Newer
Older
/* Copyright (C) 2009-2016 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Sandra Giron contact address: giron@ipno.in2p3.fr *
* *
* Creation Date : febuary 2010 *
* Last update : modification november 2011 by Pierre Morfouace *
* Contact adress : morfouac@ipno.in2p3.fr *
*---------------------------------------------------------------------------*
* Decription: *
* This class hold CATS treated data *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
*****************************************************************************/
#include "TCATSPhysics.h"
using namespace CATS_LOCAL;
// STL
#include <cmath>
#include <algorithm>
#include <sstream>
#include <fstream>
#include <iostream>
#include <cstdlib>
#include <chrono>
#include <iomanip>
#include <iostream>
#include <numeric>
#include <utility>
#include <vector>
#include "NPDetectorFactory.h"
#include "RootOutput.h"
#include "NPOptionManager.h"
// ROOT
#include "TChain.h"
#include "TF1.h"
#include "TGraph.h"
ClassImp(TCATSPhysics)
///////////////////////////////////////////////////////////////////////////
TCATSPhysics::TCATSPhysics(){
m_EventData = new TCATSData ;
m_PreTreatedData = new TCATSData ;
m_EventPhysics = this ;
m_NumberOfCATS = 0 ;
m_Spectra = NULL ;
m_Zproj = 0 ;
}
///////////////////////////////////////////////////////////////////////////
TCATSPhysics::~TCATSPhysics(){
}
///////////////////////////////////////////////////////////////////////////
void TCATSPhysics::PreTreat(){
ClearPreTreatedData();
gRandom->SetSeed(0);
// X
unsigned int sizeX = m_EventData->GetCATSMultX();
for(unsigned int i = 0 ; i < sizeX ; i++){
// Valid Channel X
if(IsValidChannel("X", m_EventData->GetCATSDetX(i), m_EventData->GetCATSStripX(i)) ){
if( fCATS_Threshold_X(m_EventData , i) ){
double QX = fCATS_X_Q(m_EventData , i);
//Inversion X
if( *(m_CATSXInversion[m_EventData->GetCATSDetX(i)-1].begin() + m_EventData->GetCATSStripX(i)-1) != m_EventData->GetCATSStripX(i) ){
stripX = *(m_CATSXInversion[m_EventData->GetCATSDetX(i)-1].begin() + m_EventData->GetCATSStripX(i)-1);
if(QX < 0)
QX = 0;
m_PreTreatedData->SetStripX( m_EventData->GetCATSDetX(i) , stripX, (unsigned int)QX);
}
}
}
// Y
unsigned int sizeY = m_EventData->GetCATSMultY();
for(unsigned int i = 0 ; i < sizeY ; i++){
// Valid Channel Y
if(IsValidChannel("Y", m_EventData->GetCATSDetY(i), m_EventData->GetCATSStripY(i))){
if( fCATS_Threshold_Y(m_EventData , i) ){
double QY = fCATS_Y_Q(m_EventData , i);
//Inversion Y
if( *(m_CATSYInversion[m_EventData->GetCATSDetY(i)-1].begin() + m_EventData->GetCATSStripY(i)-1) != m_EventData->GetCATSStripY(i) ){
stripY = *(m_CATSYInversion[m_EventData->GetCATSDetY(i)-1].begin() + m_EventData->GetCATSStripY(i)-1);
if(QY < 0)
QY = 0;
m_PreTreatedData->SetStripY( m_EventData->GetCATSDetY(i), stripY, (unsigned int)QY );
}
}
}
return;
}
/////////////////////////////////////////////////////////////////////////////
void TCATSPhysics::BuildSimplePhysicalEvent(){
BuildPhysicalEvent();
}
//////////////////////////////////////////////////////////////////////////////
void TCATSPhysics::BuildPhysicalEvent(){
// std::cout << "test 1" << std::endl;
if (NPOptionManager::getInstance()->IsReader() == true) {
m_EventData = &(**r_ReaderEventData);
}
//m_EventData->Dump();
// std::cout << "test 2" << std::endl;
sizeX = m_PreTreatedData->GetCATSMultX() ;
for( unsigned short i = 0 ; i < sizeX; i++ ){
// Insert detector number in the set, if the key already exist, do nothing
DetectorHitX.insert(m_PreTreatedData->GetCATSDetX(i));
}
// std::cout << "test 3" << std::endl;
// Correspond to CATS with both X and Y
sizeY = m_PreTreatedData->GetCATSMultY() ;
for( unsigned short i = 0 ; i < sizeY ; i++ ){
// Insert detector number in the set, if the key already exist, do nothing
// Only if the detector was hit on X as well
if(DetectorHitX.find(m_PreTreatedData->GetCATSDetY(i))!=DetectorHitX.end())
DetectorHit.insert(m_PreTreatedData->GetCATSDetY(i));
}
// The number of CATS hit, i.e. the number of CATS that we are going to analyse
//std::cout << "StripX mult " << sizeX << std::endl;
for( unsigned short i = 0 ; i < sizeX; i++ ){
StrX = m_PreTreatedData->GetCATSStripX(i);
NX = m_PreTreatedData->GetCATSDetX(i);
CATS_X_Q = m_PreTreatedData->GetCATSChargeX(i) ;
if(DetectorHit.find(NX)!=DetectorHit.end()){
MapX[NX].push_back(std::make_pair(StrX,CATS_X_Q));
QSumX[NX]+= CATS_X_Q;
if(MaxQX.find(NX)==MaxQX.end()|| MaxQX[NX].second < CATS_X_Q ){
MaxQX[NX] = make_pair(StrX,CATS_X_Q);
for( unsigned short i = 0 ; i < sizeY; i++ ){
StrY = m_PreTreatedData->GetCATSStripY(i);
NY = m_PreTreatedData->GetCATSDetY(i);
CATS_Y_Q = m_PreTreatedData->GetCATSChargeY(i) ;
if(DetectorHit.find(NY)!=DetectorHit.end()){
MapY[NY].push_back(std::make_pair(StrY,CATS_Y_Q));
QSumY[NY]+= CATS_Y_Q;
if(MaxQY.find(NY)==MaxQY.end()|| MaxQY[NY].second < CATS_Y_Q ){
MaxQY[NY] = make_pair(StrY,CATS_Y_Q);
// std::cout << "test 5" << std::endl;
for(auto &DetN : DetectorHit){
// std::cout << "test 6" << std::endl;
// Return the position in strip unit
// Convention: the collected charge is atrributed to the center of the strip
// (histogram convention) so that a reconstructed position for a single strip
// goes from strip index -0.5 to strip index +0.5
double PosX = ReconstructionFunctionX[DetN](MaxQX[DetN],MapX[DetN], QSumX[DetN]);
// std::cout << "test 7" << std::endl;
double PosY = ReconstructionFunctionY[DetN](MaxQY[DetN],MapY[DetN], QSumY[DetN]);
//std::cout << "test " << std::reduce(QsumSample[DetN].begin(),QsumSample[DetN].end()) /(QsumSample[DetN]).size() << std::endl;
// a shift - -1 is made to have PosX in between -0.5 and 27.5
// for the following calculation of the position in the lab.
// std::cout << PosX << " " << PosY << std::endl;
PosX = PosX;
PosY = PosY;
// sx and sy are the X and Y strip number between which the PosX and PosY are
int sx0 = (int) PosX;
int sx1 = sx0+1;
int sy0 = (int) PosY;
int sy1 = sy0+1;
// std::cout << StripPositionX[1][1][0] << std::endl;
if(PosX>-1000 && PosY>-1000 && sx0 > -1 && sx1 < 28 && sy0 > -1 && sy1 < 28){
// px and py are the x and y coordinate of strip sx and sy
StripNumberX.push_back(PosX);
StripNumberY.push_back(PosY);
DetNumber.push_back(DetN);
ChargeX.push_back(QSumX[DetN]);
ChargeY.push_back(QSumY[DetN]);
double px0 = StripPositionX[DetN][sx0][sy0];
double px1 = StripPositionX[DetN][sx1][sy1];
double py0 = StripPositionY[DetN][sx0][sy0];
double py1 = StripPositionY[DetN][sx1][sy1];
// Positon [Detector] = <PosZ,<PosX,PosY>>
Positions[DetN] = make_pair(StripPositionZ[DetN], make_pair(px0+(px1-px0)*(PosX-sx0),py0+(py1-py0)*(PosY-sy0)));
PositionX.push_back(px0+(px1-px0)*(PosX-sx0));
PositionY.push_back(py0+(py1-py0)*(PosY-sy0));
PositionZ.push_back(StripPositionZ[DetN]);
// At least two CATS need to gave back position in order to reconstruct on Target
if(Positions.size()==2){
double t = (m_Zproj-Positions[1].first)/(m_Zproj-Positions[2].first);
PositionOnTargetX= Positions[1].second.first + (Positions[2].second.first - Positions[1].second.first)*t;
PositionOnTargetY= Positions[1].second.second + (Positions[2].second.second - Positions[1].second.second)*t;
if(Mask1_Z != 0 && Mask2_Z != 0)
{
double tmask1 = (Positions[1].first-Mask1_Z)/(Positions[2].first - Positions[1].first);
double tmask2 = (Positions[2].first-Mask2_Z)/(Positions[2].first - Positions[1].first);
PositionOnMask1X= Positions[1].second.first - (Positions[2].second.first -Positions[1].second.first)*tmask1;
PositionOnMask1Y= Positions[1].second.second - (Positions[2].second.second -Positions[1].second.second)*tmask1;
PositionOnMask2X= Positions[2].second.first - (Positions[2].second.first -Positions[1].second.first)*tmask2;
PositionOnMask2Y= Positions[2].second.second - (Positions[2].second.second -Positions[1].second.second)*tmask2;
}
else{
PositionOnMask1X= -1000;
PositionOnMask1Y= -1000;
PositionOnMask2X= -1000;
PositionOnMask2Y= -1000;
}
}
else{
BeamDirection = TVector3 (1,0,0);
PositionOnTargetX = -1000 ;
PositionOnTargetY = -1000 ;
PositionOnMask1X= -1000;
PositionOnMask1Y= -1000;
PositionOnMask2X= -1000;
PositionOnMask2Y= -1000;
BeamDirection = GetBeamDirection();
// Does not meet the conditions for target position and beam direction
void TCATSPhysics::SetTreeReader(TTreeReader* TreeReader) {
TCATSPhysicsReader::r_SetTreeReader(TreeReader);
}
///////////////////////////////////////////////////////////////////////////
// Read stream at ConfigFile to pick-up parameters of detector (Position,...) using Token
void TCATSPhysics::ReadConfiguration(NPL::InputParser parser){
vector<NPL::InputBlock*> blocks = parser.GetAllBlocksWithToken("CATSDetector");
vector<NPL::InputBlock*> blocksMask = parser.GetAllBlocksWithToken("MASK");
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << "//// " << blocks.size() << " detectors found " << endl;
cout << "//// " << blocksMask.size() << " masks found " << endl;
vector<string> token = {"X1_Y1","X28_Y1","X1_Y28","X28_Y28","CATSNumber"};
vector<string> tokenMask = {"Z","MaskNumber"};
for(unsigned int i = 0 ; i < blocks.size() ; i++){
if(blocks[i]->HasTokenList(token)){
TVector3 A = blocks[i]->GetTVector3("X1_Y1","mm");
TVector3 B = blocks[i]->GetTVector3("X28_Y1","mm");
TVector3 C = blocks[i]->GetTVector3("X1_Y28","mm");
TVector3 D = blocks[i]->GetTVector3("X28_Y28","mm");
UShort_t N = blocks[i]->GetInt("CATSNumber");
AddCATS(A,B,C,D,N);
}
else{
cout << "ERROR: check your input file formatting " << endl;
exit(1);
}
for(unsigned int i = 0 ; i < blocksMask.size() ; i++){
if(blocksMask[i]->HasTokenList(tokenMask)){
AddMask(blocksMask[i]->GetDouble("Z","mm"),blocksMask[i]->GetInt("MaskNumber"));
else{
cout << "ERROR: check your input file formatting " << endl;
exit(1);
}
InitializeStandardParameter();
ReadAnalysisConfig();
}
/////////////////////////////////////////////////////////////////////
// Activated associated Branches and link it to the private member DetectorData address
// In this method mother Branches (Detector) AND daughter leaf (fDetector_parameter) have to be activated
void TCATSPhysics::InitializeRootInputRaw() {
TChain* inputChain = RootInput::getInstance()->GetChain() ;
// Option to use the nptreereader anaysis
if (NPOptionManager::getInstance()->IsReader() == true) {
TTreeReader* inputTreeReader = RootInput::getInstance()->GetTreeReader();
inputTreeReader->SetTree(inputChain);
}
// Option to use the standard npanalysis
else{
std::cout << "////////////////////////////// TEST" << std::endl;
inputChain->SetBranchStatus( "CATS" , true ) ;
inputChain->SetBranchStatus( "fCATS_*" , true ) ;
inputChain->SetBranchAddress( "CATS" , &m_EventData ) ;
}
}
/////////////////////////////////////////////////////////////////////
// Activated associated Branches and link it to the private member DetectorPhysics address
// In this method mother Branches (Detector) AND daughter leaf (parameter) have to be activated
void TCATSPhysics::InitializeRootInputPhysics() {
TChain* inputChain = RootInput::getInstance()->GetChain();
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
// Option to use the nptreereader anaysis
if (NPOptionManager::getInstance()->IsReader() == true) {
TTreeReader* inputTreeReader = RootInput::getInstance()->GetTreeReader();
inputTreeReader->SetTree(inputChain);
}
// Option to use the standard npanalysis
else{
inputChain->SetBranchStatus( "CATS" , true );
inputChain->SetBranchStatus( "DetNumberX" , true );
inputChain->SetBranchStatus( "StripX" , true );
inputChain->SetBranchStatus( "ChargeX" , true );
inputChain->SetBranchStatus( "StripMaxX" , true );
inputChain->SetBranchStatus( "DetNumberY" , true );
inputChain->SetBranchStatus( "StripY" , true );
inputChain->SetBranchStatus( "ChargeY" , true );
inputChain->SetBranchStatus( "StripMaxY" , true );
inputChain->SetBranchStatus( "DetMaxX" , true );
inputChain->SetBranchStatus( "DetMaxY" , true );
inputChain->SetBranchStatus( "PositionX" , true );
inputChain->SetBranchStatus( "PositionY" , true );
inputChain->SetBranchStatus( "PositionZ" , true );
inputChain->SetBranchStatus( "StripNumberX" , true );
inputChain->SetBranchStatus( "StripNumberY" , true );
inputChain->SetBranchStatus( "PositionOnTargetX" , true );
inputChain->SetBranchStatus( "PositionOnTargetY" , true );
inputChain->SetBranchStatus( "QsumX" , true );
inputChain->SetBranchStatus( "QsumY" , true );
inputChain->SetBranchAddress( "CATS" , &m_EventPhysics );
}
}
/////////////////////////////////////////////////////////////////////
// Create associated branches and associated private member DetectorPhysics address
void TCATSPhysics::InitializeRootOutput(){
TTree* outputTree = RootOutput::getInstance()->GetTree() ;
outputTree->Branch( "CATS" , "TCATSPhysics" , &m_EventPhysics ) ;
}
/////////////////////////////////////////////////////////////////////
void TCATSPhysics::AddCATS(TVector3 C_X1_Y1, TVector3 C_X28_Y1, TVector3 C_X1_Y28, TVector3 C_X28_Y28, UShort_t N){
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
m_NumberOfCATS++ ;
// remove warning
C_X28_Y28 *= 1;
// Vector U on Telescope Face (paralelle to Y Strip)
TVector3 U = C_X28_Y1 - C_X1_Y1 ;
U = U.Unit() ;
// Vector V on Telescope Face (parallele to X Strip)
TVector3 V = C_X1_Y28 - C_X1_Y1 ;
V = V.Unit() ;
// Position Vector of Strip Center
TVector3 StripCenter ;
// Position Vector of X=1 Y=1 Strip
TVector3 Strip_1_1 ;
// Geometry Parameters
double Face = 71.12 ; //mm
double NumberOfStrip = 28 ;
double StripPitch = Face / NumberOfStrip ; //mm
// Buffer object to fill Position Array
vector<double> lineX ;
vector<double> lineY ;
vector< vector< double > > OneDetectorStripPositionX ;
vector< vector< double > > OneDetectorStripPositionY ;
double OneDetectorStripPositionZ ;
// Moving StripCenter to 1.1 corner (strip center!) :
Strip_1_1 = C_X1_Y1 + (U+V) * (StripPitch/2) ;
for( int i = 0 ; i < 28 ; i++ ){
lineX.clear() ;
lineY.clear() ;
for( int j = 0 ; j < 28 ; j++ ){
StripCenter = Strip_1_1 + StripPitch*( i*U + j*V ) ;
lineX.push_back( StripCenter.x() ) ;
lineY.push_back( StripCenter.y() ) ;
}
OneDetectorStripPositionX.push_back(lineX);
OneDetectorStripPositionY.push_back(lineY);
}
OneDetectorStripPositionZ = C_X1_Y1.Z();
StripPositionX[N] = OneDetectorStripPositionX ;
StripPositionY[N] = OneDetectorStripPositionY ;
StripPositionZ[N] = OneDetectorStripPositionZ ;
}
void TCATSPhysics::AddMask(Double_t Z, UShort_t MaskNumber){
if(MaskNumber == 1){
Mask1_Z = Z;
}
else if(MaskNumber == 2){
Mask2_Z = Z;
}
else{
std::cout << "Wrong Number for MASKS" << std::endl;
}
}
///////////////////////////////////////////////////////////////
void TCATSPhysics::Clear(){
DetNumber.clear();
ChargeX.clear();
ChargeY.clear();
PositionY.clear();
PositionZ.clear();
StripNumberX.clear();
StripNumberY.clear();
QSumX.clear();
QSumY.clear();
Positions.clear();
MapX.clear();
MapY.clear();
MaxQX.clear();
MaxQY.clear();
DetectorHit.clear();
DetectorHitX.clear();
}
////////////////////////////////////////////////////////////////////////////
bool TCATSPhysics :: IsValidChannel(const string& DetectorType, const int& Detector , const int& channel) {
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
if(DetectorType == "X")
return *(m_XChannelStatus[Detector-1].begin()+channel-1);
else if(DetectorType == "Y")
return *(m_YChannelStatus[Detector-1].begin()+channel-1);
else return false;
}
///////////////////////////////////////////////////////////////////////////////////
void TCATSPhysics::InitializeStandardParameter(){
// Enable all channel and no inversion
vector< bool > ChannelStatus;
vector< int > InversionStatus;
m_XChannelStatus.clear() ;
m_YChannelStatus.clear() ;
m_CATSXInversion.clear() ;
m_CATSYInversion.clear() ;
ChannelStatus.resize(28,true);
InversionStatus.resize(28);
for(unsigned int j = 0 ; j < InversionStatus.size() ; j++){
InversionStatus[j] = j+1;
}
for(int i = 0 ; i < m_NumberOfCATS ; ++i){
m_XChannelStatus[i] = ChannelStatus;
m_YChannelStatus[i] = ChannelStatus;
m_CATSXInversion[i] = InversionStatus;
m_CATSYInversion[i] = InversionStatus;
SetReconstructionMethod(i+1, "X", "AGAUSS");
SetReconstructionMethod(i+1, "Y", "AGAUSS");
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
}
return;
}
///////////////////////////////////////////////////////////////////////////
void TCATSPhysics::ReadAnalysisConfig(){
bool ReadingStatus = false;
// path to file
string FileName = "./configs/ConfigCATS.dat";
// open analysis config file
ifstream AnalysisConfigFile;
AnalysisConfigFile.open(FileName.c_str());
if (!AnalysisConfigFile.is_open()) {
cout << " No ConfigCATS.dat found: Default parameter loaded for Analayis " << FileName << endl;
return;
}
cout << " Loading user parameter for Analysis from ConfigCATS.dat " << endl;
// Save it in a TAsciiFile
TAsciiFile* asciiConfig = RootOutput::getInstance()->GetAsciiFileAnalysisConfig();
asciiConfig->AppendLine("%%% ConfigCATS.dat %%%");
asciiConfig->Append(FileName.c_str());
asciiConfig->AppendLine("");
// read analysis config file
string LineBuffer,DataBuffer,whatToDo;
while (!AnalysisConfigFile.eof()) {
// Pick-up next line
getline(AnalysisConfigFile, LineBuffer);
// search for "header"
if (LineBuffer.compare(0, 10, "ConfigCATS") == 0) ReadingStatus = true;
// loop on tokens and data
while (ReadingStatus ) {
whatToDo="";
AnalysisConfigFile >> whatToDo;
// Search for comment symbol (%)
if (whatToDo.compare(0, 1, "%") == 0) {
AnalysisConfigFile.ignore(numeric_limits<streamsize>::max(), '\n' );
}
else if (whatToDo == "DISABLE_CHANNEL") {
AnalysisConfigFile >> DataBuffer;
cout << whatToDo << " " << DataBuffer << endl;
int Detector = atoi(DataBuffer.substr(4,1).c_str());
int channel = -1;
if (DataBuffer.compare(5,4,"STRX") == 0) {
channel = atoi(DataBuffer.substr(9).c_str());
*(m_XChannelStatus[Detector-1].begin()+channel-1) = false;
}
else if (DataBuffer.compare(5,4,"STRY") == 0) {
channel = atoi(DataBuffer.substr(9).c_str());
*(m_YChannelStatus[Detector-1].begin()+channel-1) = false;
}
else cout << "Warning: detector type for CATS unknown!" << endl;
}
else if (whatToDo == "INVERSION") {
AnalysisConfigFile >> DataBuffer;
cout << whatToDo << " " << DataBuffer;
int Detector = atoi(DataBuffer.substr(4,1).c_str());
int channel1 = -1;
int channel2 = -1;
AnalysisConfigFile >> DataBuffer;
cout << " " << DataBuffer;
if (DataBuffer.compare(0,4,"STRX") == 0) {
channel1 = atoi(DataBuffer.substr(4).c_str());
AnalysisConfigFile >> DataBuffer;
cout << " " << DataBuffer << endl;
channel2 = atoi(DataBuffer.substr(4).c_str());
*(m_CATSXInversion[Detector-1].begin()+channel1-1) = channel2;
*(m_CATSXInversion[Detector-1].begin()+channel2-1) = channel1;
}
}
else if (whatToDo == "INVERSIONX") {
AnalysisConfigFile >> DataBuffer;
cout << whatToDo << " " << DataBuffer;
int Detector = atoi(DataBuffer.substr(4,1).c_str());
for(unsigned int strip = 0; strip < 28; strip ++){
*(m_CATSXInversion[Detector-1].begin()+strip) = 27-strip;
}
}
else if (whatToDo == "INVERSIONY") {
AnalysisConfigFile >> DataBuffer;
cout << whatToDo << " " << DataBuffer;
int Detector = atoi(DataBuffer.substr(4,1).c_str());
for(unsigned int strip = 0; strip < 28; strip ++){
*(m_CATSYInversion[Detector-1].begin()+strip) = 27-strip;
}
}
else if (whatToDo == "RECONSTRUCTION_METHOD") {
AnalysisConfigFile >> DataBuffer;
cout << whatToDo << " " << DataBuffer ;
// DataBuffer is of form CATSNX
// Look for the CATS Number removing the first 4 letters and the trailling letter
string Duplicate = DataBuffer.substr(4); // Duplicate is of form NX
Duplicate.resize(Duplicate.size()-1); // Duplicate is of form
unsigned int CATSNumber = atoi(Duplicate.c_str());
// Look for the X or Y part of the Detector, Basically the last character
string XorY(string(1,DataBuffer[DataBuffer.size()-1])) ;
// Get the Reconstruction Methods Name
AnalysisConfigFile >> DataBuffer;
cout << " " << DataBuffer << endl ;
// Set the Reconstruction Methods using above information
SetReconstructionMethod(CATSNumber,XorY,DataBuffer);
}
else if (whatToDo == "ZPROJ") {
AnalysisConfigFile >> DataBuffer;
cout << whatToDo << " " << DataBuffer << endl ;
m_Zproj = atoi(DataBuffer.c_str());
}
else {ReadingStatus = false;}
}
}
}
///////////////////////////////////////////////////////////////////////////
void TCATSPhysics::InitSpectra(){
m_Spectra = new TCATSSpectra(m_NumberOfCATS);
}
///////////////////////////////////////////////////////////////////////////
void TCATSPhysics::FillSpectra(){
m_Spectra -> FillRawSpectra(m_EventData);
m_Spectra -> FillPreTreatedSpectra(m_PreTreatedData);
m_Spectra -> FillPhysicsSpectra(m_EventPhysics);
}
///////////////////////////////////////////////////////////////////////////
void TCATSPhysics::CheckSpectra(){
// To be done
}
///////////////////////////////////////////////////////////////////////////
void TCATSPhysics::ClearSpectra(){
// To be done
}
///////////////////////////////////////////////////////////////////////////
map< string , TH1*> TCATSPhysics::GetSpectra() {
if(m_Spectra)
return m_Spectra->GetMapHisto();
else{
map< string , TH1*> empty;
///////////////////////////////////////////////////////////////////////////
void TCATSPhysics::WriteSpectra(){
if(m_Spectra)
m_Spectra->WriteSpectra();
}
/////////////////////////////////////////////////////////////////////
// Add Parameter to the CalibrationManger
void TCATSPhysics::AddParameterToCalibrationManager() {
CalibrationManager* Cal = CalibrationManager::getInstance();
for(int i = 0 ; i < m_NumberOfCATS ; i++){
for( int j = 0 ; j < 28 ; j++){
Cal->AddParameter("CATS", "D"+NPL::itoa(i+1)+"_X"+NPL::itoa(j+1)+"_Q","CATS_D"+NPL::itoa(i+1)+"_X"+NPL::itoa(j+1)+"_Q") ;
Cal->AddParameter("CATS", "D"+NPL::itoa(i+1)+"_Y"+NPL::itoa(j+1)+"_Q","CATS_D"+NPL::itoa(i+1)+"_Y"+NPL::itoa(j+1)+"_Q") ;
Cal->AddParameter("CATS", "D"+NPL::itoa(i+1)+"_X"+NPL::itoa(j+1),"CATS_D"+NPL::itoa(i+1)+"_X"+NPL::itoa(j+1)) ;
Cal->AddParameter("CATS", "D"+NPL::itoa(i+1)+"_Y"+NPL::itoa(j+1),"CATS_D"+NPL::itoa(i+1)+"_Y"+NPL::itoa(j+1)) ;
}
}
return;
}
////////////////////////////////////////////////////////////////
void TCATSPhysics::SetReconstructionMethod(unsigned int CATSNumber, string XorY, string MethodName){
if(XorY=="X"){
if(MethodName=="ASECH") ReconstructionFunctionX[CATSNumber] = &(AnalyticHyperbolicSecant);
else if(MethodName=="FSECH") ReconstructionFunctionX[CATSNumber] = &(FittedHyperbolicSecant);
//else if(MethodName=="AGAUSS") ReconstructionFunctionX[CATSNumber] = &(AnalyticGaussian);
//else if(MethodName=="CENTROIDE") ReconstructionFunctionX[CATSNumber] = &(Centroide);
else cout <<"WARNING: Wrong name for reconsctuction Method, using default AGAUSS" << endl;
if(MethodName=="ASECH") ReconstructionFunctionY[CATSNumber] = &(AnalyticHyperbolicSecant);
else if(MethodName=="FSECH") ReconstructionFunctionY[CATSNumber] = &(FittedHyperbolicSecant);
//else if(MethodName=="AGAUSS") ReconstructionFunctionY[CATSNumber] = &(AnalyticGaussian);
//else if(MethodName=="CENTROIDE") ReconstructionFunctionY[CATSNumber] = &(Centroide);
else cout <<"WARNING: Wrong name for reconsctuction Method, using default AGAUSS" << endl;
}
}
///////////////////////////////////////////////////////////////
TVector3 TCATSPhysics::GetBeamDirection(){
TVector3 Direction;
if(Positions.size() <2)return Direction;
Direction = TVector3 (Positions[2].second.first-Positions[1].second.first ,
Positions[2].second.second-Positions[1].second.second,
Positions[2].first-Positions[1].first );
return(Direction) ;
}
///////////////////////////////////////////////////////////////
TVector3 TCATSPhysics::GetPositionOnTarget(){
double Pi = 3.14159265;
TVector3 Position = TVector3 (GetPositionOnTargetX() ,
GetPositionOnTargetY() ,
GetPositionOnTargetX()*tan(m_TargetAngle*Pi/180));
return(Position) ;
}
////////////////////////////////////////////////////////////////////////
namespace CATS_LOCAL{
////////////////////////////////////////////////////////////////////
/*double AnalyticGaussian(std::pair<UShort_t,UShort_t>& MaxQ,std::vector<std::pair<UShort_t,UShort_t>>& Map, Double_t QSum){
/*double gauss = -1000;
double Q[3];
double StripPos[3];
for(int j = 0; j<3 ; j++){
Q[j] = 0;
StripPos[j] = 0;
}
if(MaxQ.first> 3 && MaxQ.first< 26){
// central value taken using the Strip with Max charge
Q[0] = Buffer_Q[MaxQ.first-1] ;
// Look at the next strip on the left
if(Buffer_Q[MaxQ.first-2]!=-1){
Q[1] = Buffer_Q[MaxQ.first-2];
StripPos[1] = MaxQ.first-2;
}
// Look at the next next strip on the left
else if(Buffer_Q[MaxQ.first-3]!=-1){
Q[1] = Buffer_Q[MaxQ.first-3];
StripPos[1] = MaxQ.first-3;
}
// Look at the next next next strip on the left
else if(Buffer_Q[MaxQ.first-4]!=-1){
Q[1] = Buffer_Q[MaxQ.first-4];
StripPos[1] = MaxQ.first-4;
}
// Look at the next strip on the right
if(Buffer_Q[MaxQ.first]!=-1){
Q[2] = Buffer_Q[MaxQ.first];
StripPos[2] = MaxQ.first;
}
// Look at the next next strip on the right
else if(Buffer_Q[MaxQ.first+1]!=-1){
Q[2] = Buffer_Q[MaxQ.first+1];
StripPos[2] = MaxQ.first+1;
}
// Look at the next next next strip on the right
else if(Buffer_Q[MaxQ.first+2]!=-1){
Q[2] = Buffer_Q[MaxQ.first+2];
StripPos[2] = MaxQ.first+2;
}
}
double Q0_Q1 = log(Q[0]/Q[1]);
double Q0_Q2 = log(Q[0]/Q[2]);
double num = Q0_Q1 * (StripPos[2]*StripPos[2] - StripPos[0]*StripPos[0]) - Q0_Q2 * (StripPos[1]*StripPos[1] - StripPos[0]*StripPos[0]) ;
double denom = Q0_Q1 * (StripPos[2] - StripPos[0]) - Q0_Q2 * (StripPos[1] - StripPos[0]) ;
if(denom != 0){
gauss = 0.5*num / denom;
}
else{
gauss = -1000;
}
return gauss;
return 0;
}
///////////////////////////////////////////////////////////////
double Centroide(std::pair<UShort_t,UShort_t>& MaxQ,std::vector<std::pair<UShort_t,UShort_t>>& Map, Double_t QSum){
double Centroide = 0 ;
double ChargeTotal = 0;
unsigned int sizeQ = Buffer_Q.size();
for(unsigned int i = 0 ; i < sizeQ ; i++){
if(Buffer_Q[i]>0){
Centroide += (i)*Buffer_Q[i-1] ;
ChargeTotal+=Buffer_Q[i-1];
}
}
if(ChargeTotal>0) Centroide = Centroide / ChargeTotal ;
else {
Centroide = -1000 ;
}
return Centroide ;
return 0;
/////////////////////////////////////////////////////////////////////
double AnalyticHyperbolicSecant(std::pair<UShort_t,UShort_t>& MaxQ,std::vector<std::pair<UShort_t,UShort_t>>& Map,Double_t QSum){
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
// std::cout << "test AnH 1" << std::endl;
if(MaxQ.second > 0 && MaxQ.first > 2 && MaxQ.first<27){
// if(Buffer_Q[MaxQ.first-1+1]==0||Buffer_Q[MaxQ.first-1-1]==0)
// return sech;
// std::cout << "test AnH 2" << std::endl;
double q2 = MaxQ.second;
double q1 = 0,q3 = 0;
for(auto &strip : Map){
if(strip.first == MaxQ.first - 1){
q1 = strip.second;
}
else if(strip.first == MaxQ.first + 1){
q3 = strip.second;
}
}
//std::cout << "test q " << q1 << " " << q2 << " " << q3 << std::endl;
double vs[6];
// std::cout << "test AnH 3" << std::endl;
if(q1 > 0 && q3 > 0)
{
// QsumSample[DetNum].push_back(QSum);
vs[0] = sqrt(q2/q3);
vs[1] = sqrt(q2/q1);
vs[2] = 0.5*(vs[0] + vs[1]);
vs[3] = log( vs[2] + sqrt(vs[2]*vs[2]-1.0) );
vs[4] = abs((vs[0] - vs[1])/(2.0*sinh(vs[3])));
vs[5] = 0.5*log( (1.0+vs[4])/(1.0-vs[4]) ) ;
// std::cout << "test AnH 4" << std::endl;
if ( q3>q1 )
sech = MaxQ.first + vs[5]/vs[3] ;
else
sech = MaxQ.first - vs[5]/vs[3] ;
//std::cout << "test sech " << sech << std::endl;
}
}
return sech ;
}
/////////////////////////////////////////////////////////////////////
double FittedHyperbolicSecant(std::pair<UShort_t,UShort_t>& MaxQ,std::vector<std::pair<UShort_t,UShort_t>>& Map, Double_t QSum){
// Warning: should not delete static variable
static TF1* f = new TF1("sechs","[0]/(cosh(TMath::Pi()*(x-[1])/[2])*cosh(TMath::Pi()*(x-[1])/[2]))",1,28);
// Help the fit by computing the position of the maximum by analytic method
double StartingPoint = AnalyticHyperbolicSecant(MaxQ,Map,QSum);
// if analytic method fails then the starting point in strip max
if(StartingPoint==-1000) StartingPoint = MaxQ.first;
// Maximum is close to charge max, Mean value is close to Analytic one, typical width is 3.8 strip
f->SetParameters(MaxQ.second,StartingPoint,3.8);
static vector<double> y ;
static vector<double> q ;
y.clear(); q.clear();
double final_size = 0 ;
unsigned int sizeQ = Map.size();
for(unsigned int i = 0 ; i < sizeQ ; i++){
if(Map[i].second > MaxQ.second*0.2){
q.push_back(Map[i].second);
y.push_back(i+1);
final_size++;
}
}
// requiered at least 3 point to perfom a fit
if(final_size<3){
return -1000 ;
}
TGraph* g = new TGraph(q.size(),&y[0],&q[0]);
g->Fit(f,"QN0");
delete g;
return f->GetParameter(1) ;
return 0;
}
////////////////////////////////////////////////////////////////////////
double fCATS_X_Q(const TCATSData* m_EventData , const int& i){
name+= NPL::itoa( m_EventData->GetCATSDetX(i) ) ;
name+= NPL::itoa( m_EventData->GetCATSStripX(i) ) ;
name+= "_Q";
return CalibrationManager::getInstance()->ApplyCalibration( name,
m_EventData->GetCATSChargeX(i) + gRandom->Rndm() );
//return CalibrationManager::getInstance()->ApplyCalibration( name,
// m_EventData->GetCATSChargeX(i) + gRandom->Rndm() );
//m_EventData->GetCATSChargeX(i) + gRandom->Rndm() - fCATS_Ped_X(m_EventData, i) );
}
////////////////////////////////////////////////////////////////////////
double fCATS_Y_Q(const TCATSData* m_EventData , const int& i){
name+= NPL::itoa( m_EventData->GetCATSDetY(i) ) ;
name+= NPL::itoa( m_EventData->GetCATSStripY(i) ) ;
name+= "_Q";
return CalibrationManager::getInstance()->ApplyCalibration( name ,
m_EventData->GetCATSChargeY(i) + gRandom->Rndm() );
//return CalibrationManager::getInstance()->ApplyCalibration( name ,
// m_EventData->GetCATSChargeY(i) + gRandom->Rndm() );
//m_EventData->GetCATSChargeY(i) + gRandom->Rndm() - fCATS_Ped_Y(m_EventData, i) );
}
////////////////////////////////////////////////////////////////////////
bool fCATS_Threshold_X(const TCATSData* m_EventData , const int& i){
name+= NPL::itoa( m_EventData->GetCATSDetX(i) ) ;
name+= NPL::itoa( m_EventData->GetCATSStripX(i) );
return CalibrationManager::getInstance()->ApplyThreshold(name,
m_EventData->GetCATSChargeX(i));
}
////////////////////////////////////////////////////////////////////////
bool fCATS_Threshold_Y(const TCATSData* m_EventData , const int& i){
name+= NPL::itoa( m_EventData->GetCATSDetY(i) ) ;
name+= NPL::itoa( m_EventData->GetCATSStripY(i) );
return CalibrationManager::getInstance()->ApplyThreshold( name,
m_EventData->GetCATSChargeY(i));
}
////////////////////////////////////////////////////////////////////////
double fCATS_Ped_X(const TCATSData* m_EventData, const int& i){
name+= NPL::itoa( m_EventData->GetCATSDetX(i) ) ;
name+= NPL::itoa( m_EventData->GetCATSStripX(i) ) ;
return CalibrationManager::getInstance()->GetPedestal(name);
}
////////////////////////////////////////////////////////////////////////
double fCATS_Ped_Y(const TCATSData* m_EventData, const int& i){
name+= NPL::itoa( m_EventData->GetCATSDetY(i) ) ;
name+= NPL::itoa( m_EventData->GetCATSStripY(i) );
return CalibrationManager::getInstance()->GetPedestal( name );
////////////////////////////////////////////////////////////////////////////////
// Construct Method to be pass to the DetectorFactory //
////////////////////////////////////////////////////////////////////////////////
NPL::VDetector* TCATSPhysics::Construct(){
return (NPL::VDetector*) new TCATSPhysics();
NPL::VTreeReader* TCATSPhysics::ConstructReader() { return (NPL::VTreeReader*)new TCATSPhysicsReader(); }
////////////////////////////////////////////////////////////////////////////////
// Registering the construct method to the factory //
////////////////////////////////////////////////////////////////////////////////
extern "C"{
class proxy_cats{
public:
proxy_cats(){
NPL::DetectorFactory::getInstance()->AddToken("CATSDetector","CATS");
NPL::DetectorFactory::getInstance()->AddDetector("CATSDetector",TCATSPhysics::Construct);
NPL::DetectorFactory::getInstance()->AddDetectorReader("CATSDetector", TCATSPhysics::ConstructReader);