAIR
do {
ns_socketpair2(s->ctl, SOCK_DGRAM);
} while (s->ctl[0] == INVALID_SOCKET);
#endif
#ifdef NS_ENABLE_SSL
{static int init_done; if (!init_done) { SSL_library_init(); init_done++; }}
#endif
}
void ns_mgr_free(struct ns_mgr *s) {
struct ns_connection *conn, *tmp_conn;
DBG(("%p", s));
if (s == NULL) return;
// Do one last poll, see https://github.com/cesanta/mongoose/issues/286
ns_mgr_poll(s, 0);
if (s->ctl[0] != INVALID_SOCKET) closesocket(s->ctl[0]);
if (s->ctl[1] != INVALID_SOCKET) closesocket(s->ctl[1]);
s->ctl[0] = s->ctl[1] = INVALID_SOCKET;
for (conn = s->active_connections; conn != NULL; conn = tmp_conn) {
tmp_conn = conn->next;
ns_close_conn(conn);
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment