Newer
Older
#!/usr/bin/env python3
# A script that takes a segmented graph in the gt format and performs the
# non-local cost function calculation where each edge will have a cost
# function assigned to it.
# Inputs (to be changed within the script):
# Orientation
# node_id_param_file location and name
# gt graph name and location
# shapefiles names and location
# Output: a gt graph with cost functions and an xml graph with cost functions
import graph_tool
import time
import json
import math
from os import path
import shapefile
import datetime
from numpy import loadtxt
def calculate_radii_and_rossby(start, end, inc, segment, e_overestim, handlers):
radii = 0 #[m]
rossby = 0 #[1/s]
days_modifier = 0
for i in range(start, end, inc):
current_eddy = report_graph.node_to_date_eddy(segment[i], e_overestim)
date = datetime.date(1950, 1, 1) \
+ datetime.timedelta(current_eddy['date_index'])
year = date.year
# calculate the location in the shapefile
location = util_eddies.comp_ishape(handlers[year],
current_eddy['date_index'],
current_eddy['eddy_index'])
# now that we have the location in the shapefiles, we need to
# get the radius and the rossby number
shapeRec = handlers[year]["readers"]["extremum"].shapeRecord(location)
lat_in_deg = shapeRec.shape.points[0][1]
#[deg]
f = 2*2*math.pi/(24*3600)*math.sin(math.radians(lat_in_deg)) # [1/s]
V_max = shapeRec.record[4] #[m/s]
R_Vmax = handlers[year]["readers"]["max_speed_contour"]\
.record(location)['r_eq_area'] * 1000 #[m]
if (V_max < 100):
# calculate Ro and Delta_Ro
Ro = V_max / (f * R_Vmax) #[]
else:
Ro = 0
days_modifier += 1
####### RADII #######
radii += R_Vmax # [m]
####### ROSSBY ######
rossby += Ro # []
return {"radii": radii, "rossby": rossby, "days_modifier": days_modifier}
###############################
with open("node_id_param.json") as f: node_id_param = json.load(f)
# assign attributes to the whole graphs
e_overestim = node_id_param["e_overestim"]
################################################
# set some values needed for the cost function #
################################################
delta_cent_mean = 3.8481 # [km]
delta_cent_std = 8.0388
delta_ro_mean = -0.0025965 # []
delta_ro_std = 5.2168
delta_r_mean = -0.0094709 * 1000 #[m]
delta_r_std = 8.6953 * 1000
orientation = input("Enter orientation (anti or cyclo): ")
t0 = time.perf_counter()
print('Loading gt file...')
g = graph_tool.Graph()
t1 = time.perf_counter()
print(f'Loading done: {g}')
g.vp['pos_first'] = g.new_vp('object')
g.vp['pos_last'] = g.new_vp('object')
g.vp['first_av_rad'] = g.new_vp('float')
g.vp['first_av_ros'] = g.new_vp('float')
g.vp['last_av_rad'] = g.new_vp('float')
g.vp['last_av_ros'] = g.new_vp('float')
g.ep['nl_cost_function'] = g.new_ep('float')
# Set up the dictionarys for the shapefiles and the ishape_last files:
shp_tr_dir = input('Directory containing %Y/SHPC_(anti|cyclo): ')
shp_dir = path.join(shp_tr_dir, f'{year}/SHPC_{orientation}')
# change if there is a change over the number of days to average
num_of_days_to_avg = 7
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# iterate on the vertices
for n in g.vertices():
# Get the segment and the number of days
segment = g.vp.segment[n]
# calculate the indexes and dates
first = report_graph.node_to_date_eddy(segment[0], e_overestim)
# get year
first_date = datetime.date(1950, 1, 1) \
+ datetime.timedelta(first['date_index'])
first_year = first_date.year
num_of_days = len(segment)
# start processing
last = report_graph.node_to_date_eddy(segment[-1], e_overestim)
last_date = datetime.date(1950, 1, 1) \
+ datetime.timedelta(last['date_index'])
last_year = last_date.year
# calculate the location in the shapefile
first_loc = util_eddies.comp_ishape(handlers[first_year],
first['date_index'],
first['eddy_index'])
last_loc = util_eddies.comp_ishape(handlers[last_year],
last['date_index'],
last['eddy_index'])
# grab the centers
first_pos = handlers[first_year]["readers"]["extremum"]\
.shape(first_loc).points[0]
last_pos = handlers[last_year]["readers"]["extremum"]\
.shape(last_loc).points[0]
##### STORE POSITIONS IN THE VPS ######
g.vp.pos_first[n] = first_pos # [deg, deg]
g.vp.pos_last[n] = last_pos # [deg, deg]
# if the segments are longer than the # of days over which to avg
if (num_of_days > num_of_days_to_avg):
first_radii = 0 # [m]
last_radii = 0 # [m]
first_rossby = 0 # []
last_rossby = 0 # []
# First 7 days calculation
first_res = calculate_radii_and_rossby(0, num_of_days_to_avg,
1, segment, e_overestim,
handlers)
# average and assign radii
first_radii = first_res['radii'] / num_of_days_to_avg
g.vp.first_av_rad[n] = first_radii
# grab the days modifier
modifier = first_res['days_modifier']
if (num_of_days_to_avg - modifier > 0):
# Average and assign the rossbies:
first_rossby = first_res['rossby'] / (num_of_days_to_avg - modifier)
g.vp.first_av_ros[n] = first_rossby
else:
# there is division by zero, average rossby is undefinied
pass
# Last 7 days calculation
last_res = calculate_radii_and_rossby(len(segment) - 1,
len(segment) - (num_of_days_to_avg + 1),
-1,
segment, e_overestim,
handlers)
# Average and assign the last radii
last_radii = last_res['radii'] / num_of_days_to_avg
g.vp.last_av_rad[n] = last_radii
# grab the days modifier
modifier = last_res['days_modifier']
if (num_of_days_to_avg - modifier > 0):
# Average and assign the rossbies:
last_rossby = last_res['rossby'] / (num_of_days_to_avg - modifier)
g.vp.last_av_ros[n] = last_rossby
else:
# there is division by zero, average rossby is undefinied
pass
# else, the number of eddies in a segment is lower than the # of
# days over which to average, the values will be the same except
# for the positions
else:
res = calculate_radii_and_rossby(0, num_of_days, 1, segment,
e_overestim, handlers)
# grab the days modifier
modifier = res['days_modifier']
if (num_of_days - modifier > 0):
# Average and assign the rossbies:
rossby = res['rossby'] / (num_of_days - modifier)
g.vp.first_av_ros[n] = rossby
g.vp.last_av_ros[n] = rossby
else:
# there is division by zero, average rossby is undefinied
pass
# Average and assign the radii
radii = res['radii'] / num_of_days
g.vp.first_av_rad[n] = radii
g.vp.last_av_rad[n] = radii
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
###############################
# Calculate the cost function #
###############################
for edge in g.edges():
source_node = edge.source()
target_node = edge.target()
cf = -10000
lat_for_conv = (g.vp.pos_last[source_node][1] +
g.vp.pos_first[target_node][1]) / 2 # latitude needed for conversion of degrees to kilometers
lat_for_conv = math.radians(lat_for_conv) # need to convert to radians
# because of the wrapping issue (360° wrapping incorrectly to 0°), we check for that here
lon_diff = abs(g.vp.pos_last[source_node][0] - g.vp.pos_first[target_node][0])
if (lon_diff > 300):
lon_diff = 360 - lon_diff
# calculate Delta_cent: numbers used for conversion obtained from:
# https://stackoverflow.com/questions/1253499/simple-calculations-for-working-with-lat-lon-and-km-distance
Delta_Cent = math.sqrt(( lon_diff * 111.32 * math.cos(lat_for_conv) )**2 +
( (g.vp.pos_last[source_node][1] - g.vp.pos_first[target_node][1]) * 110.574 )**2)
# calculate the first term
first_term = ((Delta_Cent - delta_cent_mean)/delta_cent_std) ** 2
# Rossbies:
if (g.vp.first_av_ros[target_node] and g.vp.last_av_ros[source_node]):
Delta_Ro = g.vp.last_av_ros[source_node] - g.vp.first_av_ros[target_node]
else:
print("At least one of the rossbies is invalid.")
#Delta_Ro = delta_ro_mean
Delta_Ro = 0
# Calculate the second term
second_term = ((Delta_Ro - delta_ro_mean)/delta_ro_std ) ** 2
# R_Vmax 1 and 2 already exist, just get the delta
Delta_R_Vmax = g.vp.last_av_rad[source_node] - g.vp.first_av_rad[target_node]
# Calculate the third term
third_term = ((Delta_R_Vmax - delta_r_mean)/delta_r_std) ** 2
#############################
# calculate the cost function
#############################
cf = math.sqrt(first_term + second_term + third_term)
# assign as weight to the edge
g.ep.nl_cost_function[edge] = cf
################################
# Writing to an GT Graph File #
################################
#g.save("segments_cyclo_gl_cf.xml")
#print("Done writing xml.")
g.save(f'segmented_{orientation}_cf.gt')
print("Done writing gt.")
g.save(f'segmented_{orientation}_cf.xml')
print("Done writing xml.")
#g.save(f'{orientation}_segmented_cf.gv', fmt = "dot")
#print("Done writing dot file.")
print('All done')