Newer
Older
#include <math.h>
#include <stdio.h>
#include "xastropack.h"
// BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
// >>>> Corrections de divers bugs trouve dans libastro (CMV)
// 1******* In the file vsop87.c line 154:
// p = q/(t_abs[alpha] + alpha * t_abs[alpha-1] * 1e-4 + 1e-35);
// - to avoid t_abs[-1] when alpha=0, replaced by :
// if(alpha>0) p = t_abs[alpha-1]; else p=0;
// p = q/(t_abs[alpha] + alpha * p * 1e-4 + 1e-35);
// Mail envoye a ecdowney@ClearSkyInstitute.com
// 2******* In the file eq_ecl.c line 69:
// *q = asin((sy*ceps)-(cy*seps*sx*sw));
// eq_ecl.c Protection NaN dans ecleq_aux, replaced by :
// *q = (sy*ceps)-(cy*seps*sx*sw);
// if(*q<-1.) *q = -PI/2.; else if(*q>1.) *q = PI/2.; else *q = asin(*q);
// Mail envoye a ecdowney@ClearSkyInstitute.com
// >>>> Corrections effectuees dans la version Xephem 3.5
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
/*!
\defgroup XAstroPack XAstroPack module
This module contains simple programs to perform various
astronomical computation (based on the libastro of Xephem).
\verbatim
// TEMPS: modified Julian date (mjd) (number of days elapsed since 1900 jan 0.5)
// jour [1,31] (dy)
// mois [1,12] (mn)
// annee (yr)
// universal time [0,24[ (utc)
// Greenwich mean siderial [0,24[ (gst)
// Greenwich mean siderial at 0h UT [0,24[ (gst0)
// EQUATORIALE: ascension droite en heures [0,24[ (ra)
// declinaison en degres [-90,90] (dec)
// angle horaire en heures ]-12,12] (-12=12) (ha)
// GALACTIQUE: longitude en degres [0,360[ (glng)
// latitude en degres [-90,90] (glat)
// HORIZONTAL: azimuth en degres [0,360[ (az)
// (angle round to the east from north+)
// altitude en degres [-90,90] (alt)
// ECLIPTIQUE: lontitude ecliptique en degres [0,360[ (eclng)
// (angle round counter clockwise from the vernal equinoxe)
// latitude ecliptique en degres [-90,90] (eclat)
// GEOGRAPHIE: longitude en degres ]-180,180] (geolng)
// (angle <0 vers l'ouest, >0 vers l'est)
// latitude en degres [-90,90] (north>0 sud<0) (geolat)
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*! \ingroup XAstroPack
\brief Given a coordinate type "typ", convert to standard for astropack.
\verbatim
La routine convertit (in place) les coordonnees "coord1","coord2"
definies par le type "typ" dans les unites standard de ce systeme
de coordonnees.
"typ" code le systeme de coordonnees astronomiques et les unites utilisees
- Return : 0 = OK
1 = Unknown type of coordinates
2 = bad range for coord1
4 = bad range for coord2
6 = bad range for coord1 et coord2
Les types de coordonnees sont definies dans le enum TypAstroCoord:
La premiere coordonnee est de type "longitude" (alpha,longitude)
La deuxieme coordonnee est de type "latidude" (delta,latitude)
*** Definitions des unites des coordonnees et de leurs dynamiques
- TypCoordH0 : heure=[0,24[
- TypCoordH1 : heure=]-12,12]
- TypCoordD0 : degre=[0,360[
- TypCoordD1 : degre=]-180,180]
- TypCoordD2 : degre=[-90,90]
- TypCoordR0 : degre=[0,2Pi[
- TypCoordR1 : degre=]-Pi,Pi]
- TypCoordR2 : degre=[-Pi/2,Pi/2]
*** Definitions des combinaisons unites des coordonnees
- TypCoordHD : coordonnees en (heure=[0,24[,degre=[-90,90])
- TypCoordDD : coordonnees en (degre=[0,360[,degre=[-90,90])
- TypCoordRR : coordonnees en (radian=[0,2Pi[,radian=[-Pi/2,Pi/2])
- TypCoordH1D : coordonnees en (heure=]-12,12],degre=[-90,90])
- TypCoordD1D : coordonnees en (degre=]-180,180],degre=[-90,90])
- TypCoordR1R : coordonnees en (radian=]-Pi,Pi],radian=[-Pi/2,Pi/2])
*** Definitions des types de systemes de coordonnees astronomiques.
- TypCoordEq : Coordonnees Equatoriales alpha,delta
- TypCoordGal : Coordonnees Galactiques gLong, gLat
- TypCoordHor : Coordonnees Horizontales azimuth,altitude
- TypCoordEcl : Coordonnees Ecliptiques EclLong,EclLat
*** Definitions des unites par defaut pour les divers systemes de coordonnees.
- TypCoordEqStd : heure=[0,24[, degre=[-90,90]
- TypCoordGalStd : degre=[0,360[,degre=[-90,90]
- TypCoordHorStd : degre=[0,360[,degre=[-90,90]
- TypCoordEclStd : degre=[0,360[,degre=[-90,90]
\endverbatim
*/
int CoordConvertToStd(TypAstroCoord typ,double& coord1,double& coord2)
{
int rc = 0;
// ---- Equatoriales alpha,delta
// - standard = [0,24[ , [-90,90]
if(typ&TypCoordEq) {
if(typ&TypCoordDD) {
coord1 = deghr(coord1);
} else if(typ&TypCoordRR) {
coord1 = radhr(coord1);
coord2 = raddeg(coord2);
}
if(coord1==24.) coord1 = 0.;
if(coord1<0. || coord1>=24.) rc+= 2;
if(coord2<-90. || coord2>90. ) rc+= 4;
// ---- Galactiques gLong, gLat
// ---- Horizontales azimuth,altitude
// ---- Ecliptiques EclLong,EclLat
// - standard = [0,360[ , [-90,90]
} else if( typ&TypCoordGal || typ&TypCoordHor || typ&TypCoordEcl) {
if(typ&TypCoordHD) {
coord1 = hrdeg(coord1);
} else if(typ&TypCoordRR) {
coord1 = raddeg(coord1);
coord2 = raddeg(coord2);
}
if(coord1==360.) coord1 = 0.;
if(coord1<0. || coord1>=360.) rc+= 2;
if(coord2<-90. || coord2>90. ) rc+= 4;
} else { // Coordonnees non-connues
rc= 1;
}
return rc;
}
/*! \ingroup XAstroPack
\brief Compute MJD from date
\verbatim
MJD = modified Julian date (number of days elapsed since 1900 jan 0.5),
dy is the decimale value of the day: dy = int(dy) + utc/24.
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
\endverbatim
*/
double MJDfrDate(double dy,int mn,int yr)
{
double mjd;
cal_mjd(mn,dy,yr,&mjd);
return mjd;
}
/*! \ingroup XAstroPack
\brief Compute date from MJD
*/
void DatefrMJD(double mjd,double *dy,int *mn,int *yr)
{
mjd_cal(mjd,mn,dy,yr);
}
/*! \ingroup XAstroPack
\brief Given a mjd, return the year as a double.
*/
double YearfrMJD(double mjd)
{
double yr;
mjd_year(mjd,&yr);
return yr;
}
/*! \ingroup XAstroPack
\brief Given a decimal year, return mjd
*/
double MJDfrYear(double yr)
{
double mjd;
year_mjd(yr,&mjd);
return mjd;
}
/*! \ingroup XAstroPack
\brief Given a mjd, return the year and number of days since 00:00 Jan 1
\warning: if mjd = 2 January -> number of days = 1
*/
void YDfrMJD(double mjd,double *dy,int *yr)
{
mjd_dayno(mjd,yr,dy);
}
/*! \ingroup XAstroPack
\brief Given a year,
*/
int IsLeapYear(int y)
{
return isleapyear(y);
}
/*! \ingroup XAstroPack
\brief given an mjd, set *dow to 0..6 according to which day of the week it falls on (0=sunday).
\return return 0 if ok else -1 if can't figure it out.
*/
int DayOrder(double mjd,int *dow)
{
return mjd_dow(mjd,dow);
}
/*! \ingroup XAstroPack
\brief given a mjd, return the the number of days in the month.
*/
int DaysInMonth(double mjd)
{
int ndays;
mjd_dpm(mjd,&ndays);
return ndays;
}
/*! \ingroup XAstroPack
\brief Given a mjd, truncate it to the beginning of the whole day
*/
double MJDat0hFrMJD(double mjd)
{
return mjd_day(mjd);
}
/*! \ingroup XAstroPack
\brief Given a mjd, return the number of hours past midnight of the whole day
*/
double HfrMJD(double mjd)
{
return mjd_hr(mjd);
}
/*! \ingroup XAstroPack
\brief Give GST from UTC
\verbatim
Given a modified julian date, mjd, and a universally coordinated time, utc,
return greenwich mean siderial time, *gst.
N.B. mjd must be at the beginning of the day.
\endverbatim
*/
double GSTfrUTC(double mjd0,double utc)
{
double gst;
utc_gst(mjd0,utc,&gst);
return gst;
}
/*! \ingroup XAstroPack
\brief Give UTC from GST
\verbatim
Given a modified julian date, mjd, and a greenwich mean siderial time, gst,
return universally coordinated time, *utc.
N.B. mjd must be at the beginning of the day.
\endverbatim
*/
double UTCfrGST(double mjd0,double gst)
{
double utc;
gst_utc(mjd0,gst,&utc);
return utc;
}
/*! \ingroup XAstroPack
\brief Given apparent altitude find airmass.
*/
double AirmassfrAlt(double alt)
{
double x;
alt = degrad(alt);
airmass(alt,&x);
return x;
}
/*! \ingroup XAstroPack
\brief given geocentric time "jd" and coords of a distant object at "ra/dec" (J2000),
find the difference "hcp" in time between light arriving at earth vs the sun.
\return "hcp" must be subtracted from "geocentric jd" to get "heliocentric jd".
\warning "jd" is the TRUE Julian day (jd = mjd+MJD0).
*/
double HelioCorr(double jd,double ra,double dec)
{
double hcp;
ra=hrrad(ra);
dec=degrad(dec);
heliocorr(jd,ra,dec,&hcp);
return hcp;
}
/*! \ingroup XAstroPack
\brief gmst0() - return Greenwich Mean Sidereal Time at 0h UT
\param mjd0 = date at 0h UT in julian days since MJD0
double GST0(double mjd0)
/* Copie depuis le code de Xephem (utc_gst.c) car pas prototype*/
{
double T, x;
T = ((int)(mjd0 - 0.5) + 0.5 - J2000)/36525.0;
x = 24110.54841 +
(8640184.812866 + (0.093104 - 6.2e-6 * T) * T) * T;
x /= 3600.0;
range(&x, 24.0);
return (x);
}
/*! \ingroup XAstroPack
\brief return local sidereal time from modified julian day and longitude
\warning nutation or obliquity correction are taken into account.
*/
double LSTfrMJD(double mjd,double geolng)
{
double eps,lst,deps,dpsi;
utc_gst(mjd_day(mjd),mjd_hr(mjd),&lst);
obliquity(mjd,&eps);
nutation(mjd,&deps,&dpsi);
lst += radhr(dpsi*cos(eps+deps));
InRange(&lst,24.);
/*! \ingroup XAstroPack
\brief Give a time in h:mn:s from a decimal hour
\verbatim
// OUTPUT: h mn s (h,mn,s >=< 0)
// REMARQUE: si hd<0 alors h<0 ET mn<0 ET s<0
// EX: 12.51 -> h=12 mn=30 s=10 ;
// -12.51 -> h=-12 mn=-30 s=-10 ;
\endverbatim
*/
void HMSfrHdec(double hd,int *h,int *mn,double *s)
{
int sgn=1;
if(hd<0.) {sgn=-1; hd*=-1.;}
*h = int(hd);
*mn = int((hd-(double)(*h))*60.);
*s = (hd - (double)(*h) - (double)(*mn)/60.)*3600.;
// pb precision
if(*s<0.) *s = 0.;
if(*s>60. || *s==60.) {*s-=60.; *mn+=1;} // s=double attention comparaison
if(*mn<0) *mn = 0;
if(*mn>=60) {*mn-=60; *h+=1;}
/*! \ingroup XAstroPack
\brief Give a decimal hour from a time in h:mn:s
\verbatim
// INPUT: h , mn , s (h,mn,s >=< 0)
// RETURN: en heures decimales
// REMARQUE: pour avoir hd=-12.51 <- h=-12 mn=-30 s=-10
\endverbatim
*/
double HdecfrHMS(int h,int mn,double s)
/*! \ingroup XAstroPack
\brief Give a time string from a time in h:mn:s
\verbatim
// RETURN: string h:mn:s
\endverbatim
*/
string ToStringHMS(int h,int mn,double s)
double hd = HdecfrHMS(h,mn,s); // put in range
HMSfrHdec(hd,&h,&mn,&s);
char str[128];
if(hd<0.)
sprintf(str,"-%d:%d:%.3f",-h,-mn,-s);
else
sprintf(str,"%d:%d:%.3f",h,mn,s);
string dum = str;
return dum;
}
/*! \ingroup XAstroPack
\brief Give a time string from a decimal hour
*/
string ToStringHdec(double hd)
{
int h,mn; double s;
return ToStringHMS(h,mn,s);
}
/*! \ingroup XAstroPack
\brief Compute precession between 2 dates.
*/
void Precess(double mjd1,double mjd2,double ra1,double dec1,double *ra2,double *dec2)
{
ra1 = hrrad(ra1); // radians
dec1 = degrad(dec1); // radians
precess(mjd1,mjd2,&ra1,&dec1);
*ra2 = radhr(ra1); InRange(ra2,24.);
*dec2 = raddeg(dec1);
}
\brief Convert equatorial coordinates for the given epoch into galactic coordinates
void EqtoGal(double mjd,double ra,double dec, double *glng,double *glat)
// Coordonnees equatoriales -> Coordonnees galactiques
{
ra = hrrad(ra); // radians
dec = degrad(dec); // radians
eq_gal(mjd,ra,dec,glat,glng);
// Vraiment bizarre, sur Linux-g++ glng>=360 ne comprend pas glng==360 ! (CMV)
*glng = raddeg(*glng); InRange(glng,360.);
*glat = raddeg(*glat);
\brief Convert galactic coordinates into equatorial coordinates at the given epoch
void GaltoEq(double mjd,double glng,double glat,double *ra,double *dec)
// Coordonnees galactiques -> Coordonnees equatoriales
{
glng = degrad(glng); // radians
glat = degrad(glat); // radians
gal_eq (mjd,glat,glng,ra,dec);
*ra = radhr(*ra); InRange(ra,24.);
*dec = raddeg(*dec);
\brief Convert equatorial coordinates (with hour angle instead of right ascension) into horizontal coordinates.
void EqHtoHor(double geolat,double ha,double dec,double *az,double *alt)
// Coordonnees equatoriales -> Coordonnees horizontales
{
geolat = degrad(geolat); // radians
ha = hrrad(ha); // radians
dec = degrad(dec); // radians
hadec_aa (geolat,ha,dec,alt,az);
*alt = raddeg(*alt);
*az = raddeg(*az); InRange(az,360.);
Convert horizontal coordinates into equatorial coordinates (with hour angle instead of right ascension).
void HortoEqH(double geolat,double az,double alt,double *ha,double *dec)
// Coordonnees horizontales -> Coordonnees equatoriales
{
geolat = degrad(geolat); // radians
alt = degrad(alt); // radians
az = degrad(az); // radians
aa_hadec (geolat,alt,az,ha,dec);
*ha = radhr(*ha); InRange(ha,24.,12.);
*dec = raddeg(*dec);
}
/*! \ingroup XAstroPack
\brief Convert equatorial coordinates into horizontal coordinates.
*/
void EqtoHor(double geolat,double lst,double ra,double dec,double *az,double *alt)
// Coordonnees equatoriales -> Coordonnees horizontales
{
double ha = lst - ra; InRange(&ha,24.,12.);
geolat = degrad(geolat); // radians
ha = hrrad(ha); // radians
dec = degrad(dec); // radians
*alt = raddeg(*alt);
*az = raddeg(*az); InRange(az,360.);
}
/*! \ingroup XAstroPack
Convert horizontal coordinates into equatorial coordinates.
*/
void HortoEq(double geolat,double lst,double az,double alt,double *ra,double *dec)
// Coordonnees horizontales -> Coordonnees equatoriales
{
double ha;
geolat = degrad(geolat); // radians
alt = degrad(alt); // radians
az = degrad(az); // radians
*ra = lst - radhr(ha); InRange(ra,24.);
*dec = raddeg(*dec);
\brief Convert equatorial coordinates into geocentric ecliptic coordinates given the modified Julian date.
\warning Correction for the effect on the angle of the obliquity due to nutation is not included.
void EqtoEcl(double mjd,double ra,double dec,double *eclng,double *eclat)
// Coordonnees equatoriales -> Coordonnees ecliptiques
{
ra = hrrad(ra); // radians
dec = degrad(dec); // radians
eq_ecl(mjd,ra,dec,eclat,eclng);
*eclng = raddeg(*eclng); InRange(eclng,360.);
*eclat = raddeg(*eclat);
\brief Convert geocentric ecliptic coordinates into equatorial coordinates given the modified Julian date.
\warning Correction for the effect on the angle of the obliquity due to nutation is not included.
void EcltoEq(double mjd,double eclng,double eclat,double *ra,double *dec)
// Coordonnees ecliptiques -> Coordonnees equatoriales
{
eclat = degrad(eclat); // radians
eclng = degrad(eclng); // radians
ecl_eq(mjd,eclat,eclng,ra,dec);
*ra = radhr(*ra); InRange(ra,24.);
*dec = raddeg(*dec);
/*! \ingroup XAstroPack
\brief Give Sun position
\verbatim
given the modified JD, mjd, return the true geocentric ecliptic longitude
of the sun for the mean equinox of the date, *eclsn, in degres, the
sun-earth distance, *rsn, in AU, and the latitude *ecbsn, in degres
(since this is always <= 1.2 arcseconds, in can be neglected by
calling with ecbsn = NULL).
- REMARQUE:
* if the APPARENT ecliptic longitude is required, correct the longitude for
* nutation to the true equinox of date and for aberration (light travel time,
* approximately -9.27e7/186000/(3600*24*365)*2*pi = -9.93e-5 radians).
void SunPos(double mjd,double *eclsn,double *ecbsn,double *rsn)
sunpos(mjd,eclsn,rsn,ecbsn);
*eclsn = raddeg(*eclsn); InRange(eclsn,360.);
if(ecbsn!=NULL) *ecbsn = raddeg(*ecbsn);
/*! \ingroup XAstroPack
\brief Give Moon position
\verbatim
given the mjd, find the geocentric ecliptic longitude, lam, and latitude,
bet, and geocentric distance, rho in a.u. for the moon. also return
the sun's mean anomaly, *msp, and the moon's mean anomaly, *mdp.
(for the mean equinox)
\endverbatim
*/
void MoonPos(double mjd,double *eclmn,double *ecbmn,double *rho)
double msp,mdp;
moon(mjd,eclmn,ecbmn,rho,&msp,&mdp);
*eclmn = raddeg(*eclmn); InRange(eclmn,360.);
*ecbmn = raddeg(*ecbmn);
/*! \ingroup XAstroPack
\brief Give planet position
\verbatim
* given a modified Julian date, mjd, and a planet, p, find:
* sunecl: heliocentric longitude,
* sunecb: heliocentric latitude,
* sundist: distance from the sun to the planet,
* geodist: distance from the Earth to the planet,
* none corrected for light time, ie, they are the true values for the
* given instant.
* geoecl: geocentric ecliptic longitude,
* geoecb: geocentric ecliptic latitude,
* each corrected for light time, ie, they are the apparent values as
* seen from the center of the Earth for the given instant.
* diamang: angular diameter in arcsec at 1 AU,
* mag: visual magnitude when 1 AU from sun and earth at 0 phase angle.
* all angles are in degres, all distances in AU.
*
* corrections for nutation and abberation must be made by the caller. The RA
* and DEC calculated from the fully-corrected ecliptic coordinates are then
* the apparent geocentric coordinates. Further corrections can be made, if
* required, for atmospheric refraction and geocentric parallax.
void PlanetPos(double mjd,int numplan,double *sunecl,double *sunecb,double *sundist
,double *geodist,double *geoecl,double *geoecb
,double *diamang,double *mag)
plans(mjd,numplan,sunecl,sunecb,sundist,geodist,geoecl,geoecb,diamang,mag);
*geoecl = raddeg(*geoecl); InRange(geoecl,360.);
*geoecb = raddeg(*geoecb);
*sunecl = raddeg(*sunecl); InRange(sunecl,360.);
*sunecb = raddeg(*sunecb);