Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#
# Reads ans manages the model grid
#
import numpy as np
import Projections as PS
from netCDF4 import Dataset
# Doc : https://spacetelescope.github.io/spherical_geometry/api/spherical_geometry.polygon.SphericalPolygon.html
from spherical_geometry import polygon
import RPPtools as RPP
import sys
#
import configparser
config=configparser.ConfigParser({"WEST_EAST":"-180., 180", "SOUTH_NORTH":"-90., 90."})
config.read("run.def")
#
import getargs
log_master, log_world = getargs.getLogger(__name__)
INFO, DEBUG, ERROR = log_master.info, log_master.debug, log_world.error
INFO_ALL, DEBUG_ALL = log_world.info, log_world.debug
#
#
EarthRadius=config.getfloat("OverAll", "EarthRadius")
rose=[[-1,-1],[-1,0],[-1,+1],[0,+1],[+1,+1],[+1,0],[+1,-1],[0,-1]]
epsilon=0.00001
#
###################################################################################
#
# Find in the list coord the points closes to the point given by lon,lat.
#
def mindist(coord,lon,lat) :
d=[]
for c in coord :
d.append(np.sqrt((c[0]-lon)**2+(c[1]-lat)**2))
return np.argmin(d)
#
# Function to gather all land points but while keeping also the neighbour information.
#
def gatherland(lon, lat, land, indP, indFi, indFj) :
nj,ni=lon.shape
coord=[]
indF_land=[]
indP_land=[]
for i in range(ni) :
for j in range(nj) :
if (land[j,i] > 0 ) :
coord.append([lon[j,i],lat[j,i]])
indF_land.append([indFi[j,i],indFj[j,i]])
indP_land.append([j,i])
nbland=len(coord)
#
# Get the neighbours in the coord list. The same order is used as in ORCHIDEE
#
neighbours=[]
for i in range(ni) :
for j in range(nj) :
if (land[j,i] > 0 ) :
ntmp=[]
#
# Indices of neighbouring points are in C and thus +1 will be performed
# For FORTRAN.
# -1 will become 0 and indicate point is outside of domain.
# -2 will become -1 and indicate ocean.
#
for r in rose :
nnj=j+r[0]
nni=i+r[1]
if ( nni >= 0 and nni < ni and nnj >= 0 and nnj < nj) :
if land[nnj,nni] > 0 :
ntmp.append(mindist(coord,lon[nnj,nni],lat[nnj,nni]))
else :
ntmp.append(-2)
else :
ntmp.append(-1)
neighbours.append(ntmp)
return nbland, coord,neighbours,indP_land,indF_land
#
#
#
def corners(indF, proj, istart, jstart, lon, lat) :
cornersll=[]
cornerspoly=[]
centersll=[]
areas=[]
allon=[]
allat=[]
#
dlon=int((lon[0,-1]-lon[0,0])/np.abs(lon[0,-1]-lon[0,0]))
dlat=int((lat[0,0]-lat[-1,0])/np.abs(lat[0,0]-lat[-1,0]))
#
for ij in indF :
#
# Get the corners and mid-points of segments to completely describe the polygone
#
polyg = RPP.boxit([istart+ij[0],jstart+ij[1]], dlon, dlat)

POLCHER Jan
committed
centll=proj.ijll([[istart+ij[0],jstart+ij[1]]])[0]
#
allon.append([p[0] for p in polyll])
allat.append([p[1] for p in polyll])
#

POLCHER Jan
committed
sphpoly=polygon.SphericalPolygon.from_lonlat([p[0] for p in polyll], [p[1] for p in polyll], center=centll)
#
areas.append((sphpoly.area())*EarthRadius**2)
cornerspoly.append(sphpoly)
cornersll.append(polyll)
centersll.append(centll)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
box=[[np.min(np.array(allon)),np.max(np.array(allon))],[np.min(np.array(allat)),np.max(np.array(allat))]]
return cornersll, cornerspoly, areas, box
#
# Extract the coordinates of the grid file. If ni < 0 and nj < 0 then the
# full grid is read.
#
def getcoordinates(geo, istart, ni, jstart, nj) :
#
# Guess the type of grid
#
griddesc = {}
if "DX" in geo.ncattrs() :
griddesc['type'] = "RegXY"
elif len(geo.variables["lon"].shape) == 1 :
griddesc['type'] = "RegLonLat"
else :
ERROR("We could not guess the grid type")
sys.exit()
#
# Extract grid information
#
if griddesc['type'] == "RegXY" :
# We have a geogrid file from WRF
griddesc['dx'] = geo.DX
griddesc['known_lon'] = geo.corner_lons[0]
griddesc['known_lat'] = geo.corner_lats[0]
griddesc['truelat1'] = geo.TRUELAT1
griddesc['truelat2'] = geo.TRUELAT2
griddesc['stdlon'] = geo.STAND_LON
#
# Verify the region chosen
#
nbt, nbj_g, nbi_g = geo.variables["XLONG_M"].shape
if ni < 0 and nj < 0 :
istart = 0
ni = nbi_g
jstart = 0
nj = nbj_g
#
if istart > nbi_g or istart+ni > nbi_g :
ERROR("The sub-domain is not possible in longitude : Total size = "+str(nbi_g)+" istart = "+str(istart)+" ni = "+str(ni))
sys.exit()
if jstart > nbj_g or jstart+nj > nbj_g :
ERROR("The sub-domain is not possible in latitude : Total size = "+str(nbj_g)+" jstart = "+str(jstart)+" nj = "+str(nj))
sys.exit()
#
# Extract grid
#
lon_full=np.copy(geo.variables["XLONG_M"][0,jstart:jstart+nj,istart:istart+ni])
lat_full=np.copy(geo.variables["XLAT_M"][0,jstart:jstart+nj,istart:istart+ni])
elif griddesc['type'] == "RegLonLat" :
# We have a regulat lat/lon grid
nbi_g = geo.variables["lon"].shape[0]
nbj_g = geo.variables["lat"].shape[0]
#
if ni < 0 and nj < 0 :
istart = 0
ni = nbi_g
jstart = 0
nj = nbj_g
#
if istart > nbi_g or istart+ni > nbi_g :
ERROR("The sub-domain is not possible in longitude : Total size = "+str(nbi_g)+" istart = "+str(istart)+" ni = "+str(ni))
sys.exit()
if jstart > nbj_g or jstart+nj > nbj_g :
ERROR("The sub-domain is not possible in latitude : Total size = "+str(nbj_g)+" jstart = "+str(jstart)+" nj = "+str(nj))
sys.exit()
#
# Extract grid
#
lon_full=np.tile(np.copy(geo.variables["lon"][istart:istart+ni]),(nj,1))
griddesc['inilon'] = np.copy(geo.variables["lon"][0])
lat_full=np.transpose(np.tile(np.copy(geo.variables["lat"][jstart:jstart+nj]),(ni,1)))
griddesc['inilat'] = np.copy(geo.variables["lat"][0])
else :
ERROR("Unknown grid type")
sys.exit()
#
return griddesc, lon_full, lat_full
#
#
#
def getland (geo, ist, ni, jst, nj) :
vn=list(v.name for v in geo.variables.values())
if "LANDMASK" in vn :
land=geo.variables["LANDMASK"][0,jst:jst+nj,ist:ist+ni]
elif "elevation" in vn :
land=geo.variables["elevation"][jst:jst+nj,ist:ist+ni]
if "missing_value" in geo.variables["elevation"].ncattrs() :
missing = geo.variables["elevation"].missing_value
elif "_FillValue" in geo.variables["elevation"].ncattrs() :
missing = geo.variables["elevation"]._FillValue
else :
ERROR("Could not find a flag for ocean points (i.e. missing)")
sys.exit()
#
# Complete the mask with the missing flag
#
if missing < 0 :
land[land > missing] = 1.0
land[land <= missing] = 0.0
else :
land[land < missing] = 1.0
land[land >= missing] = 0.0
else :
ERROR("We could not find a variable for computing the land mask")
sys.exit()
return land
#
#
#
class ModelGrid :
def __init__(self, istart, ni, jstart, nj) :
#
if ni < 2 or nj < 2 :
INFO("Found impossibleDomain too small for ModelGrid to work : "+str(ni)+str(nj))
ERROR("Domain too small")
sys.exit()
#
filename=config.get("OverAll", "ModelGridFile")
geo=Dataset(filename,'r')
#
# Get the coordinates from the grid file.
#
griddesc, self.lon_full, self.lat_full = getcoordinates(geo, istart, ni, jstart, nj)
#
# Extract the land/ea mask.
#
self.land = getland(geo, istart, ni, jstart, nj)
ind=np.reshape(np.array(range(self.land.shape[0]*self.land.shape[1])),self.land.shape)
indFi=[]
indFj=[]
for j in range(nj) :
for i in range(ni) :
indFi.append([i+1])
indFj.append([j+1])
#
# Define some grid variables.
#
self.res_lon = np.mean(np.gradient(self.lon_full, axis=1))
self.res_lat = np.mean(np.gradient(self.lat_full, axis=0))
self.nj,self.ni = self.lon_full.shape
#
# Gather all land points
#
self.nbland, self.coordll,self.neighbours,self.indP,indF = gatherland(self.lon_full,self.lat_full,self.land,ind,\
np.reshape(indFi[:],self.lon_full.shape),\
np.reshape(indFj[:],self.lon_full.shape))
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
INFO("Shape of region :"+str(ni)+" x "+str(nj)+" with nbland="+str(self.nbland))
if self.nbland < 1 or self.nbland > self.nj*self.ni :
INFO("Found impossible number of land points : "+str(self.nbland))
ERROR("Problem with number of land points")
sys.exit()
#
# Gather some of the variables from the full grid.
#
self.contfrac=self.landgather(self.land)
#
for ip in self.neighbours[0][:] :
if ip >= 0 :
DEBUG("Neighbour : "+str(ip)+" P index : "+str(self.indP[ip])+" F index : "+str(indF[ip][:]))
else :
DEBUG("Neighbour : "+str(ip)+" Not Land")
#
# Define projection
#
if griddesc['type'] == "RegXY" :
proj=PS.LambertC(griddesc['dx'], griddesc['known_lon'], griddesc['known_lat'], griddesc['truelat1'], griddesc['truelat2'], griddesc['stdlon'])
elif griddesc['type'] == "RegLonLat" :
proj=PS.RegLonLat(self.res_lon, self.res_lat, griddesc['inilon'], griddesc['inilat'])
else :
ERROR("Unknown grid type")
sys.exit()
#
# Get the bounds of the grid boxes and region.
#
self.polyll, self.polylist, self.area, self.box_land = corners(indF, proj, istart, jstart, self.lon_full, self.lat_full)
#
self.box=[[np.min(self.lon_full),np.max(self.lon_full)],[np.min(self.lat_full),np.max(self.lat_full)]]
#
geo.close()
#
# Function to scatter variables onto the full grid.
#
def landscatter(self, var, order='C') :
#

POLCHER Jan
committed
# Some arrays can be in FORTRAN convention and thus the dimension to be scattered is not the last but the first.
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#
dims = var.shape
transpose=False
if len(dims) == 1 :
if dims[0] == self.nbland :
newdims = (self.nj,self.ni)
else :
ERROR("The attempt to scatter cannot succeed as the last dimension is not the number of land points")
sys.exit()
else :
if order == 'C' :
if dims[-1] == self.nbland :
newdims = dims[:-1]+(self.nj,self.ni)
else :
ERROR("The attempt to scatter cannot succeed as the last dimension is not the number of land points")
sys.exit()
elif order == 'F' :
if dims[0] == self.nbland :
transpose = True
newdims = (dims[::-1])[:-1]+(self.nj,self.ni)
else :
ERROR("The attempt to scatter cannot succeed as the last dimension is not the number of land points")
sys.exit()
#
# Actual work
#
varscat = np.zeros(newdims, dtype=var.dtype)
if len(dims) == 1 :
if str(var.dtype).find('float') > -1 :
varscat[:,:] = RPP.FillValue
else :
varscat[:,:] = RPP.IntFillValue
for i in range(self.nbland) :
varscat[self.indP[i][0],self.indP[i][1]]=var[i]
elif len(dims) == 2 :
if str(var.dtype).find('float') > -1 :
varscat[:,:,:] = RPP.FillValue
else :
varscat[:,:,:] = RPP.IntFillValue
if transpose :
for i in range(self.nbland) :
varscat[:,self.indP[i][0],self.indP[i][1]]=np.transpose(var)[:,i]
else :
for i in range(self.nbland) :
varscat[:,self.indP[i][0],self.indP[i][1]]=var[:,i]
elif len(dims) == 3 :
if str(var.dtype).find('float') > -1 :
varscat[:,:,:,:] = RPP.FillValue
else :
varscat[:,:,:,:] = RPP.IntFillValue
if transpose :
for i in range(self.nbland) :
varscat[:,:,self.indP[i][0],self.indP[i][1]]=np.transpose(var)[:,:,i]
else :
for i in range(self.nbland) :
varscat[:,:,self.indP[i][0],self.indP[i][1]]=var[:,:,i]
elif len(dims) == 4 :
if str(var.dtype).find('float') > -1 :
varscat[:,:,:,:,:] = RPP.FillValue
else :
varscat[:,:,:,:,:] = RPP.IntFillValue
if transpose :
for i in range(self.nbland) :
varscat[:,:,:,self.indP[i][0],self.indP[i][1]]=np.transpose(var)[:,:,:,i]
else :
for i in range(self.nbland) :
varscat[:,:,:,self.indP[i][0],self.indP[i][1]]=var[:,:,:,i]
else :
ERROR("Unforessen rank of the variable to be scattered")
sys.exit()
return varscat
#
# Function to gather land points
#
def landgather(self, var) :
dims = var.shape
if dims[-1] == self.ni and dims[-2] == self.nj :
newdims = dims[:-2]+(self.nbland,)
else :
ERROR("The attempt to gather cannot succeed as the last dimensions do not correspond to the grid size")
sys.exit()
#
if len(dims) == 1 :
ERROR("Unforessen rank of the variable to be gathered")
sys.exit()
elif len(dims) == 2 :
vargat = np.zeros(newdims, dtype=var.dtype)
for i in range(self.nbland) :
vargat[i] = var[self.indP[i][0],self.indP[i][1]]
elif len(dims) == 3 :
vargat = np.zeros(newdims, dtype=var.dtype)
for i in range(self.nbland) :
vargat[:,i] = var[:,self.indP[i][0],self.indP[i][1]]
elif len(dims) == 4 :
vargat = np.zeros(newdims, dtype=var.dtype)
for i in range(self.nbland) :
vargat[:,:,i] = var[:,:,self.indP[i][0],self.indP[i][1]]
else :
ERROR("Gathering for this rank not yet possible")
sys.exit()
return vargat
#
# A class for extracting the basic information of the full grid
#
class GlobalGrid :
def __init__(self) :
lonrange=np.array(config.get("OverAll", "WEST_EAST").split(","),dtype=float)
latrange=np.array(config.get("OverAll", "SOUTH_NORTH").split(","),dtype=float)
filename=config.get("OverAll", "ModelGridFile")
INFO("Opening :"+filename)
geo=Dataset(filename,'r')
#
griddesc, lon_full, lat_full = getcoordinates(geo, 0, -1, 0, -1)
#
# Default behaviour if global is requested in the configuration file.
#
if np.abs(min(lonrange)) == np.abs(max(lonrange)) and np.abs(max(lonrange)-180) < epsilon and \
np.abs(min(latrange)) == np.abs(max(latrange)) and np.abs(max(latrange)-90) < epsilon :
self.nj, self.ni = lon_full.shape
self.jgstart = 0
self.igstart = 0
else :
dist=np.sqrt((lon_full-min(lonrange))**2 + (lat_full-min(latrange))**2)
jmin,imin=np.unravel_index(np.argmin(dist, axis=None), dist.shape)
dist=np.sqrt((lon_full-max(lonrange))**2 + (lat_full-max(latrange))**2)
jmax,imax=np.unravel_index(np.argmin(dist, axis=None), dist.shape)
self.nj = jmax-jmin+1
self.jgstart = jmin
self.ni = imax-imin+1
self.igstart = imin
print("Shape : ", lon_full.shape, "N = ", self.nj, self.ni, " Start :", self.jgstart, self.igstart)
self.land = getland(geo, self.igstart, self.ni, self.jgstart, self.nj)
self.nbland = int(np.sum(self.land))
#
geo.close()