Skip to content
Snippets Groups Projects
Commit 7eca0c81 authored by Lionel GUEZ's avatar Lionel GUEZ
Browse files

Polish

parent d6329740
No related branches found
No related tags found
No related merge requests found
...@@ -100,16 +100,15 @@ cyclones. Cf. table (\ref{tab:eddy_id_Matlab}). ...@@ -100,16 +100,15 @@ cyclones. Cf. table (\ref{tab:eddy_id_Matlab}).
\centering \centering
\begin{tabular}{lll} \begin{tabular}{lll}
date index 0 & & \\ date index 0 & & \\
& anticyclones & $1, \dots, e_\mathrm{max,anti}(0)$ \\ & anticyclones & $n = 1, \dots, e_\mathrm{max,anti}(0)$ \\
& cyclones & $1, \dots, e_\mathrm{max,cyclo}(0)$ \\ & cyclones & $n = 1, \dots, e_\mathrm{max,cyclo}(0)$ \\
date index k & & \\ date index k & & \\
& anticyclones & $k E + 1, \dots, k & anticyclones & $n = k E + 1, \dots, k
E + e_\mathrm{max,anti}(k)$ \\ E + e_\mathrm{max,anti}(k)$ \\
& cyclones & $k E + 1, \dots, k E & cyclones & $n = k E + 1, \dots, k E
+ e_\mathrm{max,cyclo}(k)$ + e_\mathrm{max,cyclo}(k)$
\end{tabular} \end{tabular}
\caption{Node indices in the Matlab program. $k$ is the date index, \caption{Node indices. $k$ is the date index, starting at 0.}
starting at 0.}
\label{tab:eddy_id_Matlab} \label{tab:eddy_id_Matlab}
\end{table} \end{table}
Conversely, from the definition of $E$, knowing $n$ and $E$, we can Conversely, from the definition of $E$, knowing $n$ and $E$, we can
...@@ -122,6 +121,31 @@ obtain $(k, e)$: ...@@ -122,6 +121,31 @@ obtain $(k, e)$:
& = 1 + (n - 1) \bmod E & = 1 + (n - 1) \bmod E
\end{align*} \end{align*}
In the Matlab program, the node index $n'$ is different:
\begin{equation*}
n' = k' E + e
\end{equation*}
where $k'$ is the index, starting at 0, of the date $d$ in the suite
of processed dates. So $k' \ne k$ if there is a missing date in the
suite of processed dates.
\begin{equation*}
k' = \left \lfloor \frac{n' - 1}{E} \right \rfloor
\end{equation*}
The suite of processed dates is stored in the array
\verb+date_num+. For a given date, from $n'$ we can compute $k'$ and
$e$, and then $d$ from \verb+date_num[k']+, without any search. But
the reverse conversion needs a search: from $d$ and $e$, we need to
search \verb+date_num+ to get $k'$, then $n'$.
To convert from $n'$ to $n$, we note that:
\begin{equation*}
k = \mathtt{date\_num[k']} - \mathtt{date\_num[0]}
\end{equation*}
and:
\begin{equation*}
n = n' + (k - k') E
\end{equation*}
\section{Instantaneous eddies} \section{Instantaneous eddies}
The data for instantaneous eddies is stored in shapefiles, in the The data for instantaneous eddies is stored in shapefiles, in the
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment