Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
nptool
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
np
nptool
Commits
e4a44e98
Commit
e4a44e98
authored
11 years ago
by
matta
Browse files
Options
Downloads
Patches
Plain Diff
* Adding missing file for Tigress
parent
fd2bb3f7
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
NPSimulation/include/Tigress.hh
+174
-0
174 additions, 0 deletions
NPSimulation/include/Tigress.hh
NPSimulation/src/Tigress.cc
+998
-0
998 additions, 0 deletions
NPSimulation/src/Tigress.cc
with
1172 additions
and
0 deletions
NPSimulation/include/Tigress.hh
0 → 100644
+
174
−
0
View file @
e4a44e98
#ifndef Tigress_h
#define Tigress_h 1
/*****************************************************************************
* Copyright (C) 2009-2013 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Adrien MATTA contact address: a.matta@surrey.ac.uk *
* *
* Creation Date : November 2012 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class describe the Tigress Silicon detector *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
*****************************************************************************/
// C++ header
#include
<string>
#include
<vector>
// G4 header defining G4 types
#include
"globals.hh"
// G4 headers
#include
"G4ThreeVector.hh"
#include
"G4RotationMatrix.hh"
#include
"G4LogicalVolume.hh"
#include
"G4VisAttributes.hh"
#include
"G4VSolid.hh"
// NPSimulation header
#include
"VDetector.hh"
// NPLib
#include
"TTigressData.h"
using
namespace
std
;
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
namespace
TIGRESS
{
// Energy and time Resolution
const
G4double
ResoTime
=
0
;
const
G4double
ResoEnergy
=
0.035
*
MeV
;
// = zzkeV of Resolution // Unit is MeV/2.35
const
G4double
EnergyThreshold
=
0.4
*
MeV
;
}
using
namespace
TIGRESS
;
class
Tigress
:
public
VDetector
{
////////////////////////////////////////////////////
/////// Default Constructor and Destructor /////////
////////////////////////////////////////////////////
public:
Tigress
()
;
~
Tigress
()
;
////////////////////////////////////////////////////
//////// Specific Function of this Class ///////////
////////////////////////////////////////////////////
public:
// Add clover at the standard position of the array
// Take as argument the standard clover Id.
void
AddCloverStandard
(
vector
<
int
>
CloverId
);
// Add clover at a free position in space with coordinate
// in spherical coordinate
// Beta are the three angles of rotation in the Clover frame
void
AddCloverFreePosition
(
int
CloverId
,
double
R
,
double
Theta
,
double
Phi
,
double
BetaX
,
double
BetaY
,
double
BetaZ
);
// Return a clover in the configuration given by option (not use a the moment)
void
ConstructClover
(
string
option
);
// Return a G4VSolid modeling the Crystal
G4VSolid
*
ConstructCrystal
();
// Return a G4VSolid modeling the Capsule
G4VSolid
*
ConstructCapsule
();
// Return a G4VSolid modeling the BGO
G4VSolid
*
ConstructBGO
();
////////////////////////////////////////////////////
///////// Inherite from VDetector class ///////////
////////////////////////////////////////////////////
public:
// Read stream at Configfile to pick-up parameters of detector (Position,...)
// Called in DetecorConstruction::ReadDetextorConfiguration Method
void
ReadConfiguration
(
string
Path
)
;
// Construct detector and inialise sensitive part.
// Called After DetecorConstruction::AddDetector Method
void
ConstructDetector
(
G4LogicalVolume
*
world
)
;
// Add Detector branch to the EventTree.
// Called After DetecorConstruction::AddDetector Method
void
InitializeRootOutput
()
;
// Read sensitive part and fill the Root tree.
// Called at in the EventAction::EndOfEventAvtion
void
ReadSensitive
(
const
G4Event
*
event
)
;
////////////////////////////////////////////////////
///////////Event class to store Data////////////////
////////////////////////////////////////////////////
private:
TTigressData
*
m_Event
;
////////////////////////////////////////////////////
///////////////// Scorer Related ///////////////////
////////////////////////////////////////////////////
private:
// Geometry related
G4LogicalVolume
*
m_LogicClover
;
// Initialize all Scorer
void
InitializeScorers
()
;
// Scorer Associate to the Silicon
G4MultiFunctionalDetector
*
m_GermaniumScorer
;
G4MultiFunctionalDetector
*
m_BGOScorer
;
private:
// Initialize material used in detector definition
void
InitializeMaterial
();
// List of material
G4Material
*
m_MaterialSilicon
;
G4Material
*
m_MaterialAl
;
G4Material
*
m_MaterialVacuum
;
G4Material
*
m_MaterialPCB
;
////////////////////////////////////////////////////
///////////////Private intern Data//////////////////
////////////////////////////////////////////////////
private:
// Clover Position
vector
<
int
>
m_CloverId
;
vector
<
double
>
m_R
;
vector
<
double
>
m_Theta
;
vector
<
double
>
m_Phi
;
vector
<
double
>
m_BetaX
;
vector
<
double
>
m_BetaY
;
vector
<
double
>
m_BetaZ
;
// Frame: true if the frame is to be done
bool
m_LeftFrame
;
bool
m_RightFrame
;
// Set to true if you want to see Telescope Frame in your visualisation
bool
m_non_sensitive_part_visiualisation
;
private:
/// Visualisation Attribute:
G4VisAttributes
*
BlueVisAtt
;
G4VisAttributes
*
GreenVisAtt
;
G4VisAttributes
*
RedVisAtt
;
G4VisAttributes
*
WhiteVisAtt
;
G4VisAttributes
*
TrGreyVisAtt
;
};
#endif
This diff is collapsed.
Click to expand it.
NPSimulation/src/Tigress.cc
0 → 100644
+
998
−
0
View file @
e4a44e98
/*****************************************************************************
* Copyright (C) 2009-2013 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Adrien MATTA contact address: matta@ipno.in2p3.fr *
* *
* Creation Date : November 2012 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class describe the Tigress Silicon array *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
*****************************************************************************/
// C++ headers
#include
<sstream>
#include
<cmath>
#include
<limits>
//G4 Geometry object
#include
"G4Box.hh"
#include
"G4Tubs.hh"
#include
"G4Trd.hh"
#include
"G4Trap.hh"
#include
"G4Cons.hh"
//G4 sensitive
#include
"G4SDManager.hh"
#include
"G4MultiFunctionalDetector.hh"
//G4 various object
#include
"G4Material.hh"
#include
"G4Polycone.hh"
#include
"G4Polyhedra.hh"
#include
"G4LogicalVolume.hh"
#include
"G4ThreeVector.hh"
#include
"G4Transform3D.hh"
#include
"G4RotationMatrix.hh"
#include
"G4PVPlacement.hh"
#include
"G4VisAttributes.hh"
#include
"G4Colour.hh"
#include
"G4RunManager.hh"
#include
"G4ios.hh"
#include
"G4SubtractionSolid.hh"
#include
"G4UnionSolid.hh"
#include
"G4ThreeVector.hh"
// NPS
#include
"Tigress.hh"
//#include "TigressScorers.hh"
// NPL
#include
"NPOptionManager.h"
//#include "TigressScorers.hh"
#include
"RootOutput.h"
using
namespace
TIGRESS
;
// CLHEP header
#include
"CLHEP/Random/RandGauss.h"
using
namespace
std
;
using
namespace
CLHEP
;
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
namespace
{
const
G4double
CrystalOuterRadius
=
30.0
*
mm
;
// outer radius for crystal
const
G4double
CrystalInnerRadius
=
5.0
*
mm
;
// inner radius for hole in crystal
const
G4double
CrystalLength
=
90.0
*
mm
;
// crystal length
const
G4double
CrystalHoleDepth
=
15.0
*
mm
;
// depth at which starts the hole
const
G4double
CrystalEdgeOffset1
=
26.0
*
mm
;
// distance of the edge from the center of the crystal
const
G4double
CrystalEdgeOffset2
=
28.5
*
mm
;
// distance of the edge from the center of the crystal
const
G4double
CrystalEdgeDepth
=
30.0
*
mm
;
// depth to which the crystal is shaped
const
G4double
CrystalEdgeAngle
=
22.5
*
deg
;
// bevel angle
const
G4double
CapsuleWidth
=
1.5
*
mm
;
// capsule width
const
G4double
CapsuleLength
=
110.
*
mm
;
// capsule length
const
G4double
CapsuleEdgeDepth
=
3.3
*
cm
;
// same as crystal !
const
G4double
CrystalToCapsule
=
3.5
*
mm
;
// to be adjusted ..
const
G4double
BGOLength
=
120.0
*
mm
;
const
G4double
BGOWidth
=
25.0
*
mm
;
const
G4double
CsILength
=
20.0
*
mm
;
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Tigress Specific Method
Tigress
::
Tigress
(){
InitializeMaterial
();
m_Event
=
new
TTigressData
();
BlueVisAtt
=
new
G4VisAttributes
(
G4Colour
(
0
,
0
,
1
))
;
GreenVisAtt
=
new
G4VisAttributes
(
G4Colour
(
0
,
1
,
0
))
;
RedVisAtt
=
new
G4VisAttributes
(
G4Colour
(
1
,
0
,
0
))
;
WhiteVisAtt
=
new
G4VisAttributes
(
G4Colour
(
1
,
1
,
1
))
;
TrGreyVisAtt
=
new
G4VisAttributes
(
G4Colour
(
0.5
,
0.5
,
0.5
,
0.5
))
;
m_LogicClover
=
0
;
}
Tigress
::~
Tigress
(){
delete
m_MaterialSilicon
;
delete
m_MaterialAl
;
delete
m_MaterialVacuum
;
delete
m_MaterialPCB
;
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Virtual Method of VDetector class
// Read stream at Configfile to pick-up parameters of detector (Position,...)
// Called in DetecorConstruction::ReadDetextorConfiguration Method
void
Tigress
::
ReadConfiguration
(
string
Path
){
ifstream
ConfigFile
;
ConfigFile
.
open
(
Path
.
c_str
())
;
string
LineBuffer
;
string
DataBuffer
;
istringstream
LineStream
;
// Standard Case:
bool
check_CloverId
=
false
;
vector
<
int
>
CloverId
;
int
CloverId_Free
;
double
R
;
double
Theta
;
double
Phi
;
double
BetaX
;
double
BetaY
;
double
BetaZ
;
// Free postion case:
bool
check_R
=
false
;
bool
check_Theta
=
false
;
bool
check_Phi
=
false
;
bool
check_Beta
=
false
;
// Frame Case
bool
check_RightFrame
=
false
;
bool
check_LeftFrame
=
false
;
bool
ReadingStatusStandard
=
false
;
bool
ReadingStatusFree
=
false
;
bool
ReadingStatusFrame
=
false
;
bool
ReadingStatus
=
false
;
while
(
!
ConfigFile
.
eof
()){
int
VerboseLevel
=
NPOptionManager
::
getInstance
()
->
GetVerboseLevel
();
getline
(
ConfigFile
,
LineBuffer
);
if
(
LineBuffer
.
compare
(
0
,
7
,
"Tigress"
)
==
0
)
ReadingStatus
=
true
;
while
(
ReadingStatus
&&
!
ConfigFile
.
eof
())
{
getline
(
ConfigFile
,
LineBuffer
);
// Comment Line
while
(
LineBuffer
.
compare
(
0
,
1
,
"%"
)
==
0
)
{
// Take the next line
getline
(
ConfigFile
,
LineBuffer
);
}
// Standard case
if
(
LineBuffer
.
compare
(
0
,
15
,
"TigressStandard"
)
==
0
){
if
(
VerboseLevel
==
1
)
G4cout
<<
"/// Clovers in Standard Configuration : ///"
<<
G4endl
;
ReadingStatusStandard
=
true
;
}
// Free placing case
else
if
(
LineBuffer
.
compare
(
0
,
13
,
"TigressClover"
)
==
0
){
if
(
VerboseLevel
==
1
)
G4cout
<<
"/// Free placed clover : ///"
<<
G4endl
;
ReadingStatusFree
=
true
;
}
// Frame case
else
if
(
LineBuffer
.
compare
(
0
,
12
,
"TigressFrame"
)
==
0
){
if
(
VerboseLevel
==
1
)
G4cout
<<
"/// Support Frame : ///"
<<
G4endl
;
ReadingStatusFrame
=
true
;
}
// Reading Block
while
(
ReadingStatusStandard
){
// Pickup Next Line
getline
(
ConfigFile
,
LineBuffer
);
// Comment Line
while
(
LineBuffer
.
compare
(
0
,
1
,
"%"
)
==
0
)
{
// Take the next line
getline
(
ConfigFile
,
LineBuffer
);
}
LineStream
.
clear
();
LineStream
.
str
(
LineBuffer
);
LineStream
>>
DataBuffer
;
if
(
DataBuffer
==
"CloverId="
)
{
check_CloverId
=
true
;
if
(
VerboseLevel
==
1
)
cout
<<
"CloverId: "
;
while
(
LineStream
>>
DataBuffer
){
CloverId
.
push_back
(
atoi
(
DataBuffer
.
c_str
()));
if
(
VerboseLevel
==
1
)
G4cout
<<
atoi
(
DataBuffer
.
c_str
())
<<
" "
;
}
if
(
VerboseLevel
==
1
)
G4cout
<<
G4endl
<<
G4endl
;
}
///////////////////////////////////////////////////
// If no Detector Token and no comment, toggle out
else
{
ReadingStatusStandard
=
false
;
G4cout
<<
"Error: Wrong Token Sequence: Getting out "
<<
DataBuffer
<<
G4endl
;
exit
(
1
);
}
/////////////////////////////////////////////////
// If All necessary information there, toggle out
if
(
check_CloverId
){
ReadingStatusStandard
=
false
;
AddCloverStandard
(
CloverId
);
CloverId
.
clear
();
check_CloverId
=
false
;
}
}
// Reading Block
while
(
ReadingStatusFree
){
// Pickup Next Line
getline
(
ConfigFile
,
LineBuffer
);
// Comment Line
while
(
LineBuffer
.
compare
(
0
,
1
,
"%"
)
==
0
)
{
// Take the next line
getline
(
ConfigFile
,
LineBuffer
);
}
LineStream
.
clear
();
LineStream
.
str
(
LineBuffer
);
LineStream
>>
DataBuffer
;
if
(
DataBuffer
==
"CloverId="
)
{
check_CloverId
=
true
;
LineStream
>>
DataBuffer
;
CloverId_Free
=
atoi
(
DataBuffer
.
c_str
());
if
(
VerboseLevel
==
1
)
cout
<<
"CloverId: "
<<
atoi
(
DataBuffer
.
c_str
())
<<
" "
<<
endl
;
}
else
if
(
DataBuffer
==
"R="
)
{
check_R
=
true
;
LineStream
>>
DataBuffer
;
R
=
atof
(
DataBuffer
.
c_str
())
*
mm
;
if
(
VerboseLevel
==
1
)
cout
<<
"R: "
<<
R
/
mm
<<
" "
<<
endl
;
}
else
if
(
DataBuffer
==
"Theta="
)
{
check_Theta
=
true
;
LineStream
>>
DataBuffer
;
Theta
=
atof
(
DataBuffer
.
c_str
())
*
deg
;
if
(
VerboseLevel
==
1
)
cout
<<
"Theta: "
<<
Theta
/
deg
<<
" "
<<
endl
;
}
else
if
(
DataBuffer
==
"Phi="
)
{
check_Phi
=
true
;
LineStream
>>
DataBuffer
;
Phi
=
atof
(
DataBuffer
.
c_str
())
*
deg
;
if
(
VerboseLevel
==
1
)
cout
<<
"Phi: "
<<
Phi
/
deg
<<
" "
<<
endl
;
}
else
if
(
DataBuffer
==
"Beta="
)
{
check_Beta
=
true
;
LineStream
>>
DataBuffer
;
BetaX
=
atof
(
DataBuffer
.
c_str
())
*
deg
;
if
(
VerboseLevel
==
1
)
cout
<<
"BetaX: "
<<
BetaX
/
deg
<<
" "
<<
endl
;
LineStream
>>
DataBuffer
;
BetaY
=
atof
(
DataBuffer
.
c_str
())
*
deg
;
if
(
VerboseLevel
==
1
)
cout
<<
"BetaY: "
<<
BetaY
/
deg
<<
" "
<<
endl
;
LineStream
>>
DataBuffer
;
BetaZ
=
atof
(
DataBuffer
.
c_str
())
*
deg
;
if
(
VerboseLevel
==
1
)
cout
<<
"BetaZ: "
<<
BetaZ
/
deg
<<
" "
<<
endl
;
}
///////////////////////////////////////////////////
// If no Detector Token and no comment, toggle out
else
{
ReadingStatusStandard
=
false
;
G4cout
<<
"Error: Wrong Token Sequence: Getting out "
<<
DataBuffer
<<
G4endl
;
exit
(
1
);
}
/////////////////////////////////////////////////
// If All necessary information there, toggle out
if
(
check_CloverId
&&
check_R
&&
check_Theta
&&
check_Phi
&&
check_Beta
){
ReadingStatusFree
=
false
;
AddCloverFreePosition
(
CloverId_Free
,
R
,
Theta
,
Phi
,
BetaX
,
BetaY
,
BetaZ
);
check_CloverId
=
false
;
check_R
=
false
;
check_Theta
=
false
;
check_Phi
=
false
;
check_Beta
=
false
;
}
}
// Reading Block
while
(
ReadingStatusFrame
){
// Pickup Next Line
getline
(
ConfigFile
,
LineBuffer
);
// Comment Line
while
(
LineBuffer
.
compare
(
0
,
1
,
"%"
)
==
0
)
{
// Take the next line
getline
(
ConfigFile
,
LineBuffer
);
}
LineStream
.
clear
();
LineStream
.
str
(
LineBuffer
);
LineStream
>>
DataBuffer
;
if
(
DataBuffer
==
"RightFrame="
)
{
check_RightFrame
=
true
;
LineStream
>>
DataBuffer
;
m_RightFrame
=
atoi
(
DataBuffer
.
c_str
());
if
(
VerboseLevel
==
1
)
if
(
m_RightFrame
)
cout
<<
"Right frame: yes"
<<
endl
;
else
cout
<<
"Right frame: no"
<<
endl
;
}
else
if
(
DataBuffer
==
"LeftFrame="
)
{
check_LeftFrame
=
true
;
LineStream
>>
DataBuffer
;
m_LeftFrame
=
atoi
(
DataBuffer
.
c_str
());
if
(
VerboseLevel
==
1
)
if
(
m_LeftFrame
)
cout
<<
"Left frame: yes"
<<
endl
;
else
cout
<<
"Left frame: no"
<<
endl
;
}
///////////////////////////////////////////////////
// If no Detector Token and no comment, toggle out
else
{
ReadingStatusStandard
=
false
;
G4cout
<<
"Error: Wrong Token Sequence: Getting out "
<<
DataBuffer
<<
G4endl
;
exit
(
1
);
}
/////////////////////////////////////////////////
// If All necessary information there, toggle out
if
(
check_RightFrame
&&
check_LeftFrame
){
ReadingStatusFrame
=
false
;
AddCloverStandard
(
CloverId
);
CloverId
.
clear
();
check_RightFrame
=
false
;
check_LeftFrame
=
false
;
}
}
}
}
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Return a G4VSolid modeling the Crystal
G4VSolid
*
Tigress
::
ConstructCrystal
(){
// Copy Past form Exogam collaboration
char
sName
[
40
];
// generic for named objects
// define a coaxial shape that will be modify with SubstractSolid
G4int
nbslice
=
4
;
G4double
zSliceGe
[
4
]
=
{
0.0
*
mm
,
CrystalHoleDepth
,
CrystalHoleDepth
+
3.0
*
mm
,
CrystalLength
};
// depth where is the hole
G4double
InnRadGe
[
4
]
=
{
0.0
*
mm
,
0.0
*
mm
,
CrystalInnerRadius
,
CrystalInnerRadius
};
// to define the hole in the crystal
G4double
OutRadGe
[
4
]
=
{
CrystalOuterRadius
,
CrystalOuterRadius
,
CrystalOuterRadius
,
CrystalOuterRadius
};
// to define the external surface
G4double
Edge
[
3
];
sprintf
(
sName
,
"coax"
);
G4Polycone
*
coax
=
new
G4Polycone
(
G4String
(
sName
),
0.
*
deg
,
360.
*
deg
,
nbslice
,
zSliceGe
,
InnRadGe
,
OutRadGe
);
// substract boxes to remove maters.
G4RotationMatrix
rm
;
// rm.SetName(G4String("RotationEdge"));
// box definition to remove some matter to the crystal
sprintf
(
sName
,
"LongEdge1"
);
Edge
[
0
]
=
(
CrystalOuterRadius
-
CrystalEdgeOffset1
);
// x half-width
Edge
[
1
]
=
1.001
*
CrystalOuterRadius
;
// y half-width
Edge
[
2
]
=
1.001
*
CrystalLength
/
2.0
;
// z half-width
G4Box
*
cutEdge1
=
new
G4Box
(
G4String
(
sName
),
Edge
[
0
],
Edge
[
1
],
Edge
[
2
]);
sprintf
(
sName
,
"LongEdge2"
);
Edge
[
0
]
=
(
CrystalOuterRadius
-
CrystalEdgeOffset2
);
// x half-width
Edge
[
1
]
=
1.001
*
CrystalOuterRadius
;
// y half-width
Edge
[
2
]
=
1.001
*
CrystalLength
/
2.0
;
// z half-width
G4Box
*
cutEdge2
=
new
G4Box
(
G4String
(
sName
),
Edge
[
0
],
Edge
[
1
],
Edge
[
2
]);
sprintf
(
sName
,
"Bevel"
);
Edge
[
0
]
=
1.001
*
CrystalOuterRadius
;
Edge
[
1
]
=
sin
(
CrystalEdgeAngle
)
*
(
CrystalEdgeDepth
);
Edge
[
2
]
=
1.001
*
CrystalLength
/
2.0
;
G4Box
*
cutBevel
=
new
G4Box
(
G4String
(
sName
),
Edge
[
0
],
Edge
[
1
],
Edge
[
2
]);
// now remove previously defined box from coax. The box must be placed correctly before
// since the box definition goes from negative to positive values.
sprintf
(
sName
,
"coax_cut1_edge"
);
G4SubtractionSolid
*
coax_cut1
=
new
G4SubtractionSolid
(
G4String
(
sName
),
coax
,
cutEdge1
,
&
rm
,
G4ThreeVector
(
-
CrystalOuterRadius
,
0.0
,
CrystalLength
/
2.0
));
sprintf
(
sName
,
"coax_cut2_edge"
);
G4SubtractionSolid
*
coax_cut2
=
new
G4SubtractionSolid
(
G4String
(
sName
),
coax_cut1
,
cutEdge2
,
&
rm
,
G4ThreeVector
(
CrystalOuterRadius
,
0.0
,
CrystalLength
/
2.0
));
sprintf
(
sName
,
"coax_cut3_edge"
);
rm
.
rotateZ
(
90.0
*
deg
);
G4SubtractionSolid
*
coax_cut3
=
new
G4SubtractionSolid
(
G4String
(
sName
),
coax_cut2
,
cutEdge2
,
&
rm
,
G4ThreeVector
(
0.0
,
CrystalOuterRadius
,
CrystalLength
/
2.0
));
sprintf
(
sName
,
"coax_cut4_edge"
);
G4SubtractionSolid
*
coax_cut4
=
new
G4SubtractionSolid
(
G4String
(
sName
),
coax_cut3
,
cutEdge1
,
&
rm
,
G4ThreeVector
(
0.0
,
-
CrystalOuterRadius
,
CrystalLength
/
2.0
));
rm
.
rotateZ
(
-
90.0
*
deg
);
sprintf
(
sName
,
"coax_cut5_edge"
);
rm
.
rotateX
(
CrystalEdgeAngle
);
G4SubtractionSolid
*
coax_cut5
=
new
G4SubtractionSolid
(
G4String
(
sName
),
coax_cut4
,
cutBevel
,
&
rm
,
G4ThreeVector
(
0.
,
CrystalEdgeOffset2
,
0.
));
rm
.
rotateX
(
-
CrystalEdgeAngle
);
sprintf
(
sName
,
"coax_cut6_edge"
);
rm
.
rotateZ
(
90.0
*
deg
);
rm
.
rotateX
(
CrystalEdgeAngle
);
G4SubtractionSolid
*
coax_cut6
=
new
G4SubtractionSolid
(
G4String
(
sName
),
coax_cut5
,
cutBevel
,
&
rm
,
G4ThreeVector
(
CrystalEdgeOffset2
,
0.
,
0.
));
rm
.
rotateX
(
-
CrystalEdgeAngle
);
rm
.
rotateZ
(
-
90.0
*
deg
);
return
coax_cut6
;
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Return a G4VSolid modeling the Capsule
G4VSolid
*
Tigress
::
ConstructCapsule
(){
G4int
nbslice
=
7
;
const
G4double
widthface
=
45.5
*
mm
;
G4double
zSlice
[
7
]
=
{
0.0
*
mm
,
CapsuleWidth
-
0.1
*
mm
,
CapsuleWidth
,
CapsuleEdgeDepth
,
CapsuleLength
-
CapsuleWidth
,
CapsuleLength
-
CapsuleWidth
-
0.1
*
mm
,
CapsuleLength
};
G4double
InnRad
[
7
]
=
{
0.0
*
mm
,
0.0
*
mm
,
widthface
-
CapsuleWidth
,
CrystalEdgeOffset1
+
CrystalEdgeOffset2
+
CrystalToCapsule
-
CapsuleWidth
,
CrystalEdgeOffset1
+
CrystalEdgeOffset2
+
CrystalToCapsule
-
CapsuleWidth
,
0.0
*
mm
,
0.0
*
mm
};
G4double
OutRad
[
7
]
=
{
widthface
-
1.5
*
mm
,
widthface
,
widthface
,
CrystalEdgeOffset1
+
CrystalEdgeOffset2
+
CrystalToCapsule
,
CrystalEdgeOffset1
+
CrystalEdgeOffset2
+
CrystalToCapsule
,
CrystalEdgeOffset1
+
CrystalEdgeOffset2
+
CrystalToCapsule
,
CrystalEdgeOffset1
+
CrystalEdgeOffset2
+
CrystalToCapsule
};
G4Polyhedra
*
caps
=
new
G4Polyhedra
(
G4String
(
"Capsule"
),
0.
*
deg
,
360.
*
deg
,
4
,
nbslice
,
zSlice
,
InnRad
,
OutRad
);
return
caps
;
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Return a G4VSolid modeling the BGO
G4VSolid
*
Tigress
::
ConstructBGO
(){
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Return a clover in the configuration given by option (not use a the moment)
void
Tigress
::
ConstructClover
(
string
){
if
(
m_LogicClover
==
0
){
// Construct the clover itself
G4VSolid
*
Capsule
=
ConstructCapsule
();
// Place the cristal in the clover
G4ThreeVector
CrystalPosition
=
G4ThreeVector
(
+
113.6
*
0.5
*
0.5
*
mm
,
+
113.6
*
0.5
*
0.5
*
mm
,
0
);
G4VSolid
*
CrystalB
=
ConstructCrystal
();
m_LogicClover
=
new
G4LogicalVolume
(
Capsule
,
m_MaterialVacuum
,
"LogicCloverCase"
,
0
,
0
,
0
);
G4LogicalVolume
*
logicCrystalB
=
new
G4LogicalVolume
(
CrystalB
,
m_MaterialVacuum
,
"LogicCrystalB"
,
0
,
0
,
0
);
G4LogicalVolume
*
logicCrystalG
=
new
G4LogicalVolume
(
CrystalB
,
m_MaterialVacuum
,
"LogicCrystalG"
,
0
,
0
,
0
);
G4LogicalVolume
*
logicCrystalR
=
new
G4LogicalVolume
(
CrystalB
,
m_MaterialVacuum
,
"LogicCrystalR"
,
0
,
0
,
0
);
G4LogicalVolume
*
logicCrystalW
=
new
G4LogicalVolume
(
CrystalB
,
m_MaterialVacuum
,
"LogicCrystalW"
,
0
,
0
,
0
);
G4RotationMatrix
*
CrystalRotation
=
new
G4RotationMatrix
(
0
,
0
,
0
);
CrystalPosition
=
G4ThreeVector
(
+
113.6
*
0.5
*
0.5
*
mm
,
+
113.6
*
0.5
*
0.5
*
mm
,
0
);
new
G4PVPlacement
(
G4Transform3D
(
*
CrystalRotation
,
CrystalPosition
),
logicCrystalB
,
"LogicCrystalB"
,
m_LogicClover
,
false
,
m_CloverId
[
0
]);
logicCrystalB
->
SetVisAttributes
(
BlueVisAtt
);
CrystalRotation
->
rotate
(
-
180
*
deg
,
G4ThreeVector
(
0
,
0
,
1
));
CrystalPosition
=
G4ThreeVector
(
+
113.6
*
0.5
*
0.5
*
mm
,
-
113.6
*
0.5
*
0.5
*
mm
,
0
);
new
G4PVPlacement
(
G4Transform3D
(
*
CrystalRotation
,
CrystalPosition
),
logicCrystalG
,
"LogicCrystalG"
,
m_LogicClover
,
false
,
m_CloverId
[
0
]);
logicCrystalG
->
SetVisAttributes
(
GreenVisAtt
);
CrystalRotation
->
rotate
(
-
180
*
deg
,
G4ThreeVector
(
0
,
0
,
1
));
CrystalPosition
=
G4ThreeVector
(
-
113.6
*
0.5
*
0.5
*
mm
,
-
113.6
*
0.5
*
0.5
*
mm
,
0
);
new
G4PVPlacement
(
G4Transform3D
(
*
CrystalRotation
,
CrystalPosition
),
logicCrystalR
,
"LogicCrystalR"
,
m_LogicClover
,
false
,
m_CloverId
[
0
]);
logicCrystalR
->
SetVisAttributes
(
RedVisAtt
);
CrystalRotation
->
rotate
(
-
180
*
deg
,
G4ThreeVector
(
0
,
0
,
1
));
CrystalPosition
=
G4ThreeVector
(
-
113.6
*
0.5
*
0.5
*
mm
,
+
113.6
*
0.5
*
0.5
*
mm
,
0
);
new
G4PVPlacement
(
G4Transform3D
(
*
CrystalRotation
,
CrystalPosition
),
logicCrystalW
,
"LogicCrystalW"
,
m_LogicClover
,
false
,
m_CloverId
[
0
]);
logicCrystalW
->
SetVisAttributes
(
WhiteVisAtt
);
m_LogicClover
->
SetVisAttributes
(
TrGreyVisAtt
);
}
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Construct detector and inialise sensitive part.
// Called After DetecorConstruction::AddDetector Method
void
Tigress
::
ConstructDetector
(
G4LogicalVolume
*
world
){
ConstructClover
(
""
);
G4RotationMatrix
*
DetectorRotation
=
new
G4RotationMatrix
(
0
,
0
,
0
);
for
(
unsigned
int
i
=
0
;
i
<
m_CloverId
.
size
();
i
++
)
{
// Constructing the Detector referential and the transition matrix
G4ThreeVector
U
,
V
,
W
;
G4double
wX
=
sin
(
m_Theta
[
i
])
*
cos
(
m_Phi
[
i
])
;
G4double
wY
=
sin
(
m_Theta
[
i
])
*
sin
(
m_Phi
[
i
])
;
G4double
wZ
=
cos
(
m_Theta
[
i
]);
W
=
G4ThreeVector
(
wX
,
wY
,
wZ
)
;
// vector parallel to one axis of the entrance plane
G4double
vX
=
cos
(
m_Theta
[
i
])
*
cos
(
m_Phi
[
i
]);
G4double
vY
=
cos
(
m_Theta
[
i
])
*
sin
(
m_Phi
[
i
]);
G4double
vZ
=
-
sin
(
m_Theta
[
i
]);
V
=
G4ThreeVector
(
vX
,
vY
,
vZ
);
W
=
W
.
unit
();
U
=
V
.
cross
(
W
);
U
=
U
.
unit
();
V
=
W
.
cross
(
U
);
V
=
V
.
unit
();
// Passage Matrix from Lab Referential to Clover Referential
delete
DetectorRotation
;
DetectorRotation
=
new
G4RotationMatrix
(
U
,
V
,
W
);
DetectorRotation
->
rotate
(
m_BetaX
[
i
],
U
);
DetectorRotation
->
rotate
(
m_BetaY
[
i
],
V
);
DetectorRotation
->
rotate
(
m_BetaZ
[
i
],
W
);
DetectorRotation
->
rotate
(
45
*
deg
,
W
);
G4ThreeVector
DetectorPosition
=
m_R
[
i
]
*
W
;
new
G4PVPlacement
(
G4Transform3D
(
*
DetectorRotation
,
DetectorPosition
),
m_LogicClover
,
"Clover"
,
world
,
false
,
m_CloverId
[
0
]);
}
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Add clover at the standard position of the array
// Take as argument the standard clover Id.
void
Tigress
::
AddCloverStandard
(
vector
<
int
>
CloverId
){
for
(
unsigned
int
i
=
0
;
i
<
CloverId
.
size
();
i
++
)
{
if
(
CloverId
[
i
]
==
1
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
45
*
deg
);
m_Phi
.
push_back
(
22.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
0
);
}
else
if
(
CloverId
[
i
]
==
2
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
45
*
deg
);
m_Phi
.
push_back
(
112.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
0
);
}
else
if
(
CloverId
[
i
]
==
3
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
45
*
deg
);
m_Phi
.
push_back
(
202.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
0
);
}
else
if
(
CloverId
[
i
]
==
4
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
45
*
deg
);
m_Phi
.
push_back
(
292.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
0
);
}
else
if
(
CloverId
[
i
]
==
5
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
90
*
deg
);
m_Phi
.
push_back
(
22.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
else
if
(
CloverId
[
i
]
==
6
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
90
*
deg
);
m_Phi
.
push_back
(
67.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
else
if
(
CloverId
[
i
]
==
7
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
90
*
deg
);
m_Phi
.
push_back
(
112.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
else
if
(
CloverId
[
i
]
==
8
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
90
*
deg
);
m_Phi
.
push_back
(
157.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
else
if
(
CloverId
[
i
]
==
9
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
90
*
deg
);
m_Phi
.
push_back
(
202.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
else
if
(
CloverId
[
i
]
==
10
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
90
*
deg
);
m_Phi
.
push_back
(
247.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
else
if
(
CloverId
[
i
]
==
11
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
90
*
deg
);
m_Phi
.
push_back
(
292.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
else
if
(
CloverId
[
i
]
==
12
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
90
*
deg
);
m_Phi
.
push_back
(
337.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
else
if
(
CloverId
[
i
]
==
13
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
135
*
deg
);
m_Phi
.
push_back
(
22.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
else
if
(
CloverId
[
i
]
==
14
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
135
*
deg
);
m_Phi
.
push_back
(
112.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
else
if
(
CloverId
[
i
]
==
15
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
135
*
deg
);
m_Phi
.
push_back
(
202.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
else
if
(
CloverId
[
i
]
==
16
){
m_CloverId
.
push_back
(
CloverId
[
i
]);
m_R
.
push_back
(
145
*
mm
);
m_Theta
.
push_back
(
135
*
deg
);
m_Phi
.
push_back
(
292.5
*
deg
);
m_BetaX
.
push_back
(
0
);
m_BetaY
.
push_back
(
0
);
m_BetaZ
.
push_back
(
180
*
deg
);
}
}
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Add clover at a free position in space with coordinate
// in spherical coordinate
// Beta are the three angles of rotation in the Clover frame
void
Tigress
::
AddCloverFreePosition
(
int
CloverId
,
double
R
,
double
Theta
,
double
Phi
,
double
BetaX
,
double
BetaY
,
double
BetaZ
){
m_CloverId
.
push_back
(
CloverId
);
m_R
.
push_back
(
R
);
m_Theta
.
push_back
(
Theta
);
m_Phi
.
push_back
(
Phi
);
m_BetaX
.
push_back
(
BetaX
);
m_BetaY
.
push_back
(
BetaY
);
m_BetaZ
.
push_back
(
BetaZ
);
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Add Detector branch to the EventTree.
// Called After DetecorConstruction::AddDetector Method
void
Tigress
::
InitializeRootOutput
(){
RootOutput
*
pAnalysis
=
RootOutput
::
getInstance
();
TTree
*
pTree
=
pAnalysis
->
GetTree
();
pTree
->
Branch
(
"Tigress"
,
"TTigressData"
,
&
m_Event
)
;
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Read sensitive part and fill the Root tree.
// Called at in the EventAction::EndOfEventAvtion
void
Tigress
::
ReadSensitive
(
const
G4Event
*
event
){
/*m_Event->Clear();
///////////
// BOX
G4THitsMap<G4double*>* BOXHitMap;
std::map<G4int, G4double**>::iterator BOX_itr;
G4int BOXCollectionID = G4SDManager::GetSDMpointer()->GetCollectionID("Tigress_BOXScorer/TigressBOX");
BOXHitMap = (G4THitsMap<G4double*>*)(event->GetHCofThisEvent()->GetHC(BOXCollectionID));
// Loop on the BOX map
for (BOX_itr = BOXHitMap->GetMap()->begin() ; BOX_itr != BOXHitMap->GetMap()->end() ; BOX_itr++){
G4double* Info = *(BOX_itr->second);
double Energy = Info[0];
double Time = Info[1];
int DetNbr = (int) Info[2];
int StripFront = (int) Info[3];
int StripBack = (int) Info[4];
m_Event->SetFront_DetectorNbr(DetNbr);
m_Event->SetFront_StripNbr(StripFront);
m_Event->SetFront_Energy(RandGauss::shoot(Energy, ResoEnergy));
m_Event->SetFront_TimeCFD(RandGauss::shoot(Time, ResoTime));
m_Event->SetFront_TimeLED(RandGauss::shoot(Time, ResoTime));
m_Event->SetBack_DetectorNbr(DetNbr);
m_Event->SetBack_StripNbr(StripBack);
m_Event->SetBack_Energy(RandGauss::shoot(Energy, ResoEnergy));
m_Event->SetBack_TimeCFD(RandGauss::shoot(Time, ResoTime));
m_Event->SetBack_TimeLED(RandGauss::shoot(Time, ResoTime));
// Interraction Coordinates
ms_InterCoord->SetDetectedPositionX(Info[5]) ;
ms_InterCoord->SetDetectedPositionY(Info[6]) ;
ms_InterCoord->SetDetectedPositionZ(Info[7]) ;
ms_InterCoord->SetDetectedAngleTheta(Info[8]/deg) ;
ms_InterCoord->SetDetectedAnglePhi(Info[9]/deg) ;
}
// clear map for next event
BOXHitMap->clear();
///////////
// PAD
G4THitsMap<G4double*>* PADHitMap;
std::map<G4int, G4double**>::iterator PAD_itr;
G4int PADCollectionID = G4SDManager::GetSDMpointer()->GetCollectionID("Tigress_PADScorer/TigressPAD");
PADHitMap = (G4THitsMap<G4double*>*)(event->GetHCofThisEvent()->GetHC(PADCollectionID));
// Loop on the BOX map
for (PAD_itr = PADHitMap->GetMap()->begin() ; PAD_itr != PADHitMap->GetMap()->end() ; PAD_itr++){
G4double* Info = *(PAD_itr->second);
double Energy = Info[0];
double Time = Info[1];
int DetNbr = (int) Info[2];
m_Event->SetPAD_DetectorNbr(DetNbr);
m_Event->SetPAD_Energy(RandGauss::shoot(Energy, ResoEnergy));
m_Event->SetPAD_TimeCFD(RandGauss::shoot(Time, ResoTime));
m_Event->SetPAD_TimeLED(RandGauss::shoot(Time, ResoTime));
}
// clear map for next event
PADHitMap->clear();
///////////
// QQQ
G4THitsMap<G4double*>* QQQHitMap;
std::map<G4int, G4double**>::iterator QQQ_itr;
G4int QQQCollectionID = G4SDManager::GetSDMpointer()->GetCollectionID("Tigress_QQQScorer/TigressQQQ");
QQQHitMap = (G4THitsMap<G4double*>*)(event->GetHCofThisEvent()->GetHC(QQQCollectionID));
// Loop on the BOX map
for (QQQ_itr = QQQHitMap->GetMap()->begin() ; QQQ_itr != QQQHitMap->GetMap()->end() ; QQQ_itr++){
G4double* Info = *(QQQ_itr->second);
double Energy = Info[0];
double Time = Info[1];
int DetNbr = (int) Info[2];
int StripFront = (int) Info[3];
int StripBack = (int) Info[4];
m_Event->SetFront_DetectorNbr(DetNbr);
m_Event->SetFront_StripNbr(StripFront);
m_Event->SetFront_Energy(RandGauss::shoot(Energy, ResoEnergy));
m_Event->SetFront_TimeCFD(RandGauss::shoot(Time, ResoTime));
m_Event->SetFront_TimeLED(RandGauss::shoot(Time, ResoTime));
m_Event->SetBack_DetectorNbr(DetNbr);
m_Event->SetBack_StripNbr(StripBack);
m_Event->SetBack_Energy(RandGauss::shoot(Energy, ResoEnergy));
m_Event->SetBack_TimeCFD(RandGauss::shoot(Time, ResoTime));
m_Event->SetBack_TimeLED(RandGauss::shoot(Time, ResoTime));
// Interraction Coordinates
ms_InterCoord->SetDetectedPositionX(Info[5]) ;
ms_InterCoord->SetDetectedPositionY(Info[6]) ;
ms_InterCoord->SetDetectedPositionZ(Info[7]) ;
ms_InterCoord->SetDetectedAngleTheta(Info[8]/deg) ;
ms_InterCoord->SetDetectedAnglePhi(Info[9]/deg) ;
}
// clear map for next event
QQQHitMap->clear();
*/
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
void
Tigress
::
InitializeScorers
(){
/*
// Silicon Associate Scorer
m_BOXScorer = new G4MultiFunctionalDetector("Tigress_BOXScorer");
m_PADScorer = new G4MultiFunctionalDetector("Tigress_PADScorer");
m_QQQScorer = new G4MultiFunctionalDetector("Tigress_QQQScorer");
G4VPrimitiveScorer* BOXScorer =
new Tigress::PS_Silicon_Rectangle("TigressBOX",
BOX_Wafer_Length,
BOX_Wafer_Width,
BOX_Wafer_Back_NumberOfStrip ,
BOX_Wafer_Front_NumberOfStrip,
EnergyThreshold);
G4VPrimitiveScorer* PADScorer =
new Tigress::PS_Silicon_Rectangle("TigressPAD",
PAD_Wafer_Length,
PAD_Wafer_Width,
1 ,
1,
EnergyThreshold);
G4VPrimitiveScorer* QQQScorer =
new Tigress::PS_Silicon_Annular("TigressQQQ",
QQQ_Wafer_Inner_Radius,
QQQ_Wafer_Outer_Radius,
QQQ_Wafer_Stopping_Phi-QQQ_Wafer_Starting_Phi,
QQQ_Wafer_NumberOf_RadialStrip,
QQQ_Wafer_NumberOf_AnnularStrip,
EnergyThreshold);
//and register it to the multifunctionnal detector
m_BOXScorer->RegisterPrimitive(BOXScorer);
m_PADScorer->RegisterPrimitive(PADScorer);
m_QQQScorer->RegisterPrimitive(QQQScorer);
// Add All Scorer to the Global Scorer Manager
G4SDManager::GetSDMpointer()->AddNewDetector(m_BOXScorer) ;
G4SDManager::GetSDMpointer()->AddNewDetector(m_PADScorer) ;
G4SDManager::GetSDMpointer()->AddNewDetector(m_QQQScorer) ;*/
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
////////////////////////////////////////////////////////////////
/////////////////Material Definition ///////////////////////////
////////////////////////////////////////////////////////////////
void
Tigress
::
InitializeMaterial
(){
G4Element
*
H
=
new
G4Element
(
"Hydrogen"
,
"H"
,
1
,
1.015
*
g
/
mole
);
G4Element
*
C
=
new
G4Element
(
"Carbon"
,
"C"
,
6
,
12.011
*
g
/
mole
);
G4Element
*
N
=
new
G4Element
(
"Nitrogen"
,
"N"
,
7
,
14.01
*
g
/
mole
);
G4Element
*
O
=
new
G4Element
(
"Oxygen"
,
"O"
,
8
,
15.99
*
g
/
mole
);
G4double
a
,
z
,
density
;
// Si
a
=
28.0855
*
g
/
mole
;
density
=
2.321
*
g
/
cm3
;
m_MaterialSilicon
=
new
G4Material
(
"Si"
,
z
=
14.
,
a
,
density
);
// Al
density
=
2.702
*
g
/
cm3
;
a
=
26.98
*
g
/
mole
;
m_MaterialAl
=
new
G4Material
(
"Al"
,
z
=
13.
,
a
,
density
);
// PCB (should be FR-4, I took Epoxy Molded from LISE++)
density
=
1.85
*
g
/
cm3
;
m_MaterialPCB
=
new
G4Material
(
"PCB"
,
density
,
3
);
m_MaterialPCB
->
AddElement
(
H
,
.475
);
m_MaterialPCB
->
AddElement
(
C
,
.45
);
m_MaterialPCB
->
AddElement
(
O
,
.075
);
// Vacuum
density
=
0.000000001
*
mg
/
cm3
;
m_MaterialVacuum
=
new
G4Material
(
"Vacuum"
,
density
,
2
);
m_MaterialVacuum
->
AddElement
(
N
,
.7
);
m_MaterialVacuum
->
AddElement
(
O
,
.3
);
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment