Newer
Older
#include <math.h>
#include <stdio.h>
#include "xastropack.h"
/*!
\defgroup XAstroPack XAstroPack module
This module contains simple programs to perform various
astronomical computation (based on the libastro of Xephem).
\verbatim
// TEMPS: modified Julian date (mjd) (number of days elapsed since 1900 jan 0.5)
// jour [1,31] (dy)
// mois [1,12] (mn)
// annee (yr)
// universal time [0,24[ (utc)
// Greenwich mean siderial [0,24[ (gst)
// Greenwich mean siderial at 0h UT [0,24[ (gst0)
// EQUATORIALE: ascension droite en heures [0,24[ (ra)
// declinaison en degres [-90,90] (dec)
// angle horaire en heures [-12,12] (-12=12) (ha) tsid=ha+ra
// GALACTIQUE: longitude en degres [0,360[ (glng)
// latitude en degres [-90,90] (glat)
// HORIZONTAL: azimuth en degres [0,360[ (az)
// (angle round to the east from north+)
// altitude en degres [-90,90] (alt)
// ECLIPTIQUE: lontitude ecliptique en degres [0,360[ (eclng)
// (angle round counter clockwise from the vernal equinoxe)
// latitude ecliptique en degres [-90,90] (eclat)
// GEOGRAPHIE: longitude en degres ]-180,180] (geolng)
// (angle + vers l'ouest, - vers l'est)
// latitude en degres [-90,90] (north>0) (geolat)
/*! \ingroup XAstroPack
\brief Compute true Julian day from MJD
*/
{
return mjd + MJD0;
}
/*! \ingroup XAstroPack
\brief Compute MJD from true Julian day
*/
double MJDfrTrueJD(double jd)
{
return jd - MJD0;
}
/*! \ingroup XAstroPack
\brief Compute MJD from date
*/
double MJDfrDate(double dy,int mn,int yr)
{
double mjd;
cal_mjd(mn,dy,yr,&mjd);
return mjd;
}
/*! \ingroup XAstroPack
\brief Compute date from MJD
*/
void DatefrMJD(double mjd,double *dy,int *mn,int *yr)
{
mjd_cal(mjd,mn,dy,yr);
}
/*! \ingroup XAstroPack
\brief Given a mjd, return the year as a double.
*/
double YearfrMJD(double mjd)
{
double yr;
mjd_year(mjd,&yr);
return yr;
}
/*! \ingroup XAstroPack
\brief Given a decimal year, return mjd
*/
double MJDfrYear(double yr)
{
double mjd;
year_mjd(yr,&mjd);
return mjd;
}
/*! \ingroup XAstroPack
\brief Given a mjd, return the year and number of days since 00:00 Jan 1
\warning: if mjd = 2 January -> number of days = 1
*/
void YDfrMJD(double mjd,double *dy,int *yr)
{
mjd_dayno(mjd,yr,dy);
}
/*! \ingroup XAstroPack
\brief Give GST from UTC
\verbatim
Given a modified julian date, mjd, and a universally coordinated time, utc,
return greenwich mean siderial time, *gst.
N.B. mjd must be at the beginning of the day.
\endverbatim
*/
double GSTfrUTC(double mjd0,double utc)
{
double gst;
utc_gst(mjd0,utc,&gst) ;
return gst;
}
/*! \ingroup XAstroPack
\brief Give UTC from GST
\verbatim
Given a modified julian date, mjd, and a greenwich mean siderial time, gst,
return universally coordinated time, *utc.
N.B. mjd must be at the beginning of the day.
\endverbatim
*/
double UTCfrGST(double mjd0,double gst)
{
double utc;
gst_utc(mjd0,gst,&utc);
return utc;
}
/*! \ingroup XAstroPack
\brief gmst0() - return Greenwich Mean Sidereal Time at 0h UT
\param mjd = date at 0h UT in julian days since MJD0
*/
double GST0(double mjd0)
/* Copie depuis le code de Xephem car pas prototype */
{
double T, x;
T = ((int)(mjd0 - 0.5) + 0.5 - J2000)/36525.0;
x = 24110.54841 +
(8640184.812866 + (0.093104 - 6.2e-6 * T) * T) * T;
x /= 3600.0;
range(&x, 24.0);
return (x);
}
/*! \ingroup XAstroPack
\brief Compute precession between 2 dates.
*/
void Precess(double mjd1,double mjd2,double ra1,double dec1,double *ra2,double *dec2)
{
ra1 *= PI/12.; // radians
dec1 *= PI/180.; // radians
precess(mjd1,mjd2,&ra1,&dec1);
*ra2 = ra1*12./PI; if(*ra2>24.) *ra2 -= 24.; if(*ra2==24.) *ra2 = 0.;
*dec2 = dec1*180./PI;
}
/*! \ingroup XAstroPack
\brief Given apparent altitude find airmass.
*/
double AirmassfrAlt(double alt)
{
double x;
alt *= PI/180.; // radians
airmass(alt,&x);
return x;
}
/*! \ingroup XAstroPack
\brief Give the hour angle from sideral time and right ascencion
*/
double HafrRaTS(double gst,double ra)
{
double ha = gst - ra;
// Attention au probleme de la discontinuite 0h <==> 24h
// ts=1 ra=23 ; (ts-ra)=-22 <-12 --> ha = +2 = +24 + (ts-ra)
// ts=23 ra=1 ; (ts-ra)=+22 >+12 --> ha = -2 = -24 + (ts-ra)
if(ha==-12.) ha = 12.; if(ha<-12.) ha += 24.; if(ha>12.) ha -= 24.;
return ha;
}
/*! \ingroup XAstroPack
\brief Give a time in h:mn:s from a decimal hour
\verbatim
// OUTPUT: h mn s (h,mn,s >=< 0)
// REMARQUE: si hd<0 alors h<0 ET mn<0 ET s<0
// EX: 12.51 -> h=12 mn=30 s=10 ;
// -12.51 -> h=-12 mn=-30 s=-10 ;
\endverbatim
*/
void HMSfrHdec(double hd,int *h,int *mn,double *s)
{
int sgn=1;
if(hd<0.) {sgn=-1; hd*=-1.;}
*h = int(hd);
*mn = int((hd-(double)(*h))*60.);
*s = (hd - (double)(*h) - (double)(*mn)/60.)*3600.;
// pb precision
if(*s<0.) *s = 0.;
if(*s>60. || *s==60.) {*s-=60.; *mn+=1;} // s=double attention comparaison
if(*mn<0) *mn = 0;
if(*mn>=60) {*mn-=60; *h+=1;}
/*! \ingroup XAstroPack
\brief Give a decimal hour from a time in h:mn:s
\verbatim
// INPUT: h , mn , s (h,mn,s >=< 0)
// RETURN: en heures decimales
// REMARQUE: pour avoir hd=-12.51 <- h=-12 mn=-30 s=-10
\endverbatim
*/
double HdecfrHMS(int h,int mn,double s)
/*! \ingroup XAstroPack
\brief Give a time string from a time in h:mn:s
\verbatim
// RETURN: string h:mn:s
\endverbatim
*/
string ToStringHMS(int h,int mn,double s)
double hd = HdecfrHMS(h,mn,s); // put in range
HMSfrHdec(hd,&h,&mn,&s);
char str[128];
if(hd<0.)
sprintf(str,"-%d:%d:%.3f",-h,-mn,-s);
else
sprintf(str,"%d:%d:%.3f",h,mn,s);
string dum = str;
return dum;
}
/*! \ingroup XAstroPack
\brief Give a time string from a decimal hour
*/
string ToStringHdec(double hd)
{
int h,mn; double s;
return ToStringHMS(h,mn,s);
}
/*! \ingroup XAstroPack
\brief Convert equatorial coordinates into galactic coordinates
*/
void EqtoGal(double mjd,double ra,double dec, double *glng,double *glat)
// Coordonnees equatoriales -> Coordonnees galactiques
{
ra *= PI/12.; // radians
dec *= PI/180.; // radians
eq_gal(mjd,ra,dec,glat,glng);
// Vraiment bizarre, sur Linux-g++ glng>=360 ne comprend pas glng==360 ! (CMV)
*glng *= 180./PI; if(*glng>360.) *glng -= 360.; if(*glng==360.) *glng = 0.;
*glat *= 180./PI;
}
/*! \ingroup XAstroPack
\brief Convert galactic coordinates into equatorial coordinates
*/
void GaltoEq(double mjd,double glng,double glat,double *ra,double *dec)
// Coordonnees galactiques -> Coordonnees equatoriales
{
glng *= PI/180.; // radians
glat *= PI/180.; // radians
gal_eq (mjd,glat,glng,ra,dec);
*ra *= 12./PI; if(*ra>24.) *ra -= 24.; if(*ra==24.) *ra = 0.;
*dec *= 180./PI;
}
/*! \ingroup XAstroPack
\brief Convert equatorial coordinates into horizontal coordinates
*/
void EqtoHor(double geolat,double ha,double dec,double *az,double *alt)
// Coordonnees equatoriales -> Coordonnees horizontales
{
geolat *= PI/180.;
ha *= PI/12.; // radians
dec *= PI/180.; // radians
hadec_aa (geolat,ha,dec,alt,az);
*alt *= 180./PI;
*az *= 180./PI; if(*az>360.) *az -= 360.; if(*az==360.) *az = 0.;
}
/*! \ingroup XAstroPack
Convert horizontal coordinates into equatorial coordinates
*/
void HortoEq(double geolat,double az,double alt,double *ha,double *dec)
// Coordonnees horizontales -> Coordonnees equatoriales
{
geolat *= PI/180.;
alt *= PI/180.; // radians
az *= PI/180.; // radians
aa_hadec (geolat,alt,az,ha,dec);
*ha *= 12./PI;
if(*ha==-12.) *ha = 12.; if(*ha<-12.) *ha += 24.; if(*ha>12.) *ha -= 24.;
*dec *= 180./PI;
}
/*! \ingroup XAstroPack
\brief Convert equatorial coordinates into ecliptic coordinates
*/
// Attention, j'ai modifie eq_ecl.c pour proteger NaN
// dans ecleq_aux :
// *q = (sy*ceps)-(cy*seps*sx*sw);
// if(*q<-1.) *q = -PI/2.; else if(*q>1.) *q = PI/2.; else *q = asin(*q);
void EqtoEcl(double mjd,double ra,double dec,double *eclng,double *eclat)
// Coordonnees equatoriales -> Coordonnees ecliptiques
{
ra *= PI/12.; // radians
dec *= PI/180.; // radians
eq_ecl(mjd,ra,dec,eclat,eclng);
*eclng *= 180./PI; if(*eclng>360.) *eclng -= 360.; if(*eclng==360.) *eclng = 0.;
*eclat *= 180./PI;
}
/*! \ingroup XAstroPack
\brief Convert ecliptic coordinates into equatorial coordinates
*/
void EcltoEq(double mjd,double eclng,double eclat,double *ra,double *dec)
// Coordonnees ecliptiques -> Coordonnees equatoriales
{
eclat *= PI/180.; // radians
eclng *= PI/180.; // radians
ecl_eq(mjd,eclat,eclng,ra,dec);
*ra *= 12./PI; if(*ra>24.) *ra -= 24.; if(*ra==24.) *ra = 0.;
*dec *= 180./PI;
}
/*! \ingroup XAstroPack
\brief Give Sun position
\verbatim
given the modified JD, mjd, return the true geocentric ecliptic longitude
of the sun for the mean equinox of the date, *lsn, in radians, the
sun-earth distance, *rsn, in AU, and the latitude *bsn, in radians
(since this is always <= 1.2 arcseconds, in can be neglected by
calling with bsn = NULL).
\endverbatim
*/
void SunPos(double mjd,double *eclsn,double *ecbsn)
{
double rsn;
sunpos(mjd,eclsn,&rsn,ecbsn);
*eclsn *= 180./PI; if(*eclsn>360.) *eclsn -= 360.; if(*eclsn==360.) *eclsn = 0.;
*ecbsn *= 180./PI;
}
/*! \ingroup XAstroPack
\brief Give Moon position
\verbatim
given the mjd, find the geocentric ecliptic longitude, lam, and latitude,
bet, and geocentric distance, rho in a.u. for the moon. also return
the sun's mean anomaly, *msp, and the moon's mean anomaly, *mdp.
(for the mean equinox)
\endverbatim
*/
void MoonPos(double mjd,double *eclmn,double *ecbmn)
{
double rho,msp,mdp;
moon(mjd,eclmn,ecbmn,&rho,&msp,&mdp);
*eclmn *= 180./PI; if(*eclmn>360.) *eclmn -= 360.; if(*eclmn==360.) *eclmn = 0.;
*ecbmn *= 180./PI;
}
/*! \ingroup XAstroPack
\brief Give planet position
\verbatim
* given a modified Julian date, mjd, and a planet, p, find:
* lpd0: heliocentric longitude,
* psi0: heliocentric latitude,
* rp0: distance from the sun to the planet,
* rho0: distance from the Earth to the planet,
* none corrected for light time, ie, they are the true values for the
* given instant.
* lam: geocentric ecliptic longitude,
* bet: geocentric ecliptic latitude,
* each corrected for light time, ie, they are the apparent values as
* seen from the center of the Earth for the given instant.
* dia: angular diameter in arcsec at 1 AU,
* mag: visual magnitude when 1 AU from sun and earth at 0 phase angle.
* (for the mean equinox)
\endverbatim
*/
void PlanetPos(double mjd,int numplan,double *ecl,double *ecb,double *diamang)
{
double lpd0,psi0,rp0,rho0,mag;
plans(mjd,numplan,&lpd0,&psi0,&rp0,&rho0,ecl,ecb,diamang,&mag);
*ecl *= 180./PI; if(*ecl>360.) *ecl -= 360.; if(*ecl==360.) *ecl = 0.;
*ecb *= 180./PI;
}
/*! \ingroup XAstroPack
\brief Give Jupiter position
*/
void JupiterPos(double mjd,double *ecl,double *ecb,double *diamang)
{
PlanetPos(mjd,JUPITER,ecl,ecb,diamang);
}
/*! \ingroup XAstroPack
\brief Give Saturn position
*/
void SaturnPos(double mjd,double *ecl,double *ecb,double *diamang)
{
PlanetPos(mjd,SATURN,ecl,ecb,diamang);
}
/*! \ingroup XAstroPack
\brief Given a coordinate type "typ", convert to standard for astropack
\verbatim
// 1 = Unknown type of coordinates
// 2 = bad range for coord1
// 4 = bad range for coord2
// 6 = bad range for coord1 et coord2
\endverbatim
*/
int CoordConvertToStd(TypAstroCoord typ,double& coord1,double& coord2)
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
{
int rc = 0;
// ---- Equatoriales alpha,delta
// - standard = [0,24[ , [-90,90]
if(typ&TypCoordEq) {
if(typ&TypCoordDD) {
coord1 = coord1 / 180. * 12.;
} else if(typ&TypCoordRR) {
coord1 = coord1 / PI * 12.;
coord2 = coord2 / PI * 180.;
}
if(coord1==24.) coord1 = 0.;
if(coord1<0. || coord1>=24.) rc+= 2;
if(coord2<-90. || coord2>90. ) rc+= 4;
// ---- Galactiques gLong, gLat
// ---- Horizontales azimuth,altitude
// ---- Ecliptiques EclLong,EclLat
// - standard = [0,360[ , [-90,90]
} else if( typ&TypCoordGal || typ&TypCoordHor || typ&TypCoordEcl) {
if(typ&TypCoordHD) {
coord1 = coord1 / 12. * 180.;
} else if(typ&TypCoordRR) {
coord1 = coord1 / PI * 180.;
coord2 = coord2 / PI * 180.;
}
if(coord1==360.) coord1 = 0.;
if(coord1<0. || coord1>=360.) rc+= 2;
if(coord2<-90. || coord2>90. ) rc+= 4;
} else { // Coordonnees non-connues
rc= 1;
}
return rc;
}