Newer
Older
#include <math.h>
#include <stdio.h>
#include "xastropack.h"
/*!
\defgroup XAstroPack XAstroPack module
This module contains simple programs to perform various
astronomical computation (based on the libastro of Xephem).
\verbatim
// TEMPS: modified Julian date (mjd) (number of days elapsed since 1900 jan 0.5)
// jour [1,31] (dy)
// mois [1,12] (mn)
// annee (yr)
// universal time [0,24[ (utc)
// Greenwich mean siderial [0,24[ (gst)
// Greenwich mean siderial at 0h UT [0,24[ (gst0)
// EQUATORIALE: ascension droite en heures [0,24[ (ra)
// declinaison en degres [-90,90] (dec)
// angle horaire en heures [-12,12] (-12=12) (ha)
// temps sideral du lieu: tsid=ha+ra (ou lst)
// GALACTIQUE: longitude en degres [0,360[ (glng)
// latitude en degres [-90,90] (glat)
// HORIZONTAL: azimuth en degres [0,360[ (az)
// (angle round to the east from north+)
// altitude en degres [-90,90] (alt)
// ECLIPTIQUE: lontitude ecliptique en degres [0,360[ (eclng)
// (angle round counter clockwise from the vernal equinoxe)
// latitude ecliptique en degres [-90,90] (eclat)
// GEOGRAPHIE: longitude en degres ]-180,180] (geolng)
// (angle + vers l'ouest, - vers l'est)
// latitude en degres [-90,90] (north>0) (geolat)
/*! \ingroup XAstroPack
\brief gmst0() - return Greenwich Mean Sidereal Time at 0h UT
\param mjd0 = date at 0h UT in julian days since MJD0
double GST0(double mjd0)
/* Copie depuis le code de Xephem (utc_gst.c) car pas prototype*/
{
double T, x;
T = ((int)(mjd0 - 0.5) + 0.5 - J2000)/36525.0;
x = 24110.54841 +
(8640184.812866 + (0.093104 - 6.2e-6 * T) * T) * T;
x /= 3600.0;
range(&x, 24.0);
return (x);
}
/*! \ingroup XAstroPack
\brief return local sidereal time from modified julian day and longitude
\warning nutation or obliquity correction are taken into account.
*/
double LSTfrMJD(double mjd,double geolng)
{
double eps,lst,deps,dpsi;
utc_gst(mjd_day(mjd),mjd_hr(mjd),&lst);
lst += radhr(dpsi*cos(eps+deps));
InRange(&lst,24.);
/*! \ingroup XAstroPack
\brief Give a time in h:mn:s from a decimal hour
\verbatim
// OUTPUT: h mn s (h,mn,s >=< 0)
// REMARQUE: si hd<0 alors h<0 ET mn<0 ET s<0
// EX: 12.51 -> h=12 mn=30 s=10 ;
// -12.51 -> h=-12 mn=-30 s=-10 ;
\endverbatim
*/
void HMSfrHdec(double hd,int *h,int *mn,double *s)
{
int sgn=1;
if(hd<0.) {sgn=-1; hd*=-1.;}
*h = int(hd);
*mn = int((hd-(double)(*h))*60.);
*s = (hd - (double)(*h) - (double)(*mn)/60.)*3600.;
// pb precision
if(*s<0.) *s = 0.;
if(*s>60. || *s==60.) {*s-=60.; *mn+=1;} // s=double attention comparaison
if(*mn<0) *mn = 0;
if(*mn>=60) {*mn-=60; *h+=1;}
/*! \ingroup XAstroPack
\brief Give a decimal hour from a time in h:mn:s
\verbatim
// INPUT: h , mn , s (h,mn,s >=< 0)
// RETURN: en heures decimales
// REMARQUE: pour avoir hd=-12.51 <- h=-12 mn=-30 s=-10
\endverbatim
*/
double HdecfrHMS(int h,int mn,double s)
/*! \ingroup XAstroPack
\brief Give a time string from a time in h:mn:s
\verbatim
// RETURN: string h:mn:s
\endverbatim
*/
string ToStringHMS(int h,int mn,double s)
double hd = HdecfrHMS(h,mn,s); // put in range
HMSfrHdec(hd,&h,&mn,&s);
char str[128];
if(hd<0.)
sprintf(str,"-%d:%d:%.3f",-h,-mn,-s);
else
sprintf(str,"%d:%d:%.3f",h,mn,s);
string dum = str;
return dum;
}
/*! \ingroup XAstroPack
\brief Give a time string from a decimal hour
*/
string ToStringHdec(double hd)
{
int h,mn; double s;
return ToStringHMS(h,mn,s);
}
/*! \ingroup XAstroPack
\brief Compute precession between 2 dates.
*/
void Precess(double mjd1,double mjd2,double ra1,double dec1,double *ra2,double *dec2)
{
ra1 = hrrad(ra1); // radians
dec1 = degrad(dec1); // radians
precess(mjd1,mjd2,&ra1,&dec1);
*ra2 = radhr(ra1); InRange(ra2,24.);
*dec2 = raddeg(dec1);
}
\brief Convert equatorial coordinates for the given epoch into galactic coordinates
void EqtoGal(double mjd,double ra,double dec, double *glng,double *glat)
// Coordonnees equatoriales -> Coordonnees galactiques
{
ra = hrrad(ra); // radians
dec = degrad(dec); // radians
eq_gal(mjd,ra,dec,glat,glng);
// Vraiment bizarre, sur Linux-g++ glng>=360 ne comprend pas glng==360 ! (CMV)
*glng = raddeg(*glng); InRange(glng,360.);
*glat = raddeg(*glat);
\brief Convert galactic coordinates into equatorial coordinates at the given epoch
void GaltoEq(double mjd,double glng,double glat,double *ra,double *dec)
// Coordonnees galactiques -> Coordonnees equatoriales
{
glng = degrad(glng); // radians
glat = degrad(glat); // radians
gal_eq (mjd,glat,glng,ra,dec);
*ra = radhr(*ra); InRange(ra,24.);
*dec = raddeg(*dec);
\brief Convert equatorial coordinates (with hour angle instead of right ascension) into horizontal coordinates.
void EqHtoHor(double geolat,double ha,double dec,double *az,double *alt)
// Coordonnees equatoriales -> Coordonnees horizontales
{
geolat = degrad(geolat); // radians
ha = hrrad(ha); // radians
dec = degrad(dec); // radians
hadec_aa (geolat,ha,dec,alt,az);
*alt = raddeg(*alt);
*az = raddeg(*az); InRange(az,360.);
Convert horizontal coordinates into equatorial coordinates (with hour angle instead of right ascension).
void HortoEqH(double geolat,double az,double alt,double *ha,double *dec)
// Coordonnees horizontales -> Coordonnees equatoriales
{
geolat = degrad(geolat); // radians
alt = degrad(alt); // radians
az = degrad(az); // radians
aa_hadec (geolat,alt,az,ha,dec);
*ha = radhr(*ha); InRange(ha,24.,12.);
*dec = raddeg(*dec);
}
/*! \ingroup XAstroPack
\brief Convert equatorial coordinates into horizontal coordinates.
*/
void EqtoHor(double geolat,double lst,double ra,double dec,double *az,double *alt)
// Coordonnees equatoriales -> Coordonnees horizontales
{
double ha = lst - ra; InRange(&ha,24.,12.);
geolat = degrad(geolat); // radians
ha = hrrad(ha); // radians
dec = degrad(dec); // radians
*alt = raddeg(*alt);
*az = raddeg(*az); InRange(az,360.);
}
/*! \ingroup XAstroPack
Convert horizontal coordinates into equatorial coordinates.
*/
void HortoEq(double geolat,double lst,double az,double alt,double *ra,double *dec)
// Coordonnees horizontales -> Coordonnees equatoriales
{
double ha;
geolat = degrad(geolat); // radians
alt = degrad(alt); // radians
az = degrad(az); // radians
*ra = lst - radhr(ha); InRange(ra,24.);
*dec = raddeg(*dec);
\brief Convert equatorial coordinates into geocentric ecliptic coordinates given the modified Julian date.
\warning Correction for the effect on the angle of the obliquity due to nutation is not included.
// Attention, j'ai modifie eq_ecl.c pour proteger NaN
// dans ecleq_aux :
// *q = (sy*ceps)-(cy*seps*sx*sw);
// if(*q<-1.) *q = -PI/2.; else if(*q>1.) *q = PI/2.; else *q = asin(*q);
void EqtoEcl(double mjd,double ra,double dec,double *eclng,double *eclat)
// Coordonnees equatoriales -> Coordonnees ecliptiques
{
ra = hrrad(ra); // radians
dec = degrad(dec); // radians
eq_ecl(mjd,ra,dec,eclat,eclng);
*eclng = raddeg(*eclng); InRange(eclng,360.);
*eclat = raddeg(*eclat);
\brief Convert geocentric ecliptic coordinates into equatorial coordinates given the modified Julian date.
\warning Correction for the effect on the angle of the obliquity due to nutation is not included.
void EcltoEq(double mjd,double eclng,double eclat,double *ra,double *dec)
// Coordonnees ecliptiques -> Coordonnees equatoriales
{
eclat = degrad(eclat); // radians
eclng = degrad(eclng); // radians
ecl_eq(mjd,eclat,eclng,ra,dec);
*ra = radhr(*ra); InRange(ra,24.);
*dec = raddeg(*dec);
/*! \ingroup XAstroPack
\brief Give Sun position
\verbatim
given the modified JD, mjd, return the true geocentric ecliptic longitude
of the sun for the mean equinox of the date, *eclsn, in degres, the
sun-earth distance, *rsn, in AU, and the latitude *ecbsn, in degres
(since this is always <= 1.2 arcseconds, in can be neglected by
calling with ecbsn = NULL).
- REMARQUE:
* if the APPARENT ecliptic longitude is required, correct the longitude for
* nutation to the true equinox of date and for aberration (light travel time,
* approximately -9.27e7/186000/(3600*24*365)*2*pi = -9.93e-5 radians).
void SunPos(double mjd,double *eclsn,double *ecbsn,double *rsn)
sunpos(mjd,eclsn,rsn,ecbsn);
*eclsn = raddeg(*eclsn); InRange(eclsn,360.);
if(ecbsn!=NULL) *ecbsn = raddeg(*ecbsn);
/*! \ingroup XAstroPack
\brief Give Moon position
\verbatim
given the mjd, find the geocentric ecliptic longitude, lam, and latitude,
bet, and geocentric distance, rho in a.u. for the moon. also return
the sun's mean anomaly, *msp, and the moon's mean anomaly, *mdp.
(for the mean equinox)
\endverbatim
*/
void MoonPos(double mjd,double *eclmn,double *ecbmn,double *rho)
double msp,mdp;
moon(mjd,eclmn,ecbmn,rho,&msp,&mdp);
*eclmn = raddeg(*eclmn); InRange(eclmn,360.);
*ecbmn = raddeg(*ecbmn);
/*! \ingroup XAstroPack
\brief Give planet position
\verbatim
* given a modified Julian date, mjd, and a planet, p, find:
* sunecl: heliocentric longitude,
* sunecb: heliocentric latitude,
* sundist: distance from the sun to the planet,
* geodist: distance from the Earth to the planet,
* none corrected for light time, ie, they are the true values for the
* given instant.
* geoecl: geocentric ecliptic longitude,
* geoecb: geocentric ecliptic latitude,
* each corrected for light time, ie, they are the apparent values as
* seen from the center of the Earth for the given instant.
* diamang: angular diameter in arcsec at 1 AU,
* mag: visual magnitude when 1 AU from sun and earth at 0 phase angle.
* all angles are in degres, all distances in AU.
*
* corrections for nutation and abberation must be made by the caller. The RA
* and DEC calculated from the fully-corrected ecliptic coordinates are then
* the apparent geocentric coordinates. Further corrections can be made, if
* required, for atmospheric refraction and geocentric parallax.
void PlanetPos(double mjd,int numplan,double *sunecl,double *sunecb,double *sundist
,double *geodist,double *geoecl,double *geoecb
,double *diamang,double *mag)
plans(mjd,numplan,sunecl,sunecb,sundist,geodist,geoecl,geoecb,diamang,mag);
*geoecl = raddeg(*geoecl); InRange(geoecl,360.);
*geoecb = raddeg(*geoecb);
*sunecl = raddeg(*sunecl); InRange(sunecl,360.);
*sunecb = raddeg(*sunecb);
/*! \ingroup XAstroPack
\brief Given a coordinate type "typ", convert to standard for astropack
\verbatim
// 1 = Unknown type of coordinates
// 2 = bad range for coord1
// 4 = bad range for coord2
// 6 = bad range for coord1 et coord2
\endverbatim
*/
int CoordConvertToStd(TypAstroCoord typ,double& coord1,double& coord2)
{
int rc = 0;
// ---- Equatoriales alpha,delta
// - standard = [0,24[ , [-90,90]
if(typ&TypCoordEq) {
if(typ&TypCoordDD) {
coord1 = radhr(coord1);
coord2 = raddeg(coord2);
}
if(coord1==24.) coord1 = 0.;
if(coord1<0. || coord1>=24.) rc+= 2;
if(coord2<-90. || coord2>90. ) rc+= 4;
// ---- Galactiques gLong, gLat
// ---- Horizontales azimuth,altitude
// ---- Ecliptiques EclLong,EclLat
// - standard = [0,360[ , [-90,90]
} else if( typ&TypCoordGal || typ&TypCoordHor || typ&TypCoordEcl) {
if(typ&TypCoordHD) {
coord1 = raddeg(coord1);
coord2 = raddeg(coord2);