Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
D
Detection eddies
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
IPSL
LMD
DPAO
Detection eddies
Commits
7df063e0
Commit
7df063e0
authored
1 year ago
by
Lionel GUEZ
Browse files
Options
Downloads
Patches
Plain Diff
Blacken
parent
a0da2d71
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Trajectories/cost_function.py
+95
-63
95 additions, 63 deletions
Trajectories/cost_function.py
with
95 additions
and
63 deletions
Trajectories/cost_function.py
+
95
−
63
View file @
7df063e0
...
...
@@ -26,7 +26,8 @@ import graph_tool
import
util_eddies
Omega
=
2
*
math
.
pi
/
86164.
Omega
=
2
*
math
.
pi
/
86164.0
def
calculate_radii_rossby
(
properties
):
"""
Compute average on some instantaneous eddies of Rossby number and
...
...
@@ -38,24 +39,26 @@ def calculate_radii_rossby(properties):
"""
avg_rad
=
0
# in m
avg_rad
=
0
# in m
avg_Rossby
=
0
n_valid_Rossby
=
0
for
prop
in
properties
:
f
=
2
*
Omega
*
math
.
sin
(
prop
[
"
pos
"
][
1
])
# in s-1
radius
=
prop
[
"
radius
"
]
*
1000
# in m
f
=
2
*
Omega
*
math
.
sin
(
prop
[
"
pos
"
][
1
])
# in s-1
radius
=
prop
[
"
radius
"
]
*
1000
# in m
if
abs
(
prop
[
"
speed
"
])
<
100
:
avg_Rossby
+=
prop
[
"
speed
"
]
/
(
f
*
radius
)
n_valid_Rossby
+=
1
avg_rad
+=
radius
# in m
avg_rad
+=
radius
# in m
avg_rad
/=
len
(
properties
)
if
n_valid_Rossby
!=
0
:
avg_Rossby
/=
n_valid_Rossby
if
n_valid_Rossby
!=
0
:
avg_Rossby
/=
n_valid_Rossby
return
avg_rad
,
avg_Rossby
def
node_to_prop
(
node_list
,
e_overestim
,
SHPC
,
orientation
):
"""
node_list is a list of node identification numbers for
instantaneous eddies. This function returns some properties of the
...
...
@@ -73,48 +76,64 @@ def node_to_prop(node_list, e_overestim, SHPC, orientation):
date_index
,
eddy_index
=
util_eddies
.
node_to_date_eddy
(
n
,
e_overestim
)
i_slice
=
SHPC
.
get_slice
(
date_index
)
ishape
=
SHPC
.
comp_ishape
(
date_index
,
eddy_index
,
i_slice
,
orientation
)
shapeRec
=
SHPC
.
get_reader
(
i_slice
,
orientation
,
"
extremum
"
)
\
.
shapeRecord
(
ishape
)
prop
=
{
"
pos
"
:
[
math
.
radians
(
x
)
for
x
in
shapeRec
.
shape
.
points
[
0
]],
"
speed
"
:
shapeRec
.
record
.
speed
}
prop
[
"
radius
"
]
\
=
SHPC
.
get_reader
(
i_slice
,
orientation
,
"
max_speed_contour
"
)
\
.
record
(
ishape
).
r_eq_area
shapeRec
=
SHPC
.
get_reader
(
i_slice
,
orientation
,
"
extremum
"
).
shapeRecord
(
ishape
)
prop
=
{
"
pos
"
:
[
math
.
radians
(
x
)
for
x
in
shapeRec
.
shape
.
points
[
0
]],
"
speed
"
:
shapeRec
.
record
.
speed
,
}
prop
[
"
radius
"
]
=
(
SHPC
.
get_reader
(
i_slice
,
orientation
,
"
max_speed_contour
"
)
.
record
(
ishape
)
.
r_eq_area
)
if
prop
[
"
radius
"
]
<
0
:
prop
[
"
radius
"
]
=
SHPC
.
get_reader
(
i_slice
,
orientation
,
"
outermost_contour
"
)
\
.
record
(
ishape
).
r_eq_area
prop
[
"
radius
"
]
=
(
SHPC
.
get_reader
(
i_slice
,
orientation
,
"
outermost_contour
"
)
.
record
(
ishape
)
.
r_eq_area
)
properties
.
append
(
prop
)
return
properties
t0
=
time
.
perf_counter
()
timings
=
open
(
"
timings.txt
"
,
"
w
"
)
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"
SHPC_dir
"
)
parser
.
add_argument
(
"
orientation
"
,
choices
=
[
"
Anticyclones
"
,
"
Cyclones
"
])
parser
.
add_argument
(
"
input_segments
"
,
help
=
"
input graph of segments without
"
"
cost, suffix .gt (graph-tool) or .graphml
"
)
parser
.
add_argument
(
"
output_segments
"
,
help
=
"
output graph of segments with
"
"
cost, suffix .gt (graph-tool) or .graphml
"
)
parser
.
add_argument
(
"
--debug
"
,
help
=
"
save properties to output file
"
,
action
=
"
store_true
"
)
parser
.
add_argument
(
"
orientation
"
,
choices
=
[
"
Anticyclones
"
,
"
Cyclones
"
])
parser
.
add_argument
(
"
input_segments
"
,
help
=
"
input graph of segments without
"
"
cost, suffix .gt (graph-tool) or .graphml
"
,
)
parser
.
add_argument
(
"
output_segments
"
,
help
=
"
output graph of segments with
"
"
cost, suffix .gt (graph-tool) or .graphml
"
,
)
parser
.
add_argument
(
"
--debug
"
,
help
=
"
save properties to output file
"
,
action
=
"
store_true
"
)
args
=
parser
.
parse_args
()
# Set some values needed for the cost function:
delta_cent_mean
=
3.8481
# in km
delta_cent_mean
=
3.8481
# in km
delta_cent_std
=
8.0388
delta_ro_mean
=
-
0.0025965
delta_ro_std
=
5.2168
delta_r_mean
=
-
9.4709
# in m
delta_r_mean
=
-
9.4709
# in m
delta_r_std
=
8.6953e3
# Load the graph_tool file:
print
(
'
Loading graph...
'
)
print
(
"
Loading graph...
"
)
g
=
graph_tool
.
load_graph
(
args
.
input_segments
)
print
(
'
Loading done...
'
)
print
(
"
Loading done...
"
)
print
(
"
Input graph:
"
)
print
(
"
Number of vertices:
"
,
g
.
num_vertices
())
print
(
"
Number of edges:
"
,
g
.
num_edges
())
...
...
@@ -129,34 +148,38 @@ t0 = t1
g
.
graph_properties
[
"
orientation
"
]
=
g
.
new_graph_property
(
"
string
"
)
g
.
graph_properties
[
"
orientation
"
]
=
args
.
orientation
pos_first
=
g
.
new_vp
(
'
vector<double>
'
)
pos_last
=
g
.
new_vp
(
'
vector<double>
'
)
first_av_rad
=
g
.
new_vp
(
'
float
'
)
first_av_ros
=
g
.
new_vp
(
'
float
'
)
last_av_rad
=
g
.
new_vp
(
'
float
'
)
last_av_ros
=
g
.
new_vp
(
'
float
'
)
pos_first
=
g
.
new_vp
(
"
vector<double>
"
)
pos_last
=
g
.
new_vp
(
"
vector<double>
"
)
first_av_rad
=
g
.
new_vp
(
"
float
"
)
first_av_ros
=
g
.
new_vp
(
"
float
"
)
last_av_rad
=
g
.
new_vp
(
"
float
"
)
last_av_ros
=
g
.
new_vp
(
"
float
"
)
if
args
.
debug
:
# Make the properties internal to the graph:
g
.
vp
[
'
pos_first
'
]
=
pos_first
g
.
vp
[
'
pos_last
'
]
=
pos_last
g
.
vp
[
'
first_av_rad
'
]
=
first_av_rad
g
.
vp
[
'
first_av_ros
'
]
=
first_av_ros
g
.
vp
[
'
last_av_rad
'
]
=
last_av_rad
g
.
vp
[
'
last_av_ros
'
]
=
last_av_ros
g
.
ep
[
'
cost_function
'
]
=
g
.
new_ep
(
'
float
'
)
g
.
vp
[
"
pos_first
"
]
=
pos_first
g
.
vp
[
"
pos_last
"
]
=
pos_last
g
.
vp
[
"
first_av_rad
"
]
=
first_av_rad
g
.
vp
[
"
first_av_ros
"
]
=
first_av_ros
g
.
vp
[
"
last_av_rad
"
]
=
last_av_rad
g
.
vp
[
"
last_av_ros
"
]
=
last_av_ros
g
.
ep
[
"
cost_function
"
]
=
g
.
new_ep
(
"
float
"
)
SHPC
=
util_eddies
.
SHPC_class
(
args
.
SHPC_dir
,
args
.
orientation
)
n_days_avg
=
7
# number of days to average
n_days_avg
=
7
# number of days to average
print
(
"
Iterating on vertices...
"
)
for
n
in
g
.
vertices
():
if
n
.
in_degree
()
!=
0
:
# Define properties for beginning of the segment:
properties
=
node_to_prop
(
g
.
vp
.
inst_eddies
[
n
][:
n_days_avg
],
g
.
gp
.
e_overestim
,
SHPC
,
args
.
orientation
)
properties
=
node_to_prop
(
g
.
vp
.
inst_eddies
[
n
][:
n_days_avg
],
g
.
gp
.
e_overestim
,
SHPC
,
args
.
orientation
,
)
first_av_rad
[
n
],
first_av_ros
[
n
]
=
calculate_radii_rossby
(
properties
)
pos_first
[
n
]
=
properties
[
0
][
"
pos
"
]
# in rad
pos_first
[
n
]
=
properties
[
0
][
"
pos
"
]
# in rad
if
n
.
out_degree
()
!=
0
:
# Define properties for end of the segment:
...
...
@@ -170,18 +193,24 @@ for n in g.vertices():
if
n
.
in_degree
()
==
0
or
len_seg
>
2
*
n_days_avg
:
# We cannot use part of properties from the beginning
# of the segment.
properties
=
node_to_prop
(
g
.
vp
.
inst_eddies
[
n
][
-
n_days_avg
:],
g
.
gp
.
e_overestim
,
SHPC
,
args
.
orientation
)
properties
=
node_to_prop
(
g
.
vp
.
inst_eddies
[
n
][
-
n_days_avg
:],
g
.
gp
.
e_overestim
,
SHPC
,
args
.
orientation
,
)
else
:
# assertion: n.in_degree() != 0 and n_days_avg <
# len_seg < 2 * n_days_avg
# We can use part of the properties from the beginning
# of the segment.
properties
=
properties
[
len_seg
-
n_days_avg
:]
\
+
node_to_prop
(
g
.
vp
.
inst_eddies
[
n
][
n_days_avg
:],
g
.
gp
.
e_overestim
,
SHPC
,
args
.
orientation
)
properties
=
properties
[
len_seg
-
n_days_avg
:]
+
node_to_prop
(
g
.
vp
.
inst_eddies
[
n
][
n_days_avg
:],
g
.
gp
.
e_overestim
,
SHPC
,
args
.
orientation
,
)
last_av_rad
[
n
],
last_av_ros
[
n
]
=
calculate_radii_rossby
(
properties
)
else
:
...
...
@@ -192,7 +221,7 @@ for n in g.vertices():
last_av_rad
[
n
]
=
first_av_rad
[
n
]
last_av_ros
[
n
]
=
first_av_ros
[
n
]
pos_last
[
n
]
=
properties
[
-
1
][
"
pos
"
]
# in rad
pos_last
[
n
]
=
properties
[
-
1
][
"
pos
"
]
# in rad
t1
=
time
.
perf_counter
()
timings
.
write
(
f
"
iterating on vertices:
{
t1
-
t0
:
.
0
f
}
s
\n
"
)
...
...
@@ -203,20 +232,22 @@ for edge in g.edges():
source_node
=
edge
.
source
()
target_node
=
edge
.
target
()
latitude
=
(
pos_last
[
source_node
][
1
]
+
pos_first
[
target_node
][
1
])
/
2
latitude
=
(
pos_last
[
source_node
][
1
]
+
pos_first
[
target_node
][
1
])
/
2
# Because of the wrapping issue (360° wrapping incorrectly to 0°),
# we check for that here:
lon_diff
=
abs
(
pos_last
[
source_node
][
0
]
-
pos_first
[
target_node
][
0
])
if
lon_diff
>
math
.
radians
(
300
):
lon_diff
=
2
*
math
.
pi
-
lon_diff
if
lon_diff
>
math
.
radians
(
300
):
lon_diff
=
2
*
math
.
pi
-
lon_diff
Delta_Cent
=
math
.
sqrt
((
lon_diff
*
6378.166175
*
math
.
cos
(
latitude
))
**
2
+
((
pos_last
[
source_node
][
1
]
-
pos_first
[
target_node
][
1
])
*
6335.423523
)
**
2
)
Delta_Cent
=
math
.
sqrt
(
(
lon_diff
*
6378.166175
*
math
.
cos
(
latitude
))
**
2
+
((
pos_last
[
source_node
][
1
]
-
pos_first
[
target_node
][
1
])
*
6335.423523
)
**
2
)
# Rossbies:
if
(
first_av_ros
[
target_node
]
and
last_av_ros
[
source_node
]
)
:
if
first_av_ros
[
target_node
]
and
last_av_ros
[
source_node
]:
Delta_Ro
=
last_av_ros
[
source_node
]
-
first_av_ros
[
target_node
]
else
:
# At least one of the rossbies is invalid.
...
...
@@ -226,17 +257,18 @@ for edge in g.edges():
Delta_R_Vmax
=
last_av_rad
[
source_node
]
-
first_av_rad
[
target_node
]
# Calculate the cost and assign to the edge:
g
.
ep
.
cost_function
[
edge
]
\
=
math
.
sqrt
(((
Delta_Cent
-
delta_cent_mean
)
/
delta_cent_std
)
**
2
+
((
Delta_Ro
-
delta_ro_mean
)
/
delta_ro_std
)
**
2
+
((
Delta_R_Vmax
-
delta_r_mean
)
/
delta_r_std
)
**
2
)
g
.
ep
.
cost_function
[
edge
]
=
math
.
sqrt
(
((
Delta_Cent
-
delta_cent_mean
)
/
delta_cent_std
)
**
2
+
((
Delta_Ro
-
delta_ro_mean
)
/
delta_ro_std
)
**
2
+
((
Delta_R_Vmax
-
delta_r_mean
)
/
delta_r_std
)
**
2
)
t1
=
time
.
perf_counter
()
timings
.
write
(
f
"
iterating on edges:
{
t1
-
t0
:
.
0
f
}
s
\n
"
)
t0
=
t1
print
(
"
Saving...
"
)
g
.
save
(
args
.
output_segments
)
print
(
'
All done
'
)
print
(
"
All done
"
)
t1
=
time
.
perf_counter
()
timings
.
write
(
f
"
saving:
{
t1
-
t0
:
.
0
f
}
s
\n
"
)
timings
.
close
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment