Skip to content
Snippets Groups Projects
explouim.py 30.27 KiB
import datetime
import re
import math
import pyqtgraph as pg
from PyQt5.QtWidgets import *
from PyQt5.QtGui import QColor
from PyQt5.QtCore import *
import pandas as pd
from pandas.api.types import is_numeric_dtype
import numpy as np
from pyqtgraph.GraphicsScene.mouseEvents import MouseClickEvent

import utils
from config import Config
from dataprovider.exploprovider import ExploProvider
from gui.uimainwindow import Ui_MainWindow
from gui.stabwindow import StabWindow


class ExploUim:

    # "Variables" tableWidget columns identifiers.
    INSTRUMENT_COL = 0
    VARIABLE_COL = 1
    COLOR_COL = 2
    OFFSET_COL = 3
    MULT_COL = 4
    TIMESHIFT_COL = 5
    VISIBLE_COL = 6
    XORIG_COL = 7
    YORIG_COL = 8

    DEFAULT_COLORS = [QColor(228, 26, 28),  # Red
                      QColor(55, 126, 184),  # Blue
                      QColor(77, 175, 74),  # Green
                      QColor(152, 78, 163),  # Violet
                      QColor(255, 127, 0),  # Orange
                      QColor(255, 255, 51),  # Yellow
                      QColor(166, 86, 40),  # Brown
                      QColor(247, 129, 191)]  # Pink

    def __init__(self, explo_prvd: ExploProvider, main_ui: Ui_MainWindow, config: Config, stab_window: StabWindow):
        self.main_ui = main_ui
        self.explo_prvd = explo_prvd
        self.config = config
        self.stab_window = stab_window

        self.current_dataset = None

        # The "var_id" is used to identify and match table's lines and plot's items (curves, etc.). Table's row id can
        # not be used because it changes when previous rows are deleted.
        self.current_variable_id = 0

        self.__initialize_variable_table__()
        self.__initialize_plot__()
        self.__initialize_dataset_combobox__()

        self.main_ui.explo_combobox_dataset.currentTextChanged.connect(self.__update_current_dataset__)
        self.main_ui.explo_pushbutton_add_row.clicked.connect(self.__add_new_row_in_variable_table__)
        self.main_ui.explo_tablewidget_variables.cellClicked.connect(self.__change_color__)

        self.main_ui.explo_checkbox_manualevent.stateChanged.connect(self.__update_manual_event__)

        # Save/load current setup
        self.main_ui.explo_lineedit_setup_name.textChanged.connect(self.__check_setup_save_name__)
        self.main_ui.explo_pushbutton_setup_save.clicked.connect(self.__save_setup__)
        self.__refresh_existing_setups__()
        self.main_ui.explo_listwidget_setup_list.itemClicked.connect(
            lambda: self.main_ui.explo_pushbutton_setup_load.setEnabled(True))
        self.main_ui.explo_pushbutton_setup_load.clicked.connect(self.__load_setup__)

        # Stabilization time analysis
        self.__init_stab__()
        self.main_ui.explo_pushbutton_stab.clicked.connect(self.__show_stab_window__)


    def __initialize_dataset_combobox__(self):
        """Populate the "datasets" combobox with the existing dataset directory names."""
        data_root_dir = self.config.read("DATA_SOURCE", "absolute_root_dir")
        dataset_dirs = self.explo_prvd.explore_root_directory(data_root_dir)
        dataset_dirs.sort(reverse=True)
        for directory in dataset_dirs:
            self.main_ui.explo_combobox_dataset.addItem(directory)

        self.__update_current_dataset__(dataset_dirs[0])

    def __update_current_dataset__(self, dataset_dir: str, ask_confirmation: bool = True):
        # Clear table and plot
        self.main_ui.explo_tablewidget_variables.setRowCount(0)
        self.__initialize_plot__()

        # Change current dataset and add a new row
        self.current_dataset = self.explo_prvd.datasets[dataset_dir]
        self.__add_new_row_in_variable_table__()

        # Enable/disable the possibility to display manual events, depending on the events log file availability.
        self.main_ui.explo_checkbox_manualevent.setEnabled(self.current_dataset.manual_event_log is not None)
        self.main_ui.explo_checkbox_manualevent.setChecked(False)

        # Update 'existing setups'
        self.__refresh_existing_setups__()
        self.main_ui.explo_pushbutton_setup_load.setEnabled(False)

    ####################################################################################################################
    # "Variables" table

    def __initialize_variable_table__(self):
        """Initialize the table containing the to-be-displayed variables"""
        
        # Set column widths
        self.main_ui.explo_tablewidget_variables.setColumnWidth(self.INSTRUMENT_COL, 130)
        self.main_ui.explo_tablewidget_variables.setColumnWidth(self.VARIABLE_COL, 110)
        self.main_ui.explo_tablewidget_variables.setColumnWidth(self.COLOR_COL, 55)
        self.main_ui.explo_tablewidget_variables.setColumnWidth(self.OFFSET_COL, 90)
        self.main_ui.explo_tablewidget_variables.setColumnWidth(self.MULT_COL, 90)
        self.main_ui.explo_tablewidget_variables.setColumnWidth(self.TIMESHIFT_COL, 95)
        self.main_ui.explo_tablewidget_variables.setColumnWidth(self.VISIBLE_COL, 70)
        self.main_ui.explo_tablewidget_variables.setColumnWidth(self.XORIG_COL, 90)
        self.main_ui.explo_tablewidget_variables.setColumnWidth(self.YORIG_COL, 175)

        self.__add_new_row_in_variable_table__()

    def __add_new_row_in_variable_table__(self):
        """Add a new row in the calibration table. Initialize the cell's content and properties."""
        table = self.main_ui.explo_tablewidget_variables
        row_id = table.rowCount()
        table.insertRow(row_id)

        # Instruments
        instrument_item = QComboBox()
        table.setCellWidget(row_id, self.INSTRUMENT_COL, instrument_item)

        # Variables
        variable_item = QComboBox()
        table.setCellWidget(row_id, self.VARIABLE_COL, variable_item)
        table.cellWidget(row_id, self.VARIABLE_COL).currentTextChanged.connect(
            lambda text, row_id=row_id: self.__apply_variable_change__(row_id=row_id, variable_name=text))

        # Connect Instrument change to variables display
        table.cellWidget(row_id, self.INSTRUMENT_COL).currentTextChanged.connect(
            lambda text, row_id=row_id: self.__update_variables_combobox__(combobox_text=text, combobox=variable_item))

        # Color
        color_item = QTableWidgetItem()
        color_item.setBackground(self.DEFAULT_COLORS[row_id % len(self.DEFAULT_COLORS)])
        table.setItem(row_id, self.COLOR_COL, color_item)

        # Offset
        offset_item = QDoubleSpinBox()
        offset_item.setMinimum(-1000.0)
        table.setCellWidget(row_id, self.OFFSET_COL, offset_item)
        table.cellWidget(row_id, self.OFFSET_COL).valueChanged.connect(
            lambda value, row_id=row_id: self.__apply_variable_change__(row_id=row_id))

        # Multiplicative factor
        mult_item = QDoubleSpinBox()
        mult_item.setValue(1.0)
        mult_item.setMinimum(-1000.0)
        table.setCellWidget(row_id, self.MULT_COL, mult_item)
        table.cellWidget(row_id, self.MULT_COL).valueChanged.connect(
            lambda value, row_id=row_id: self.__apply_variable_change__(row_id=row_id))

        # Time shift
        timeshift_item = QDoubleSpinBox()
        timeshift_item.setMinimum(-1000.0)
        table.setCellWidget(row_id, self.TIMESHIFT_COL, timeshift_item)
        table.cellWidget(row_id, self.TIMESHIFT_COL).valueChanged.connect(
            lambda value, row_id=row_id: self.__apply_variable_change__(row_id=row_id))

        # Visible
        visible_item = QCheckBox()
        visible_item.setChecked(True)
        table.setCellWidget(row_id, self.VISIBLE_COL, visible_item)
        table.cellWidget(row_id, self.VISIBLE_COL).stateChanged.connect(
            lambda state, row_id=row_id: self.__apply_variable_change__(row_id=row_id))

        # X original
        xorig_item = QTableWidgetItem()
        xorig_item.setFlags(Qt.ItemIsEnabled)  # Read only
        table.setItem(row_id, self.XORIG_COL, xorig_item)

        # Y original
        yorig_item = QTableWidgetItem()
        yorig_item.setFlags(Qt.ItemIsEnabled)  # Read only
        table.setItem(row_id, self.YORIG_COL, yorig_item)

        self.__update_instruments_combobox__(self.main_ui.explo_tablewidget_variables.cellWidget(row_id, self.INSTRUMENT_COL))

        if hasattr(self, "plot_item"):
            self.plot_item.getViewBox().enableAutoRange(enable=True)

    def __update_instruments_combobox__(self, combobox: QComboBox):
        combobox.clear()

        dataset_dir = self.main_ui.explo_combobox_dataset.currentText()
        if dataset_dir == "":
            return

        dataset = self.explo_prvd.datasets[dataset_dir]
        instrument_logs = dataset.instlogs
        instrument_logs_names = [log_name for log_name in instrument_logs]
        instrument_logs_names.sort()
        for instrument_name in instrument_logs_names:
            combobox.addItem(instrument_name)

    def __update_variables_combobox__(self, combobox_text: str, combobox: QComboBox):
        if combobox_text == "":
            return
        # variables_combobox = self.main_ui.explo_tablewidget_variables.cellWidget(row, self.VARIABLE_COL)
        variables_combobox = combobox
        variables_combobox.clear()
        instrument_log_name = combobox_text
        instrument_log = self.current_dataset.instlogs[instrument_log_name]
        variable_names = instrument_log.get_variables()
        for variable_name in variable_names:
            variables_combobox.addItem(variable_name)

    def __change_color__(self, row: int, column: int):
        if column != self.COLOR_COL:
            return

        color = QColorDialog.getColor()
        self.main_ui.explo_tablewidget_variables.item(row, self.COLOR_COL).setBackground(color)
        self.__apply_variable_change__(row)

    def __get_row_dataframe__(self, row_id: int) -> pd.DataFrame:
        table = self.main_ui.explo_tablewidget_variables

        # Get instrument log
        instrument_log_name = table.cellWidget(row_id, self.INSTRUMENT_COL).currentText()
        instrument_log = self.current_dataset.instlogs[instrument_log_name]

        # Get variable name
        variable_name = table.cellWidget(row_id, self.VARIABLE_COL).currentText()

        timeseries = instrument_log.get_timeseries(variable_name)

        return timeseries

    def __apply_variable_change__(self, row_id: int, variable_name: str = None) -> None:
        """Read the information related to the row_id and call plot function

        Parameters
        ----------
        row_id
        variable_name
        """
        # The variable combobox is cleared before variables of the newly-selected instrument are written.
        # This function is called on variable-combobox edition, thus it is also called on combobox clear.
        # So in this case, do nothing, wait for the call related to the filling of the combobox
        if variable_name == "":
            return

        table = self.main_ui.explo_tablewidget_variables

        timeseries = self.__get_row_dataframe__(row_id)

        # Get color
        color = table.item(row_id, self.COLOR_COL).background().color()

        # Get variable visibility
        visible = table.cellWidget(row_id, self.VISIBLE_COL).isChecked()

        # Get position adjustment variables (offset, multiplicative factor and time shift)
        offset = table.cellWidget(row_id, self.OFFSET_COL).value()
        mult = table.cellWidget(row_id, self.MULT_COL).value()
        timeshift = table.cellWidget(row_id, self.TIMESHIFT_COL).value()

        try:
            self.__update_plot__(timeseries, row_id, color, offset, mult, timeshift, visible)
        except TypeError:
            self.main_ui.statusbar.showMessage("Failed to plot [" + variable_name + "]", msecs=3000)

    def __update_xy_original__(self, instant: datetime.datetime):
        table = self.main_ui.explo_tablewidget_variables
        for row_id in range(table.rowCount()):
            # Get X orig (original non-shifted datetime value)
            timeshift_sec = table.cellWidget(row_id, self.TIMESHIFT_COL).value()
            x_orig = instant - datetime.timedelta(seconds=timeshift_sec)
            table.item(row_id, self.XORIG_COL).setText(x_orig.strftime("%H:%M:%S.%f")[:-5])

            # Get Y orig (original non-shifted variable value)
            df = self.__get_row_dataframe__(row_id).copy()
            df = df[df["datetime"] <= instant]
            if len(df.index) == 0:
                y_orig = "Out of range"
            else:
                y_orig = df.iloc[-1]["value"]
            if isinstance(y_orig, float):
                y_orig = "{:.4f}".format(y_orig)
            table.item(row_id, self.YORIG_COL).setText(y_orig)

    ####################################################################
    # Plot

    def __initialize_plot__(self) -> None:

        self.plot_item = pg.PlotItem(axisItems={'bottom': utils.TimeAxisItem(orientation='bottom')})

        self.step_curves = dict()

        self.main_ui.explo_graphicsview_top.setCentralItem(self.plot_item)

        self.lines_items = []

        # Vertical lines for the manual events
        self.event_vlines = []
        self.event_texts = []

        # Vertical line following the cursor
        self.cursor_vline = pg.InfiniteLine(angle=90, movable=False, pen=pg.mkPen(style=Qt.DotLine))
        self.plot_item.addItem(self.cursor_vline, ignoreBounds=True)

        # Click-fixed vertical line to get measure
        self.measure_vline = pg.InfiniteLine(angle=90, movable=False)
        self.plot_item.addItem(self.measure_vline, ignoreBounds=True)

    def __update_plot__(self, timeseries: pd.DataFrame, row_id: int, color: QColor,
                        offset: float, mult: float, timeshift_sec: float,
                        visible: bool) -> None:

        # Get the to-be-modified curve
        if row_id in self.step_curves:
            step_curve = self.step_curves[row_id]
        else:
            step_curve = pg.PlotCurveItem()
            self.step_curves[row_id] = step_curve
            self.plot_item.addItem(step_curve)
            step_curve.scene().sigMouseClicked.connect(lambda event: self.__mouse_clicked__(event))
            step_curve.scene().sigMouseMoved.connect(lambda event: self.__mouse_moved__(event))

        # Set curve visibility
        if not visible:
            step_curve.hide()
        else:
            step_curve.show()

        # Set data to the plot
        step_curve.setData(x=self.__get_timeseries_x_values__(timeseries, timeshift_sec),
                           y=self.__get_timeseries_y_values__(timeseries, offset, mult),
                           pen=color,
                           stepMode=True)

    def __update_manual_event__(self, checked_state: int):
        if checked_state == 2:
            events_df = self.current_dataset.manual_event_log.get_timeseries("event")
            for event in events_df.iterrows():
                x_pos = utils.pd_time_to_epoch_ms([event[1]["datetime"]])[0]

                # Vertical line
                event_vline = pg.InfiniteLine(pos=x_pos,
                                              angle=90,
                                              movable=False,
                                              pen=pg.mkPen(color=QColor(255, 255, 255)))
                self.event_vlines.append(event_vline)
                self.plot_item.addItem(event_vline, ignoreBounds=True)

                # Text
                event_str = event[1]["value"]
                event_str = event_str.replace("\n", "<br>")

                text_item = pg.TextItem(
                    html='<div style="text-align: center"><span style="color: #FFF;">' + event_str + '</div>',
                    # anchor=(-0.3, 0.5),
                    rotateAxis=(0, 1),
                    # angle=60,
                    border='w',
                    fill=(0, 0, 255, 100))
                self.plot_item.addItem(text_item, ignoreBounds=True)
                text_item.setPos(x_pos, 0)
                self.event_texts.append(text_item)
        elif checked_state == 0:
            for event_vline in self.event_vlines:
                self.plot_item.removeItem(event_vline)
            for text_item in self.event_texts:
                self.plot_item.removeItem(text_item)

    def __mouse_clicked__(self, event: MouseClickEvent) -> None:
        """Function triggered when the user clicks on the plot. Display a vertical line under the mouse click and call
        function ``__update_xy_original__``

        Parameters
        ----------
        event: pyqtgraph.MouseClickEvent
        """
        pos = event.scenePos()
        mouse_point = self.step_curves[0].getViewBox().mapSceneToView(pos)
        instant = datetime.datetime.fromtimestamp(mouse_point.x(), tz=datetime.timezone.utc)
        self.measure_vline.setPos(mouse_point.x())
        self.__update_xy_original__(instant)

    def __mouse_moved__(self, pos: QPointF) -> None:
        """Function triggered when the user's mouse cursor hovers over the plot. Display a vertical line where the
        cursor is, and update time shift with click-fixed line, if any.

        Parameters
        ----------
        pos: PyQt5.QtCore.QPointF
        """
        mouse_point = self.step_curves[0].getViewBox().mapSceneToView(pos)
        self.cursor_vline.setPos(mouse_point.x())

        if self.measure_vline.getPos() != [0, 0]:
            timeshift_s = abs(self.measure_vline.getPos()[0] - self.cursor_vline.getPos()[0])
            self.main_ui.explo_label_timeshift.setText("Time shift: " + "{:.2f}".format(timeshift_s) + "s")

    def __get_timeseries_x_values__(self, timeseries: pd.DataFrame, timeshift_sec: float = 0) -> list:
        # As it is a _step_ curve, add a last datetime point to determine the end of the last step. This is the datetime
        # of the last available data of the dataset, plus one second.
        last_datetime = self.current_dataset.last_data_datetime + datetime.timedelta(seconds=1)
        x_values = timeseries['datetime'].copy()
        x_values = x_values.append(pd.Series([last_datetime]))

        # Apply time shift
        x_values = x_values + datetime.timedelta(seconds=timeshift_sec)

        # Convert to epoch
        x_values = utils.pd_time_to_epoch_ms(x_values)

        return x_values

    def __get_timeseries_y_values__(self, timeseries: pd.DataFrame, offset: float = 0.0, mult: float = 1.0) -> list:
        # Get original value if it is a numeric, otherwise get its coded integer version.
        if is_numeric_dtype(timeseries["value"]):
            y_values = list(timeseries["value"])
        else:
            y_values = list(timeseries["value_int"])

        # Apply multiplicative factor
        y_values = [y * mult for y in y_values]

        # Apply Y-axis offset
        y_values = [y + offset for y in y_values]

        return y_values

    ####################################################################################################################
    # Save/load current setup

    def __check_setup_save_name__(self, filename: str):
        valid, error_msg = self.current_dataset.setup_filename_is_valid(filename)
        if not valid:
            self.main_ui.statusbar.showMessage(error_msg, 5000)
            self.main_ui.explo_lineedit_setup_name.setStyleSheet("color: 'red';")
            self.main_ui.explo_pushbutton_setup_save.setEnabled(False)
        else:
            self.main_ui.explo_pushbutton_setup_save.setEnabled(True)
            self.main_ui.explo_lineedit_setup_name.setStyleSheet("color: 'black';")

    def __save_setup__(self):
        # Dataset
        dataset = self.current_dataset

        # File name
        filename = self.main_ui.explo_lineedit_setup_name.text()

        # Variables
        variable_df = pd.DataFrame()
        table = self.main_ui.explo_tablewidget_variables
        for row_id in range(table.rowCount()):
            row_dict = {"instrument": table.cellWidget(row_id, self.INSTRUMENT_COL).currentText(),
                        "variable": table.cellWidget(row_id, self.VARIABLE_COL).currentText(),
                        "color": table.item(row_id, self.COLOR_COL).background().color().name(),
                        "offset": table.cellWidget(row_id, self.OFFSET_COL).value(),
                        "mult": table.cellWidget(row_id, self.MULT_COL).value(),
                        "timeshift": table.cellWidget(row_id, self.TIMESHIFT_COL).value(),
                        "visible": table.cellWidget(row_id, self.VISIBLE_COL).checkState() == 2}
            variable_df = variable_df.append(row_dict, ignore_index=True)

        # View range
        view_range = self.plot_item.getViewBox().viewRange()

        dataset.save_setup(filename, variable_df, view_range)
        self.__refresh_existing_setups__()

        # Reset filename input widgets
        self.main_ui.explo_lineedit_setup_name.setText(None)
        self.main_ui.explo_pushbutton_setup_save.setEnabled(False)

    def __load_setup__(self):
        # Clear table and plot
        self.main_ui.explo_tablewidget_variables.setRowCount(0)
        self.__initialize_plot__()

        # Get a dataframe containing the variables data
        filename = self.main_ui.explo_listwidget_setup_list.selectedItems()[0].text()
        variable_df, view_range_dict = self.current_dataset.load_setup(filename)

        # Variables: table (and automatically: plot)
        table = self.main_ui.explo_tablewidget_variables
        for row_id, row in variable_df.iterrows():
            self.__add_new_row_in_variable_table__()

            # Instrument
            instrument_index = table.cellWidget(row_id, self.INSTRUMENT_COL).findText(row["instrument"])
            table.cellWidget(row_id, self.INSTRUMENT_COL).setCurrentIndex(instrument_index)

            # Variable
            variable_index = table.cellWidget(row_id, self.VARIABLE_COL).findText(row["variable"])
            table.cellWidget(row_id, self.VARIABLE_COL).setCurrentIndex(variable_index)

            # Color
            color = QColor(row["color"])
            table.item(row_id, self.COLOR_COL).setBackground(color)

            # Offset
            table.cellWidget(row_id, self.OFFSET_COL).setValue(row["offset"])

            # Mult
            table.cellWidget(row_id, self.MULT_COL).setValue(row["mult"])

            # Timeshift
            table.cellWidget(row_id, self.TIMESHIFT_COL).setValue(row["timeshift"])

            # Visible
            table.cellWidget(row_id, self.VISIBLE_COL).setChecked(row["visible"])

            self.__apply_variable_change__(row_id)  # Useful only for color change

        # Plot view range
        self.plot_item.getViewBox().enableAutoRange(enable=False)
        # self.plot_item.getViewBox().setYRange(view_range_dict["ymin"], view_range_dict["ymax"], padding=0)
        # self.plot_item.getViewBox().setXRange(view_range_dict["xmin"], view_range_dict["xmax"], padding=0)

        self.plot_item.getViewBox().setRange(xRange=(view_range_dict["xmin"], view_range_dict["xmax"]),
                                             yRange=(view_range_dict["ymin"], view_range_dict["ymax"]),
                                             padding=0)

    def __refresh_existing_setups__(self):
        files = self.current_dataset.get_setup_saved_files()
        self.main_ui.explo_listwidget_setup_list.clear()
        for file in files:
            self.main_ui.explo_listwidget_setup_list.addItem(file)

    ####################################################################################################################
    # Stabilization analysis

    def __init_stab__(self):
        var_combo = self.stab_window.ui.stab_combobox_variable
        self.stab_window.ui.stab_combobox_instrument.currentTextChanged.connect(
            lambda inst_text, var_combo=var_combo: self.__update_variables_combobox__(inst_text, var_combo))
        self.stab_window.ui.stab_combobox_variable.currentTextChanged.connect(self.__update_stab_plot__)

    def __show_stab_window__(self):
        self.__init_stab_plot__()
        self.__update_instruments_combobox__(self.stab_window.ui.stab_combobox_instrument)
        self.stab_window.show()

    def __init_stab_plot__(self):
        self.stab_plot_item = pg.PlotItem(axisItems={'bottom': utils.TimeAxisItem(orientation='bottom')})
        self.stab_step_curve = pg.PlotCurveItem()
        self.stab_plot_item.addItem(self.stab_step_curve)
        self.stab_window.ui.stab_graphicsview.setCentralItem(self.stab_plot_item)

        # Left
        self.stab_region_left = pg.LinearRegionItem(brush=pg.mkBrush(color=[0, 0, 255, 40]))
        self.stab_region_left.setZValue(10)
        self.stab_plot_item.addItem(self.stab_region_left, ignoreBounds=True)
        self.stab_region_left.sigRegionChanged.connect(lambda region: self.__update_stab_mean__(region, "left"))
        self.stab_left_mean = 0.0
        self.stab_left_mean_line = pg.InfiniteLine(pen=pg.mkPen(color=[0, 0, 255]), angle=0)
        self.stab_plot_item.addItem(self.stab_left_mean_line)

        # Right
        self.stab_region_right = pg.LinearRegionItem(brush=pg.mkBrush(color=[0, 255, 0, 40]))
        self.stab_region_right.setZValue(10)
        self.stab_plot_item.addItem(self.stab_region_right, ignoreBounds=True)
        self.stab_region_right.sigRegionChanged.connect(lambda region: self.__update_stab_mean__(region, "right"))
        self.stab_right_mean = 0.0
        self.stab_right_mean_line = pg.InfiniteLine(pen=pg.mkPen(color=[0, 255, 0]), angle=0)
        self.stab_plot_item.addItem(self.stab_right_mean_line)

        # High
        self.stab_high_hline = pg.InfiniteLine(pen=pg.mkPen(color=[255, 0, 0], style=Qt.DotLine), angle=0)
        self.stab_plot_item.addItem(self.stab_high_hline)
        self.stab_high_vline = pg.InfiniteLine(pen=pg.mkPen(color=[255, 0, 0], style=Qt.DotLine), angle=90)
        self.stab_plot_item.addItem(self.stab_high_vline)

        # Low
        self.stab_low_hline = pg.InfiniteLine(pen=pg.mkPen(color=[255, 0, 0], style=Qt.DotLine), angle=0)
        self.stab_plot_item.addItem(self.stab_low_hline)
        self.stab_low_vline = pg.InfiniteLine(pen=pg.mkPen(color=[255, 0, 0], style=Qt.DotLine), angle=90)
        self.stab_plot_item.addItem(self.stab_low_vline)

        # Time delta text
        self.stab_time_text = pg.TextItem(anchor=(0.5,1))
        self.stab_plot_item.addItem(self.stab_time_text)

        self.stab_timeseries = pd.DataFrame()

    def __update_stab_plot__(self, var_combobox_text: str):
        # The variable combobox is cleared before variables of the newly-selected instrument are written.
        # This function is called on variable-combobox edition, thus it is also called on combobox clear.
        # So in this case, do nothing, wait for the call related to the filling of the combobox
        if var_combobox_text == "":
            return

        # Get data
        instrument_log = self.current_dataset.instlogs[self.stab_window.ui.stab_combobox_instrument.currentText()]
        variable_name = self.stab_window.ui.stab_combobox_variable.currentText()
        self.stab_timeseries = instrument_log.get_timeseries(variable_name).copy()

        # Set data to step curve
        x_values = self.__get_timeseries_x_values__(self.stab_timeseries)
        self.stab_step_curve.setData(x=x_values,
                                     y=self.__get_timeseries_y_values__(self.stab_timeseries),
                                     stepMode=True)

        # Convert data in a form more convenient for plot
        self.stab_timeseries["datetime"] = utils.pd_time_to_epoch_ms(self.stab_timeseries["datetime"])
        if not is_numeric_dtype(self.stab_timeseries["value"]):
            self.stab_timeseries["value"] = self.stab_timeseries["value_int"]

        # Get the main windows view box
        main_range = self.plot_item.getViewBox().viewRange()

        # Place the 2 (right/left) regions
        x_min = main_range[0][0]
        x_max = main_range[0][1]
        x_1_third = x_min + ((x_max - x_min) / 3)
        x_2_third = x_min + 2 * ((x_max - x_min) / 3)
        self.stab_region_left.setRegion([x_min, x_1_third])
        self.stab_region_right.setRegion([x_2_third, x_max])

        # Re-calculate the position of the left/right means
        self.__update_stab_mean__(self.stab_region_left, "left")
        self.__update_stab_mean__(self.stab_region_right, "right")

        # X range is the same as main window's plot X range
        self.stab_plot_item.getViewBox().setRange(xRange=(main_range[0][0], main_range[0][1]),
                                                  yRange=(main_range[1][0], main_range[1][1]),
                                                  padding=0)

    def __update_stab_mean__(self, region: pg.LinearRegionItem, side: str):
        df = self.stab_timeseries.copy()

        # Get the selected region's boundaries
        xmin = region.getRegion()[0]
        xmax = region.getRegion()[1]

        # Compute x_value's average over the selected region.
        mean = df[(df["datetime"] >= xmin) & (df["datetime"] <= xmax)]["value"].mean()
        if math.isnan(mean):
            return

        # Update global "mean" variable
        setattr(self, "stab_" + side + "_mean", mean)

        # Update 'mean' horizontal line position
        line = getattr(self, "stab_" + side + "_mean_line")
        line.setValue(mean)

        self.__compute_stab_delta__()

    def __compute_stab_delta__(self):
        # Left
        left_mean = self.stab_left_mean
        right_mean = self.stab_right_mean

        high_y = max(left_mean, right_mean)
        low_y = min(left_mean, right_mean)
        ten_prct = (high_y - low_y) * 0.1

        high_minus_ten = high_y - ten_prct
        low_plus_ten = low_y + ten_prct

        # Find timeseries' value where crossing 'high_minus_ten' and 'low_plus_ten'
        df = self.stab_timeseries.copy()

        # Keep only the data between both regions.
        df = df[(df["datetime"] > self.stab_region_left.getRegion()[1])
                & (df["datetime"] < self.stab_region_right.getRegion()[0])
                & (df["value"] < high_minus_ten)
                & (df["value"] > low_plus_ten)]
        if df.empty:
            return

        high_datetime = df.loc[df["value"].idxmax()]["datetime"]
        low_datetime = df.loc[df["value"].idxmin()]["datetime"]

        # Plot lines
        self.stab_high_hline.setValue(high_minus_ten)
        self.stab_low_hline.setValue(low_plus_ten)
        self.stab_high_vline.setValue(high_datetime)
        self.stab_low_vline.setValue(low_datetime)

        # Add text
        time_delta = high_datetime - low_datetime
        self.stab_time_text.setText("<-- " + "{:.2f}".format(time_delta) + "s -->")
        self.stab_time_text.setPos(low_datetime + (high_datetime-low_datetime)/2,
                                   high_y)