Skip to content
Snippets Groups Projects
Commit 14d213b1 authored by POLCHER Jan's avatar POLCHER Jan :bicyclist_tone4:
Browse files

Added a __main__ to only compute the weight. Usefull for dealing with big problems.

parent e75d2113
No related branches found
No related tags found
No related merge requests found
......@@ -62,8 +62,6 @@ def adjustpart(partin, land, nbcore) :
addnbland(partin, land)
nbptproc=np.array([dom['nbi']*dom['nbj'] for dom in partin])
INFO("Nb of land points per proc : Mean = "+str(np.mean(nbptproc))+" Min = "+str(np.min(nbptproc))+\
" Max = "+str(np.max(nbptproc))+" Var :"+str((np.max(nbptproc)-np.min(nbptproc))/np.mean(nbptproc)*100)+"%")
if np.min(nbptproc) < 3 :
ERROR("The smallest domain in the partition is of a size less than 5. This will probably not work.")
sys.exit()
......@@ -71,7 +69,8 @@ def adjustpart(partin, land, nbcore) :
#
# Partition domain in two steps : 1) halving, 2) adjusting by nb land points
#
def partitiondom(nig, njg, land, nbcore) :
def partitiondom(land, nbcore, rank) :
njg,nig = land.shape
partout=[{"nbi":nig,"nbj":njg,"istart":0,"jstart":0, "nbland":int(np.sum(land))}]
while len(partout) <= nbcore/2 :
partout = halfpartition(partout)
......@@ -79,14 +78,96 @@ def partitiondom(nig, njg, land, nbcore) :
#
adjustpart(partout, land, nbcore)
#
gindland=np.zeros((njg,nig), dtype=np.int32)
gindland[:,:]=-1
n=0
for i in range(nig) :
for j in range(njg) :
if (land[j,i] > 0 ) :
gindland[j,i] = n
n += 1
#
for ic in range(len(partout)) :
istart = partout[ic]["istart"]
nbi = partout[ic]["nbi"]
jstart = partout[ic]["jstart"]
nbj = partout[ic]["nbj"]
locgind=np.copy(gindland[jstart:jstart+nbj,istart:istart+nbi])
loccore=np.copy(gindland[jstart:jstart+nbj,istart:istart+nbi])
loccore[loccore >= 0] = ic
partout[ic]["glandindex"] = locgind
partout[ic]["corenb"] = loccore
partout[ic]["nblocland"] = np.count_nonzero(locgind >= 0)
#
return partout
#
# Build global map of processors
#
def buildprocmap(nig, njg, part) :
procmap=np.zeros((njg,nig), dtype=np.int8)
procmap[:,:] = -1
for i in range(len(partout)) :
for ij in range(partout[i]["nbj"]) :
for ii in range(partout[i]["nbi"]) :
procmap[ij+partout[i]["jstart"],ii+partout[i]["istart"]] = i
return partout, procmap
for i in range(len(part)) :
for ij in range(part[i]["nbj"]) :
for ii in range(part[i]["nbi"]) :
procmap[ij+part[i]["jstart"],ii+part[i]["istart"]] = i
#
return procmap
#
# Partion of only land points in the case where we do not need halos
#
def landpartition(land, nbcore, rank) :
nbland = np.count_nonzero(land > 0)
optland = int(nbland/nbcore)+(nbland%nbcore > 0)
print("RANK",rank,"Nbland = ", np.count_nonzero(land > 0), " nbcore = ", nbcore, " optland = ",optland)
#
distppc=np.zeros(nbcore)
distppc[:]=0
for i in range(nbcore-1) :
ptsleft = int(nbland-np.sum(distppc[0:i]))
crsleft = nbcore-i
if ptsleft > optland and ptsleft/2 > crsleft :
distppc[i] = optland
else :
print("On proc ", i," Still have ", ptsleft, " points to distribute and ", crsleft, " cores")
distppc[i] = int(ptsleft/crsleft)
#
distppc[-1]=nbland-np.sum(distppc[0:-1])
print("Distpcc :", distppc)
#
njg,nig=land.shape
gindland=np.zeros((njg,nig), dtype=np.int32)
gindland[:,:]=-1
glandcore=np.zeros((njg,nig), dtype=np.int32)
glandcore[:,:]=-1
n=0
for i in range(nig) :
for j in range(njg) :
if (land[j,i] > 0 ) :
gindland[j,i] = n
cc = np.argmax(distppc > 0)
glandcore[j,i] = cc
distppc[cc] = distppc[cc]-1
n += 1
#
# Decompose domain according to land point positions
#
partout=[]
for ic in range(nbcore) :
ff = np.nonzero(glandcore == ic)
# Region is at least 3x3
nbi=max(max(ff[1])-min(ff[1])+1, 3)
nbj=max(max(ff[0])-min(ff[0])+1, 3)
istart=min(min(ff[1]),nig-nbi)
jstart=min(min(ff[0]),njg-nbj)
#
loccore=np.copy(glandcore[jstart:jstart+nbj,istart:istart+nbi])
loccore[loccore != ic] = -1
locgind=np.copy(gindland[jstart:jstart+nbj,istart:istart+nbi])
locgind[loccore < 0] = -1
partout.append({"nbi":nbi, "nbj":nbj, "istart":istart, "jstart":jstart, "nbland":ff[0].shape[0], \
"corenb":loccore, "glandindex":locgind, "nblocland":np.count_nonzero(locgind >= 0)})
#
return partout
#
# Add halo to the partition
#
......@@ -217,9 +298,6 @@ def toland_index(x,landmap) :
#
class partition :
def __init__ (self, nig, njg, land, mpicomm, nbcore, halosz, rank, wunit="None") :
#
part, procmap = partitiondom(nig, njg, land, nbcore)
halosource_map, innersend_map = addhalo(nig, njg, part, procmap, halosz)
#
# Self varibales
#
......@@ -231,12 +309,27 @@ class partition :
self.nig = nig
self.njg = njg
self.nblandg = np.count_nonzero(land > 0)
#
part = partitiondom(land, nbcore, rank)
procmap = buildprocmap(nig, njg, part)
# To be activated when halosz = 0 and we can deal with single point domain grids.
#
# part = landpartition(land, nbcore, rank)
# procmap = buildprocmap(nig, njg, part)
#
halosource_map, innersend_map = addhalo(nig, njg, part, procmap, halosz)
#
INFO(" Nb of land points on proc "+str(rank)+" = "+str(part[rank]["nblocland"])+" from "+str(self.nblandg)+\
" -- "+"%.2f"%(part[rank]["nblocland"]/self.nblandg*100)+"% of total.")
#
self.allistart = []
self.alljstart = []
for i in range(self.size) :
self.allistart.append(part[i]["istart"])
self.alljstart.append(part[i]["jstart"])
# Local info
#
# Information of domain on local processor
#
self.ni = part[rank]["nbi"]
self.nj = part[rank]["nbj"]
self.istart = part[rank]["istart"]
......
......@@ -27,7 +27,6 @@ import ModelGrid as MG
import Partition as PA
import RPPtools as RPP
import HydroGrid as HG
import diagplots as DP
import Interface as IF
from Truncate import trunc as TR
#
......
#
#
#
import numpy as np
import os, sys
from mpi4py import MPI
import gc
#
import matplotlib as mpl
mpl.use('Agg')
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
import time
#
# Gert the information from the configuration file.
#
import configparser
config=configparser.ConfigParser()
config.read("run.def")
nbasmax=config.getint("OverAll", "nbasmax")
numop=config.getint("OverAll", "numop", fallback=100)
OutGraphFile=config.get("OverAll","GraphFile")
DumpHydroSuper=config.getboolean("OverAll","DumpHydroSuper",fallback=False)
wfile=config.get("OverAll","WeightFile",fallback="Weights.nc")
#
import ModelGrid as MG
import Partition as PA
import RPPtools as RPP
import HydroGrid as HG
#
# Logging in MPI : https://groups.google.com/forum/#!topic/mpi4py/SaNzc8bdj6U
#
import getargs
log_master, log_world = getargs.getLogger()
INFO, DEBUG, ERROR = log_master.info, log_master.debug, log_world.error
INFO_ALL, DEBUG_ALL = log_world.info, log_world.debug
#
# Read full grid and partition the domain.
#
gg = MG.GlobalGrid()
#
comm = MPI.COMM_WORLD
szhalo=0
nbcore=comm.Get_size()
rank=comm.Get_rank()
#
# Region of grid to be treated
#
part = PA.partition(gg.ni, gg.nj, gg.land, comm, nbcore, szhalo, rank)
#
modelgrid=MG.ModelGrid(part.ihstart+gg.igstart,part.nih,part.jhstart+gg.jgstart,part.njh)
INFO("Longitude interval on proc "+str(rank)+" = "+str(modelgrid.box_land[0][0])+" : "+str(modelgrid.box_land[0][1]))
INFO("Latitude interval on proc "+str(rank)+" = "+str(modelgrid.box_land[1][0])+" : "+str(modelgrid.box_land[1][1]))
#
hydrogrid=HG.HydroGrid(modelgrid.box_land)
#
# Computes weights of overlap of modelgrid and hydrogrid
#
w = RPP.compweights(wfile, part, modelgrid, hydrogrid)
#
#
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment