Newer
Older
JOSSOUD Olivier
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
import pandas as pd
import matplotlib
import os
from scipy import interpolate
from PyQt5.QtCore import QObject, pyqtSignal
import cfatools.processor.flow as flow
import cfatools.processor.collector as collector
import cfatools.processor.encoder as encoder
from cfatools.logreader.dataset import DatasetReader
matplotlib.use('TkAgg')
class AnalyseController(QObject):
sig_simple_step_finished = pyqtSignal(str, name="simple_step_finished")
def __init__(self):
super(AnalyseController, self).__init__()
self._current_dataset = None
self._encoder_df = pd.DataFrame()
self._iceblock_df = pd.DataFrame()
self._conduct_df = pd.DataFrame()
self._pump_df = pd.DataFrame()
self._picarro_df = pd.DataFrame()
self._collector_df = pd.DataFrame()
def get_dataset_reader(self, dataset_path: str) -> DatasetReader:
root_directory = os.path.dirname(dataset_path)
dataset_name = os.path.basename(dataset_path)
valid, error_msg = DatasetReader.dataset_name_is_valid(dataset_name)
if not valid:
raise ValueError(error_msg)
self._current_dataset = DatasetReader(
base_path=root_directory, dataset=dataset_name
)
self.sig_simple_step_finished.emit("Dataset [" + self._current_dataset.dataset_name + "] loaded.")
return self._current_dataset
def analyse(self, override_arrival_pkl: bool = False):
dataset = self._current_dataset
self._encoder_df, self._iceblock_df, self._conduct_df, self._pump_df, self._picarro_df, self._collector_df = \
flow.get_datasets_data(dataset)
self.__apply_special_corrections__()
# Dataset's "processed" directory
processed_dir = os.path.join(dataset.dataset_path, "processed")
if not os.path.exists(processed_dir):
os.mkdir(processed_dir)
self.sig_simple_step_finished.emit("New 'processed' subdirectory created in " + dataset.dataset_path)
self._collector_df = collector.renumber_flasks(self._collector_df)
self.sig_simple_step_finished.emit("Collector's flasks renumbered.")
################################################################################################################
# Tubing volumes
volumes_dict = flow.get_tubing_volume_dict("../config/tubing_volumes.csv",
max_datetime=self._encoder_df.index[0])
################################################################################################################
# Arrival datetimes
if override_arrival_pkl:
pkl_filepath = os.path.join(dataset.dataset_path, "binary", "arrival_nearest.pkl")
if os.path.exists(pkl_filepath):
os.remove(pkl_filepath)
self.sig_simple_step_finished.emit("Previous arrival_nearest.pkl file deleted.")
arrival_df = flow.get_arrival_df(self._encoder_df, self._pump_df, volumes_dict,
parallel=False, dataset=dataset, pkl_name="arrival_nearest.pkl")
self.sig_simple_step_finished.emit("Arrival_df computed.")
arrival_df = arrival_df.dropna()
arrival_df = flow.add_iceblock_info(arrival_df, self._iceblock_df)
arrival_df = flow.add_melted_height(arrival_df, self._encoder_df, self._iceblock_df)
arrival_df = flow.add_flask_info(arrival_df, self._collector_df)
# Save as CSV
arrival_filepath = os.path.join(processed_dir, dataset.dataset_name + "_arrival_df.csv")
arrival_df.to_csv(arrival_filepath, date_format="%Y-%m-%d %H:%M:%S")
self.sig_simple_step_finished.emit("Arrival_df saved as CSV in " + arrival_filepath)
################################################################################################################
# Conducti rescaled by melting time
conduct_rescaled_df = flow.get_conduct_by_melt_time(arrival_df, self._conduct_df, export_in_dataset=dataset)
################################################################################################################
# Picarro rescaled by melting time
if not self._picarro_df.index.is_monotonic_increasing:
self._picarro_df.reset_index(inplace=True)
self._picarro_df['diff_time'] = self._picarro_df["datetime"] - self._picarro_df["datetime"].shift(1)
self._picarro_df = self._picarro_df.loc[
self._picarro_df.index > self._picarro_df.loc[self._picarro_df["diff_time"]
.dt.total_seconds() < 0].index[0]]
self._picarro_df = self._picarro_df.set_index("datetime")
self._picarro_df = self._picarro_df.drop(columns={'diff_time'})
picarro_rescaled_df = flow.get_picarro_by_melt_time(arrival_df, self._picarro_df, export_in_dataset=dataset)
################################################################################################################
# Flask
flask_df = flow.get_flask_content(arrival_df)
# Save as CSV
flask_df_filepath = os.path.join(processed_dir, dataset.dataset_name + "_flask_df.csv")
flask_df.to_csv(flask_df_filepath, index=False)
# Plot mm per flask
if not all(flask_df["flask"] == 0):
flask_df["mm_diff"] = flask_df["max"] - flask_df["min"]
mm_per_flask_df = flask_df[["flask", "mm_diff"]].groupby("flask").agg(sum)
mm_per_flask_df.plot.bar()
mm_per_flask_df.plot.hist(bins=round(len(mm_per_flask_df.index)/3))
################################################################################################################
# Conducti
# self._conduct_df.plot()
################################################################################################################
# Picarro & conducti vs. melted height
pic_conduc_height_filepath = os.path.join(processed_dir, dataset.dataset_name + "_pic_conduc_height.csv")
pic_conduc_height_df = arrival_df[["icbk_code", "icbk_name", "melted_height", "melted_height_icbk"]]
pic_conduc_height_df = pd.merge(pic_conduc_height_df, picarro_rescaled_df, left_index=True, right_index=True)
pic_conduc_height_df = pd.merge(pic_conduc_height_df, conduct_rescaled_df, left_index=True, right_index=True)
pic_conduc_height_df.to_csv(pic_conduc_height_filepath)
################################################################################################################
# Picarro
arrival_df = arrival_df[arrival_df["icbk_code"] > 0]
picarro2_df = pd.merge_asof(left=arrival_df[["icbk_code", "icbk_name", "melted_height", "picarro"]],
right=self._picarro_df,
left_on="picarro",
right_index=True)
picarro2_df["iceblock"] = picarro2_df["icbk_code"].astype(str) + '-' + picarro2_df["icbk_name"]
# print(gg.ggplot()
# + gg.geom_line(data=picarro2_df,
# mapping=gg.aes(x='picarro', y='Delta_18_16', color="iceblock"))
# )
#
# print(gg.ggplot()
# + gg.geom_path(data=picarro2_df,
# mapping=gg.aes(x='Delta_18_16', y='melted_height', color="iceblock"))
# )
################################################################################################################
# Calibrate
calib_name = "cal1"
calibrated_dir = os.path.join(dataset.dataset_path, "calibrated")
if not os.path.exists(calibrated_dir):
os.mkdir(calibrated_dir)
calib_filepath = os.path.join(calibrated_dir, dataset.dataset_name + "_" + calib_name + ".csv")
if not os.path.exists(calib_filepath):
template_calib_df = self._iceblock_df[["id", "name", "initial_height"]].copy()
template_calib_df["start"] = 0
template_calib_df = template_calib_df\
.melt(["id", "name"])\
.sort_values(["id", "value"])\
.drop(columns=["id", "variable"])
template_calib_df = template_calib_df.rename(columns={"name": "icbk_name",
"initial_height": "melted_height"})
template_calib_df[["depth",
"Delta_18_16_slope", "Delta_18_16_intercept",
"Delta_D_H_slope", "Delta_D_H_intercept"]] = [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN]
template_calib_df.to_csv(calib_filepath, index=False, float_format='%.2f')
raise ValueError("Calib file not found: " + calib_filepath)
calib_df = pd.read_csv(calib_filepath, sep=",")
################################################################################################################
# Calibrate pic_conduct_height
# Absolute depth calibration
for icbk_name in calib_df["icbk_name"].unique():
icbk_calib_df = calib_df.loc[calib_df["icbk_name"] == icbk_name]
depth_interp_func = interpolate.interp1d(x=icbk_calib_df["melted_height"],
y=icbk_calib_df["depth"])
try:
pic_conduc_height_df.loc[pic_conduc_height_df["icbk_name"] == icbk_name, "depth"] \
= depth_interp_func(pic_conduc_height_df
.loc[pic_conduc_height_df["icbk_name"] == icbk_name]["melted_height_icbk"])
except:
print(icbk_name)
# Picarro calibration
if len(calib_df.groupby(["Delta_18_16_slope", "Delta_18_16_intercept",
"Delta_D_H_slope", "Delta_D_H_intercept"]).count()) > 1:
raise ValueError("More than one calibration set for isotope is not yet supported")
isotopic_calib_df = calib_df.iloc[0]
pic_conduc_height_df["Delta_18_16_calib"] = \
pic_conduc_height_df["Delta_18_16"] * isotopic_calib_df.Delta_18_16_slope\
+ isotopic_calib_df.Delta_18_16_intercept
pic_conduc_height_df["Delta_D_H_calib"] = \
pic_conduc_height_df["Delta_D_H"] * isotopic_calib_df.Delta_D_H_slope\
+ isotopic_calib_df.Delta_D_H_intercept
# Save as CSV
pic_conduct_calibrated_filepath = os.path.join(
calibrated_dir,
dataset.dataset_name + "_pic_conduct_calibrated_" + calib_name + ".csv")
pic_conduc_height_df.to_csv(pic_conduct_calibrated_filepath, float_format='%.3f')
################################################################################################################
# Calibrate flasks
for icbk_name in calib_df["icbk_name"].unique():
icbk_calib_df = calib_df.loc[calib_df["icbk_name"] == icbk_name]
depth_interp_func = interpolate.interp1d(x=icbk_calib_df["melted_height"],
y=icbk_calib_df["depth"])
flask_df.loc[flask_df["icbk_name"] == icbk_name, "min_depth"] \
= depth_interp_func(flask_df.loc[flask_df["icbk_name"] == icbk_name]["min"])
flask_df.loc[flask_df["icbk_name"] == icbk_name, "max_depth"] \
= depth_interp_func(flask_df.loc[flask_df["icbk_name"] == icbk_name]["max"])
flask_df["diff_depth"] = flask_df["max_depth"] - flask_df["min_depth"]
flask_calibrated_filepath = os.path.join(calibrated_dir,
dataset.dataset_name + "_flask_calibrated_" + calib_name + ".csv")
flask_df.to_csv(flask_calibrated_filepath, float_format='%.2f', index=False)
def __apply_special_corrections__(self) -> None:
"""Some datasets require some manual correction before being processed, due to errors during the recording"""
if self._current_dataset.dataset_name == "20210428_ASUMA2016_8_19sq":
t1 = pd.Timestamp("2021-04-28 11:02:50", tz="UTC")
t2 = pd.Timestamp("2021-04-28 12:57:56", tz="UTC")
t3 = pd.Timestamp("2021-04-28 13:20:28", tz="UTC")
t4 = pd.Timestamp("2021-04-28 15:19:37", tz="UTC")
self._encoder_df = pd.concat([self._encoder_df.loc[t1:t2], self._encoder_df.loc[t3:t4]])
if self._current_dataset.dataset_name in ["20210826_ASUMA2016_6-1_sq", "20210827_ASUMA2016_6_11sq"]:
self._picarro_df.index = self._picarro_df.index - pd.Timedelta(115, unit="s")
if self._current_dataset.dataset_name == "20220317_ASUMA2016_25_19sq":
self._encoder_df = encoder.shift_stacking_event(
self._encoder_df,
old_peak_start=pd.Timestamp("2022-03-17 13:28:27.446578+00:00"),
old_peak_end=pd.Timestamp("2022-03-17 13:28:41.721330+00:00"),
shift=pd.Timedelta(seconds=60))
if self._current_dataset.dataset_name == "20220329_ASUMA2016_23_12sq":
self._encoder_df = encoder.shift_stacking_event(
self._encoder_df,
old_peak_start=pd.Timestamp("2022-03-29 16:58:11.552587+00:00"),
old_peak_end=pd.Timestamp("2022-03-29 16:58:48.006613+00:00"),
shift=pd.Timedelta(seconds=80))