Skip to content
Snippets Groups Projects
Commit 4e10170c authored by Julien's avatar Julien
Browse files

PEP8ified the test script

parent 319a0d26
Branches doctest
No related tags found
No related merge requests found
......@@ -13,95 +13,87 @@ from pylab import *
import astropy.io.fits as fits
from xqml import xQML
from simulation import getstokes, muKarcmin2var, GetBinningMatrix
from libcov import compute_ds_dcb
from xqml_utils import progress_bar
from simulation import getstokes, muKarcmin2var, GetBinningMatrix
if __name__ == "__main__":
nside = 8
lmax = 3*nside-1
Slmax = 3*nside-1
deltal = 1
clth = hp.read_cl('planck_base_planck_2015_TTlowP.fits')
lth = arange(2,lmax+1)
ellbins = arange(2,lmax+2,deltal)
ellbins[-1] = lmax+1
P, Q, ell, ellval = GetBinningMatrix(ellbins, lmax)
nbins=len(ellbins)-1
#create mask
t,p=hp.pix2ang( nside, range(hp.nside2npix(nside)))
mask = np.ones(hp.nside2npix(nside),bool)
mask[abs(90-rad2deg(t)) < 10] = False
npix = sum(mask)
fwhm = 0.5
bl=hp.gauss_beam(deg2rad(fwhm), lmax=Slmax+1)
allStoke, der, ind = getstokes(polar=True,temp=False,EBTB=False)
nder=len(der)
muKarcmin = 0.1
pixvar = 2 * muKarcmin2var(muKarcmin, nside)
varmap = ones((2*npix))*pixvar
NoiseVar = np.diag(varmap)
cmb = hp.synfast( clth, nside, fwhm=deg2rad(fwhm), pixwin=True, new=True, verbose=False)
noise = (randn(len(varmap)) * varmap**.5).reshape(2,-1)
dm = cmb[1:,mask] + noise
###################################### Compute ds_dcb ######################################
ip=arange(hp.nside2npix(nside))
ipok=ip[mask]
Pl, S = compute_ds_dcb(ellbins,nside,ipok,bl,clth,Slmax,polar=True,temp=False, EBTB=False, pixwining=True, timing=True, MC=False)
Pl = Pl.reshape((nder)*(np.shape(Pl)[1]), 2*npix, 2*npix)
###################################### Compute spectra ######################################
esti = xQML(mask,ellbins, clth, Pl=Pl, fwhm=fwhm)
esti.construct_esti( NoiseVar, NoiseVar)
cl = esti.get_spectra( dm, dm)
V = esti.get_covariance()
###################################### Construct MC ######################################
allcl = []
esti = xQML(mask,ellbins, clth, Pl=Pl, fwhm=fwhm)
esti.construct_esti( NoiseVar, NoiseVar)
start = timeit.default_timer()
for n in np.arange(100):
progress_bar( n, 100,timeit.default_timer()-start)
cmb = hp.synfast( clth, nside, fwhm=deg2rad(fwhm), pixwin=True, new=True, verbose=False)
dm = cmb[1:,mask] + (randn(2*npix)*sqrt(varmap)).reshape( 2, npix)
allcl.append(esti.get_spectra( dm, dm))
figure()
subplot( 2,1,1)
plot( lth, clth.transpose()[lth,1:3], 'k')
plot( ellval, mean( allcl,0).transpose(), 'r')
plot( ellval, mean( allcl,0).transpose() + std( allcl,0).transpose(), 'r--')
plot( ellval, mean( allcl,0).transpose() - std( allcl,0).transpose(), 'r--')
semilogy()
subplot( 2,1,2)
cosmic = sqrt( 2./(2*lth+1))/mean(mask) * clth[1:3,lth]
plot( lth, cosmic.transpose(), 'k')
plot( ellval, std( allcl,0).transpose(), 'r')
plot( ellval, sqrt(diag(V)).reshape(nder,-1).transpose(), 'b')
semilogy()
show()
nside = 8
lmax = 3 * nside - 1
Slmax = 3 * nside - 1
deltal = 1
clth = hp.read_cl('planck_base_planck_2015_TTlowP.fits')
lth = arange(2, lmax+1)
ellbins = arange(2, lmax + 2, deltal)
ellbins[-1] = lmax + 1
P, Q, ell, ellval = GetBinningMatrix(ellbins, lmax)
nbins = len(ellbins) - 1
# Create mask
t, p = hp.pix2ang(nside, range(hp.nside2npix(nside)))
mask = np.ones(hp.nside2npix(nside), bool)
mask[abs(90 - rad2deg(t)) < 10] = False
npix = sum(mask)
fwhm = 0.5
bl = hp.gauss_beam(deg2rad(fwhm), lmax=Slmax + 1)
allStoke, der, ind = getstokes(polar=True, temp=False, EBTB=False)
nder = len(der)
muKarcmin = 0.1
pixvar = 2 * muKarcmin2var(muKarcmin, nside)
varmap = ones((2 * npix)) * pixvar
NoiseVar = np.diag(varmap)
cmb = hp.synfast(
clth, nside, fwhm=deg2rad(fwhm), pixwin=True, new=True, verbose=False)
noise = (randn(len(varmap)) * varmap**0.5).reshape(2, -1)
dm = cmb[1:, mask] + noise
############### Compute ds_dcb ###############
ip = arange(hp.nside2npix(nside))
ipok = ip[mask]
Pl, S = compute_ds_dcb(
ellbins, nside, ipok, bl, clth, Slmax,
polar=True, temp=False, EBTB=False,
pixwining=True, timing=True, MC=False)
Pl = Pl.reshape((nder)*(np.shape(Pl)[1]), 2 * npix, 2 * npix)
############### Compute spectra ###############
esti = xQML(mask, ellbins, clth, Pl=Pl, fwhm=fwhm)
esti.construct_esti(NoiseVar, NoiseVar)
cl = esti.get_spectra(dm, dm)
V = esti.get_covariance()
############### Construct MC ###############
allcl = []
esti = xQML(mask, ellbins, clth, Pl=Pl, fwhm=fwhm)
esti.construct_esti(NoiseVar, NoiseVar)
start = timeit.default_timer()
for n in np.arange(100):
progress_bar(n, 100, timeit.default_timer() - start)
cmb = hp.synfast(
clth, nside, fwhm=deg2rad(fwhm),
pixwin=True, new=True, verbose=False)
dm = cmb[1:, mask] + (randn(2 * npix) * sqrt(varmap)).reshape(2, npix)
allcl.append(esti.get_spectra(dm, dm))
figure()
subplot(2, 1, 1)
plot(lth, clth.transpose()[lth, 1: 3], 'k')
plot(ellval, mean(allcl, 0).transpose(), 'r')
plot(ellval, mean(allcl, 0).transpose() + std(allcl, 0).transpose(), 'r--')
plot(ellval, mean(allcl, 0).transpose() - std(allcl, 0).transpose(), 'r--')
semilogy()
subplot(2, 1, 2)
cosmic = sqrt(2./(2 * lth + 1)) / mean(mask) * clth[1: 3, lth]
plot(lth, cosmic.transpose(), 'k')
plot(ellval, std(allcl, 0).transpose(), 'r')
plot(ellval, sqrt(diag(V)).reshape(nder, -1).transpose(), 'b')
semilogy()
show()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment